CN113051705B - 一种精确预测钢轨轨温的方法 - Google Patents

一种精确预测钢轨轨温的方法 Download PDF

Info

Publication number
CN113051705B
CN113051705B CN202011551867.8A CN202011551867A CN113051705B CN 113051705 B CN113051705 B CN 113051705B CN 202011551867 A CN202011551867 A CN 202011551867A CN 113051705 B CN113051705 B CN 113051705B
Authority
CN
China
Prior art keywords
rail
steel rail
temperature
vibration
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011551867.8A
Other languages
English (en)
Other versions
CN113051705A (zh
Inventor
冯青松
周豪
张凌
徐春山
毛建红
刘庆杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Jiaotong University
Original Assignee
East China Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Jiaotong University filed Critical East China Jiaotong University
Priority to CN202011551867.8A priority Critical patent/CN113051705B/zh
Publication of CN113051705A publication Critical patent/CN113051705A/zh
Application granted granted Critical
Publication of CN113051705B publication Critical patent/CN113051705B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/26Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明的目的在于提供一种预测钢轨轨温的方法,所述方法包括如下步骤:利用激励源在安装加速度传感器附近钢轨轨顶处施加振动,并获取钢轨振动加速度信号;计算振动的频响函数曲线,得出不同纵向力F和自振频率之间的关系,并计算得到纵向力F;将纵向力F代入F=kΔt*A,计算得到温度变化量Δt,其中k为常数,A为钢轨横截面积;根据锁定轨温与温度变化量Δt得到钢轨实际轨温。本发明提出一种精确预测钢轨轨温的方法,可以简便无损的检测钢轨纵向力,并且计算所得钢轨轨温结果更加符合试验值,提高了检测精度。

Description

一种精确预测钢轨轨温的方法
技术领域
本发明属于轨道交通技术领域,具体涉及一种精确预测钢轨轨温的方法。
背景技术
随着我国科学技术和生产力不断发展,高速铁路、重载铁路技术不断更新,列车通过钢轨接头时会产生很大的轮轨冲击力,对轨道结构产生很大的破坏作用,造成轨道部件破损,同时加剧了机车车辆的振动、车辆部件的破损,增加能耗和降低旅客舒适度。为了改善钢轨接头的工作状态,无缝线路问世,为大量减少钢轨接头创造了条件,因而具有行车平稳,机车车辆及轨道维修费用降低,设备使用寿命延长,适合高速行车等优点,是铁路轨道现代化的一项重要技术措施,也是当前高速、重载铁路必需的条件。但是,无缝线路钢轨在变温环境下不能沿纵向伸缩,因此造成钢轨内部温度应力增大,存在轨道结构高温胀轨和低温拉断的危险。所以定期对无缝线路纵向温度力进行检测具有尤为重要的意义。
目前的无缝线路温度检测主要分为有损检测和半有损检测方法,这两种方法会对原有钢轨的稳定性造成破坏,并且增加了检测过程风险。第一类半有损检测方法只能检测钢轨内部存在的拉应力,并未得到广泛应用。第二类半有损检测方法能保证轨道结构完整和稳定,但精度较低,耗费人力物力较大。近年来,一些无损检测法也应用到无缝线路上,如超声导波法、X射线法等,但此类方法并不能反映整个钢轨截面上的温度应力分布情况,同时受钢轨自身状态影响,其检测准确性有待深究。所以,亟需研究一种更为精确的无损钢轨温度检测方法。
发明内容
本发明的目的在于解决现有方法对无缝线路钢轨轨温预测不佳的现状,提一种预测钢轨轨温的方法,其特征在于:所述方法包括如下步骤:
利用激励源在安装加速度传感器附近钢轨轨顶处施加振动,并获取钢轨振动加速度信号;
计算振动的频响函数曲线,得出不同纵向力F和自振频率之间的关系,并计算得到纵向力F;
将纵向力F代入F=kΔt*A,计算得到温度变化量Δt,其中k为常数,A为钢轨横截面积;
根据锁定轨温与温度变化量Δt得到钢轨实际轨温。
在一个实施方案中,所述方法还包括在钢轨轨顶上安装若干振动加速度传感器,每两组相邻轨枕等间距安装一个加速度传感器。
在一个实施方案中,所述不同纵向力和自振频率之间的关系为二次关系式。
在一个实施方案中,所述二次关系式为F=Af2+Bf+C,其中,A为二次项系数,B为一次项系数,C为常数,f为自振频率。
在一个实施方案中,所述计算振动的频响函数曲线,包括,先计算激励F(t)的自相关函数Rff(τ),再计算F(t)与响应X(t)的互相关函数Rfx(τ),分别对Rff(τ)及Rfx(τ)作傅里叶变换,得到F(t)的自功率谱Sff(f)及F(t)与X(t)的互功率谱Sfx,频响函数满足
Figure BDA0002857928440000021
在一个实施方案中,每个加速度传感器通过数据线传输到一个或者多个采集仪,用于进行集中数据分析。
本发明的优点在于:
(1)针对目前方法解决现有方法对无缝线路钢轨温度预测不佳的现状,提出一种精确预测钢轨轨温的方法,可以简便无损的检测钢轨纵向力。
(2)目前已有的文献检测方法是假设钢轨纵向力和自振频率为线性关系,本发明基于试验和理论推导,提出一种纵向力-自振频率二次关系拟合式,计算所得钢轨轨温结果更加符合试验值,提高了检测精度。
附图说明
图1是预测钢轨轨温方法流程图;
图2是轨道结构简化示意图;
图3是钢轨纵向力和自振频率的试验关系结果图;
图4是钢轨自振频率的平方与纵向力关系拟合图;
图5是钢轨纵向力和自振频率的二次关系拟合曲线图。
具体实施方式
为了使本发明的技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
本发明预测钢轨温度的方法包括:
利用激励源4在安装加速度传感器3附近钢轨1轨顶处施加振动,并获取钢轨1振动加速度信号;
计算振动的频响函数曲线,得出不同纵向力F和自振频率之间的关系,并计算得到纵向力F;
将纵向力F代入F=kΔt*A,计算得到温度变化量Δt,其中k为常数,A为钢轨横截面积;
根据锁定轨温与温度变化量Δt得到钢轨实际轨温。
其中,无缝线路锁定轨温是指无缝线路的零应力轨温,是指无缝线路钢轨被完全锁定时的轨温,此时钢轨内部的温度力为零。温度变化量Δt有正负,正表示温度升高,负表示温度降低。
在一个方案中,所述方法还包括在钢轨1轨顶上安装若干振动加速度传感器3,每两组相邻轨枕等间距安装一个加速度传感器3,优选至少布置5个传感器。
在一个方案中,所述激励源为力锤4,通过在安装加速度传感器3附近钢轨1轨顶处进行敲击,使钢轨1产生振动加速度信号。
采用本发明的方案,通过振动激励可以测得温度变化量,进而可以测得钢轨的实际温度,其为完全的无损的探测方式,相比于现有技术更加简单、便利且节约成本。而且本发明的方案非常巧妙的利用了温度与激振力的关系,现有技术中都是根据温度变化来计算激振力,本发明反其道而行之。
在一个方案中,所述不同纵向力和自振频率之间的关系为二次关系式。
在一个方案中,所述二次关系式为F=Af2+Bf+C,其中,A为二次项系数,B为一次项系数,C为常数,f为自振频率。
经过研究和实验返现,激振力与自振频率的二次关系式更加精确,所以采用本发明的方案,能够更加准确计算激振力,进而可以更加精确计算温度。
在一个方案中,每个加速度传感器通过数据线传输到一个或者多个采集仪,用于进行集中数据分析。
如图2,示出了实施本发明方法的装置结构图,其中包括钢轨1、扣件2、振动加速度传感器3、力锤4。在钢轨1轨顶上安装若干振动加速度传感器3,每两组相邻轨枕等间距安装一个传感器3,用于测试钢轨1的振动加速度信号。
在一个方案中,计算振动的频响函数曲线,包括,先计算激励F(t)的自相关函数Rff(τ),再计算F(t)与响应X(t)的互相关函数Rfx(τ),分别对Rff(τ)及Rfx(τ)作傅里叶变换,得到F(t)的自功率谱Sff(f)及F(t)与X(t)的互功率谱Sfx,频响函数满足
Figure BDA0002857928440000041
在一个方案中,钢轨单位长度质量为60kg/m时,经过计算,所述拟合曲线中二次项系数A和一次项系数B和常数项C的值按下表选取:
Figure BDA0002857928440000042
实施例1:
下面结合附图说明书本发明预测钢轨轨温的方法的一个具体实施1,所述钢轨单位长度质量为60kg/m,轨枕间距为0.57m;所述系统包括钢轨1、扣件2、振动加速度传感器3、力锤4。在钢轨1轨顶上安装若干振动加速度传感器3,每两组相邻轨枕等间距安装一个传感器3。每个加速度传感器3通过数据线传输到一个或者多个采集仪(图中未实),进行集中数据分析。
随后计算激励F(t)的自相关函数Rff(τ),再计算F(t)与响应X(t)的互相关函数Rfx(τ),分别对Rff(τ)及Rfx(τ)作傅里叶变换,得到F(t)的自功率谱Sff(f)及F(t)与X(t)的互功率谱Sfx,频响函数满足
Figure BDA0002857928440000043
通过实验分析计算得到不同钢轨纵向力和自振频率的关系,频率随纵向力的变化呈现出一个曲线变化的趋势,对其按照F=Af2+Bf+C进行二次关系拟合,f表示钢轨弯曲振动第一阶pinned-pinned共振频率,F表示钢轨纵向力。
钢轨单位长度质量为60kg/m时,所述拟合曲线中二次项系数A和一次项系数B和常数项C的值按下表选取:
Figure BDA0002857928440000044
Figure BDA0002857928440000051
试验轨枕间距为0.57m,根据上表查询,确定其二次关系拟合式为F=-0.00015196x2-0.01798x+174.94603。
通过计算进一步得到钢轨弯曲振动第一阶pinned-pinned共振频率实际值f=1013Hz,将其代入拟合曲线F=-0.00015196x2-0.01798x+174.94603,得到纵向力为0.79569MN。
将纵向力的值代入F=kΔt*A,从而获得钢轨温度变化量Δt=41.43℃,即钢轨的温度变化量超过锁定轨温41.43℃,钢轨内部出现压应力。
根据现场线路条件查得锁定轨温为22℃,因此可得钢轨实际温度为22℃+41.43℃=63.43℃。
下面通过公式推导验证钢轨自振频率和纵向力的二次关系实验结果的合理性,
一段钢轨可以认为是一段梁,承受轴向力的钢轨的自由运动方程为
Figure BDA0002857928440000052
进行变量分离,得到
Figure BDA0002857928440000053
将式(2)展开为两个独立的常微分方程,即
Figure BDA0002857928440000054
EIφ″″(x)+Nφ″(x)-mω2φ(x)=0 (4)
将式(4)处理为
φ″″(x)+g2φ″(x)-a4φ(x)=0 (5)
其中:m表示质量,u表示垂向位移。N表示钢轨纵向力,x表示x方向一维梁,E表示弹性模量,I表示惯性矩,w表示圆频率,φ(x)为人为所定义函数。a和g为自定义参数
式中各个参数满足
Figure BDA0002857928440000061
根据常微分方程通解形式,可以写出方程(4)的通解
φ(x)=Asinδx+Bcosδx+Csinhεx+Dcoshεx (7)
式中,A~D表示四个常数,由梁边界条件确定,且各项参数满足
Figure BDA0002857928440000062
根据简支梁两端铰接的边界条件,可以解得考虑轴向力时简支梁得自振频率为
Figure BDA0002857928440000063
由式(9)可以看出,当纵向力为正时,钢轨自振频率会减小,相当于降低了钢轨的刚度,且压力越大,频率降低得越多;当纵向力为负时,钢轨的自振频率会增大,相当于提高了梁的刚度,从中可以得出钢轨的纵向力和自振频率并非线性关系,而更靠近二次关系。同时,从图4可以看出,钢轨的自振频率的平方与纵向力呈线性关系,线性拟合相关系数高达0.99983(如下表),也就是说,实质上钢轨的自振频率和力呈二次关系,证明了本发明方法的可靠性。
Figure BDA0002857928440000064
相关系数用公式进行计算,r越接近1,表示拟合越好,两者相关性越强,将上式中数据代入公式
Figure BDA0002857928440000071
可得钢轨的自振频率的平方与纵向力线性相关系数为0.99983
上文所列出的一系列的详细说明仅仅是针对本发明的优选实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (3)

1.一种精确预测钢轨轨温的方法,其特征在于:所述方法包括如下步骤:
利用激励源在安装加速度传感器附近钢轨轨顶处施加振动,并获取钢轨振动加速度信号;
计算振动的频响函数曲线,得出不同纵向力F和自振频率之间的关系,并计算得到纵向力F;
将纵向力F代入F=kΔt*A,计算得到温度变化量Δt,其中k为常数,A为钢轨横截面积;
根据锁定轨温与温度变化量Δt得到钢轨实际轨温;
所述方法还包括在钢轨轨顶上安装若干振动加速度传感器,每两组相邻轨枕等间距安装一个加速度传感器;
所述不同纵向力和自振频率之间的关系为二次关系式;所述二次关系式为F=Af2+Bf+C,其中,A为二次项系数,B为一次项系数,C为常数,f为自振频率。
2.根据权利要求1所述的一种精确预测钢轨轨温的方法,其特征在于:所述计算振动的频响函数曲线,包括,先计算激励F(t)的自相关函数Rff(τ),再计算F(t)与响应X(t)的互相关函数Rfx(τ),分别对Rff(τ)及Rfx(τ)作傅里叶变换,得到F(t)的自功率谱Sff(f)及F(t)与X(t)的互功率谱Sfx(f),频响函数满足
Figure FDA0003524313740000011
3.根据权利要求1所述的一种精确预测钢轨轨温的方法,其特征在于:每个加速度传感器通过数据线传输到一个或者多个采集仪,用于进行集中数据分析。
CN202011551867.8A 2020-12-24 2020-12-24 一种精确预测钢轨轨温的方法 Active CN113051705B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011551867.8A CN113051705B (zh) 2020-12-24 2020-12-24 一种精确预测钢轨轨温的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011551867.8A CN113051705B (zh) 2020-12-24 2020-12-24 一种精确预测钢轨轨温的方法

Publications (2)

Publication Number Publication Date
CN113051705A CN113051705A (zh) 2021-06-29
CN113051705B true CN113051705B (zh) 2022-04-26

Family

ID=76508226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011551867.8A Active CN113051705B (zh) 2020-12-24 2020-12-24 一种精确预测钢轨轨温的方法

Country Status (1)

Country Link
CN (1) CN113051705B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847958A (zh) * 2021-09-27 2021-12-28 沈阳铁路信号有限责任公司 一种基于振动模态的钢轨锁定轨温检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721501A (zh) * 2012-06-15 2012-10-10 大连理工大学 测量铁路钢轨断裂纵向力分布的实验方法
CN107328496A (zh) * 2017-08-03 2017-11-07 华东交通大学 一种基于钢轨竖向振动特性检测钢轨纵向力的方法
CN107560764A (zh) * 2017-08-03 2018-01-09 华东交通大学 一种基于钢轨横向振动特性检测钢轨纵向力的方法
CN108318126A (zh) * 2018-01-26 2018-07-24 华东交通大学 一种基于钢轨竖向振动特性检测轨下垫板刚度的方法
CN108776725A (zh) * 2018-05-23 2018-11-09 中铁工程设计咨询集团有限公司 一种特殊桥跨无缝线路纵向力的计算方法
CN108891443A (zh) * 2018-08-01 2018-11-27 中国铁道科学研究院集团有限公司 无缝钢轨温度应力的监测系统及监测方法
CN110864836A (zh) * 2019-11-15 2020-03-06 华东交通大学 一种基于钢轨纵向力检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10732621B2 (en) * 2016-05-09 2020-08-04 Strong Force Iot Portfolio 2016, Llc Methods and systems for process adaptation in an internet of things downstream oil and gas environment
CN106695098A (zh) * 2017-03-01 2017-05-24 上海带轨道焊接科技有限公司 一种不同轨种钢轨的焊接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721501A (zh) * 2012-06-15 2012-10-10 大连理工大学 测量铁路钢轨断裂纵向力分布的实验方法
CN107328496A (zh) * 2017-08-03 2017-11-07 华东交通大学 一种基于钢轨竖向振动特性检测钢轨纵向力的方法
CN107560764A (zh) * 2017-08-03 2018-01-09 华东交通大学 一种基于钢轨横向振动特性检测钢轨纵向力的方法
CN108318126A (zh) * 2018-01-26 2018-07-24 华东交通大学 一种基于钢轨竖向振动特性检测轨下垫板刚度的方法
CN108776725A (zh) * 2018-05-23 2018-11-09 中铁工程设计咨询集团有限公司 一种特殊桥跨无缝线路纵向力的计算方法
CN108891443A (zh) * 2018-08-01 2018-11-27 中国铁道科学研究院集团有限公司 无缝钢轨温度应力的监测系统及监测方法
CN110864836A (zh) * 2019-11-15 2020-03-06 华东交通大学 一种基于钢轨纵向力检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于非线性超声的无缝钢轨锁定轨温检测;牛笑川 等;《铁道学报》;20200331;第42卷(第3期);第114-121页 *
桥梁温度分布情况对桥上无砟轨道的影响分析;冯青松 等;《铁道工程学报》;20181130(第11期);第20-26页 *
高铁钢轨温度应力及扣件松脱在线监测与识别研究;韦佳宏;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》;20200115;C033-24 *

Also Published As

Publication number Publication date
CN113051705A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
Karoumi et al. Monitoring traffic loads and dynamic effects using an instrumented railway bridge
US20120245908A1 (en) Method for determining the stress free temperature of the rail and/or the track resistance
CN105783799A (zh) 一种基于振动的无砟轨道板离缝深度无损检测方法及设备
CN106932135B (zh) 一种基于加权窄带搜峰法识别振动频率的柔性拉索索力测试方法
CN100523757C (zh) 无缝线路轨道结构钢轨纵向力的测试方法
CN107560764A (zh) 一种基于钢轨横向振动特性检测钢轨纵向力的方法
Song et al. Analysis of critical speed for high-speed railway pantograph-catenary system
CN110864836B (zh) 一种基于钢轨纵向力检测方法
CN113051705B (zh) 一种精确预测钢轨轨温的方法
Ding et al. Structural health monitoring of a high-speed railway bridge: five years review and lessons learned
CN108318126B (zh) 一种基于钢轨竖向振动特性检测轨下垫板刚度的方法
CN110926676B (zh) 一种利用钢轨振动特性获取温度力的方法
CN109855771B (zh) 一种基于钢轨竖向加速度功率谱密度检测温度力的方法
Chakraborty et al. Embedded ultrasonic transmission sensors and signal processing techniques for structural change detection in the Gliwice bridge
CN109855770B (zh) 一种基于钢轨横向加速度功率谱密度检测温度力的方法
Morichika et al. Estimation of displacement response in steel plate girder bridge using a single MEMS accelerometer
CN111832618B (zh) 轨道动、静态检查数据的匹配方法
Kaloop et al. Yonjung high-speed railway bridge assessment using output-only structural health monitoring measurements under train speed changing
Zeng et al. Reconstruction of vehicle-induced vibration on concrete pavement using distributed fiber optic
CN113447163B (zh) 一种基于钢轨模态整体变化测量锁定轨温的方法
Venglár et al. Performance assessment of steel truss railway bridge with curved track
CN108318125B (zh) 一种基于钢轨竖向振动特性检测道砟刚度的方法
JP7177027B2 (ja) レール波状摩耗の進展検知方法及び進展検知システム
MATSUOKA et al. Resonant bridge detection method by on-board measurement
CN114707352A (zh) 一种基于列车行车性能的铁路桥梁成桥线形偏差控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant