CN113051260A - 基于经验正交函数分解的高分辨率声速剖面数据压缩方法 - Google Patents

基于经验正交函数分解的高分辨率声速剖面数据压缩方法 Download PDF

Info

Publication number
CN113051260A
CN113051260A CN202110457459.4A CN202110457459A CN113051260A CN 113051260 A CN113051260 A CN 113051260A CN 202110457459 A CN202110457459 A CN 202110457459A CN 113051260 A CN113051260 A CN 113051260A
Authority
CN
China
Prior art keywords
sound velocity
velocity profile
resolution
matrix
profile data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110457459.4A
Other languages
English (en)
Other versions
CN113051260B (zh
Inventor
肖汶斌
王勇献
颜恺壮
程兴华
刘巍
张理论
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202110457459.4A priority Critical patent/CN113051260B/zh
Publication of CN113051260A publication Critical patent/CN113051260A/zh
Application granted granted Critical
Publication of CN113051260B publication Critical patent/CN113051260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/215Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Quality & Reliability (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明属于三维温盐深数据的海洋声学应用技术领域,尤其涉及基于经验正交函数分解的高分辨率声速剖面数据压缩方法,具体如下:以高分辨率海洋再分析产品提供数据,采用声速公式转换获得海水声速剖面数据;针对海洋声学应用技术领域的特点,将某一时空维度下的高分辨率、长时间序列声速剖面数据延拓至海底沉积层;以主模态的特征向量作为声速剖面经验正交函数分解的基函数,压缩表示某一时空维度下的高分辨率、长时间序列声速剖面信息。本发明实现了从高分辨率海洋再分析产品出发,获取声速剖面数据压缩的技术方案;实现了某一时空维度下声速剖面数据的有效压缩,获得高分辨率、长时间序列声速剖面数据压缩率90%以上的有益效果。

Description

基于经验正交函数分解的高分辨率声速剖面数据压缩方法
技术领域
本发明属于三维温盐深数据的海洋声学应用技术领域,尤其涉及基于经验正交函数分解的高分辨率声速剖面数据压缩方法。
背景技术
海洋利益事关国家的安全与发展利益。在海洋声学应用技术领域,声速剖面是开展水声场建模与分析、声学性能计算评估、水声目标信息感知的重要数据基础。高分辨率的声速剖面数据有助于获取精细化的海洋声学信息,进而提升海洋环境数据的保障能力与水平。由于地球海洋的空间尺度较大,高分辨率海洋环境要素(如声速剖面)的水平空间分辨率一般不低于1°×1°。基于高分辨率海洋再分析产品所获得的高分辨率声速剖面数据量十分庞大,单个数据采样时刻下的数据文件大小为GB量级,普通的个人计算机终端难以满足长时间序列数据存储需求,进而限制了高分辨率声速剖面数据在海洋声学领域的分析与应用。
学术论文《改进型经验正交函数海洋声速剖面预报方法》聚焦解决传统方法求解协方差矩阵和时间函数较粗糙的问题,采用改进型的经验正交函数开展了海水声速剖面的预报分析,其数据分析对象仅限于22°~22°30′N、123°~123°30′E的海区范围,且声速剖面的深度范围为0~2500米。学术论文《印度洋中北部声速剖面结构的时空变化及其物理机理研究》采用水平空间分辨率为3°×3°、时间分辨率为10天的地转海洋学实时观测阵数据,基于经验正交函数分解方法分析了印度洋中北部的声速剖面特征量时空演变规律,其数据分析对象仅限于印度洋中北部海区的六个区域0~2000米水深范围。学术论文《一种声速剖面展开的正交基函数获取方法》提出了一种基于水动力方程提取声速剖面正交基函数的方法,重点解决经验正交函数在声速剖面的声学反演应用中的可靠性和适用性问题,其数据分析对象仅限于两个空间位置处30余小时内的声速剖面观测值。CN110837791A公开了一种基于过完备字典的声速剖面反演方法,利用过完备字典的冗余特性捕捉声速剖面的内在本质特征,进而提高海水声速剖面反演的精度。CN109725053A公开了一种基于高分辨率海洋再分析产品获取水声场特性数据的方法,其数据分析对象与本发明相同,但未提及采用经验正交函数分解开展声速剖面的数据压缩。CN110222872A公开了一种基于经验正交函数分解的海洋多要素中长期统计预测方法,主要解决在海洋预报模式的基础上提高海洋预报的时效性问题。
发明内容
本发明创造的目的在于,提供一种基于经验正交函数分解的高分辨率声速剖面数据压缩方法。该方法实现了从高分辨率海洋再分析产品中获得高分辨率、长时间序列的声速剖面数据,在兼顾数据精度与使用效益的原则下,采用基函数表征广域海区的声速剖面信息,显著压缩高分辨率、长时间序列声速剖面的数据量大小,为高分辨率海洋再分析产品在海洋声学领域的应用提供技术基础。
为实现上述目的,本发明创造采用如下技术方案。
一种基于经验正交函数分解的高分辨率声速剖面数据压缩方法,包括如下步骤:
步骤1,以高分辨率海洋再分析产品提供海域的经度、纬度以及海水的温度、盐度、水深数据,采用声速公式转换获得海域的海水声速剖面数据;
步骤2,参照典型声速剖面的垂向分层结构,将某一时空维度下的高分辨率、长时间序列声速剖面数据延拓至海底沉积层;具体的,某一时空维度,是指在高分辨率海洋再分析产品提供的声速剖面数据中,需要进行数据压缩的部分;
步骤3,在统一的深度分层框架下,按照空间经度纬度网格、数据采样时刻组织声速剖面数据,求解声速剖面数据矩阵的协方差矩阵及其特征值、特征向量;
步骤4,以主模态的特征向量作为声速剖面经验正交函数分解的基函数,压缩表示某一时空维度下的高分辨率、长时间序列声速剖面信息。
对前述基于经验正交函数分解的高分辨率声速剖面数据压缩方法的进一步改进,所述步骤1的具体步骤如下:
步骤1.1,参照高分辨率海洋再分析产品的网格单元结构,设计高分辨率、长时间序列声速剖面的数据结构;其中,高分辨率海洋再分析产品对海域范围内的经度、纬度采用等间距网格划分,在深度维度上采用非等间距网格划分;高分辨率海洋再分析产品提供的海水温度、盐度数据为海洋水体的物理量,在陆地和海底沉积层处的海水温度、盐度数据为缺省值状态;
步骤1.2,以高分辨率海洋再分析产品的经度、纬度、深度网格为基础,采用声速公式获得海域的海水声速剖面数据,所述的声速公式表达式如下:
C(S,T,p)=Cω(T,p)+A(T,p)S+B(T,p)S3/2+D(T,p)S2
式中:C为海水声速值,S、T、P分别为海水盐度、水温、静压力,Cω、A、B、D为与海水温度和静压力相关的经验函数,0≤S≤40、0°≤T≤40°、0Pa≤p≤108Pa,声速计算值的标准差为0.19m/s;
步骤1.3,基于海域高分辨率、长时间序列的声速剖面数据单元存储为浮点数类型;采用声速公式获得的声速剖面数据在范围内的水平空间分辨率为0.1°×0.1°,垂向空间分辨率为50层,时间分辨率为每3小时输出一次;所述的垂向空间分辨率为50层的声速剖面数据的深度最大值不小于5000米;声速剖面数据的时段与产出的高分辨率海洋再分析产品相同;在陆地和海底沉积层处的声速剖面数据为缺省值状态。
对前述基于经验正交函数分解的高分辨率声速剖面数据压缩方法的进一步改进,所述步骤2的具体步骤如下:
步骤2.1,以典型海水声速剖面的分层结构,作为声速剖面数据延拓的先验信息;所述典型声速剖面分为表面层、跃变层、等温层三层结构;
步骤2.2,在特定经度、纬度的位置处,修改网格深度为海底沉积层的声速值;参照典型声速剖面的垂向分层结构,将声速剖面数据延拓至海底沉积层;特定经度、纬度位置处延拓后的声速剖面数据共K层;
步骤2.3,在特定的时空维度下,循环遍历经度纬度的网格空间位置,获取延拓后的高分辨率、长时间序列声速剖面数据,形成统一的深度分层海水声速剖面数据;某一时空维度下的经度纬度网格空间位置共I个,数据采样时刻共计J个。
对前述基于经验正交函数分解的高分辨率声速剖面数据压缩方法的进一步改进,所述步骤3的具体步骤如下:
步骤3.1,以统一的深度分层海水声速剖面为对象,构建某一时空维度下的声速剖面数据矩阵;所述的声速剖面数据矩阵的行数为声速剖面数据层数K,列数为经度纬度网格空间位置数I×数据采样时刻数J;某一时空维度下深度分层的声速平均值向量确定为M;
步骤3.2,对声速剖面数据矩阵进行距平化后作协方差处理,获得对应的协方差矩阵YK×K;所述的声速剖面数据矩阵进行距平化后的矩阵为XK×IJ;所述的协方差矩阵YK×K的行数与列数均为K;所述的协方差矩阵YK×K的计算表达式如下:
Figure BDA0003040989100000031
步骤3.3,求解协方差矩阵YK×K的特征值和特征向量,所述的特征值共计K个、特征向量为K个;特征值与特征向量的计算表达式如下:
YK×K×VK×K=VK×K×EK×K
式中:VK×K为K个特征向量组成的方阵;EK×K为K个特征值(λ123,…,λK)组成的对角阵,具体表示如下:
Figure BDA0003040989100000041
对前述基于经验正交函数分解的高分辨率声速剖面数据压缩方法的进一步改进,所述步骤4的具体步骤如下:
步骤4.1,对特征值按照由大到小的顺序进行排列,并将对应的特征向量按列排序组成模态矩阵F;所述的特征值按照由大到小的顺序排列为λ123>…>λK;所述的模态矩阵F的行数与列数均为K;
步骤4.2,求解K个模态对应的累积方差贡献率;其中,第K个模态对应的累积方差贡献率的计算表达式如下:
Figure BDA0003040989100000042
步骤4.3,选取累积方差贡献率大于95%的模态为高分辨率、长时间序列声速剖面经验正交函数分解的主模态;所述的声速剖面经验正交函数分解的主模态为N个;所述的主模态个数N远小于模态总个数K;
步骤4.4,从模态矩阵F中抽取N个主模态对应的特征向量作为声速剖面经验正交函数分解的基函数组成压缩模态矩阵
Figure BDA0003040989100000043
按列将声速平均值向量M扩展为与声速剖面数据矩阵相同的维度,组成声速平均值矩阵
Figure BDA0003040989100000044
所述的压缩模态矩阵
Figure BDA0003040989100000045
的行数为K、列数为N,声速平均值矩阵
Figure BDA0003040989100000046
的行数为K、列数为I×J;
步骤4.5,转置后的压缩模态矩阵与声速剖面数据矩阵距平化后的矩阵的乘积确定为数据压缩矩阵QN×IJ;以压缩模态矩阵
Figure BDA0003040989100000047
数据压缩矩阵QN×IJ、声速平均值矩阵
Figure BDA0003040989100000048
为基础,重构某一时空维度下的声速剖面信息
Figure BDA0003040989100000049
实现高分辨率、长时间序列声速剖面数据的压缩表示;所述的重构的声速剖面信息计算表达式如下:
Figure BDA00030409891000000410
对前述基于经验正交函数分解的高分辨率声速剖面数据压缩方法的进一步改进,在海洋声学的实际应用过程中,特定经度、纬度位置处的声速剖面数据采用下列方式获得:截去重构的声速剖面信息在海底沉积层的数值。
本发明提供了基于经验正交函数分解的高分辨率声速剖面数据压缩方法,其有益效果在于:
1、实现了从高分辨率海洋再分析产品出发,获取高分辨率、长时间序列声速剖面压缩数据的技术方案;该方案便于实现电子化与模块化运算,涉及的矩阵或向量运算对设备算力负荷小;
2、以累积方差贡献率大于95%作为声速剖面经验正交函数分解的主模态,有效确保某一时空维度下的声速剖面数据精度;
3、借助统一的深度分层框架和海底沉积层的数据延拓,能够使得高分辨率、长时间序列声速剖面的经验正交函数分解拓展至范围深度达5000米的广域海区;在保证数据的有效性的同时,极大地拓展数据处理的空间范围;
4、实现了某一时空维度下声速剖面数据的有效压缩,获得高分辨率、长时间序列声速剖面数据压缩率90%以上,使得声速剖面数据的体积量大幅减小,极大地降低数据存储传输的软硬件成本和操作维护难度,降低技术要求,为改良相应数据分析、远程调用等工作内容提供良好基础。
附图说明
图1是本发明实施例的总体流程图;
图2是本发明实施例中的声速剖面数据延拓至海底沉积层示意图;
图3是本发明实施例中的声速剖面原始数据图;
图4是本发明实施例中的声速剖面重构数据图;
图5是本发明实施例中的声速平均误差值图。
具体实施方式
以下结合具体实施例对本发明作详细说明。
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明提供一种基于经验正交函数分解的高分辨率声速剖面数据压缩方法。参考图1,为本发明提供的基于经验正交函数分解的高分辨率声速剖面数据压缩方法的总体流程图,具体包括以下步骤:
步骤1,以高分辨率海洋再分析产品提供海域的经度、纬度以及海水温度、盐度、水深数据,采用声速公式转换获得海域的海水声速剖面数据;
步骤2,针对海洋声学应用技术领域的特点,参照典型声速剖面的垂向分层结构,将某一时空维度下的高分辨率、长时间序列声速剖面数据延拓至海底沉积层;
步骤3,在统一的深度分层框架下,按照空间经度纬度网格、数据采样时刻组织声速剖面数据,求解声速剖面数据矩阵的协方差矩阵及其特征值、特征向量;
步骤4,以主模态的特征向量作为声速剖面经验正交函数分解的基函数,压缩表示某一时空维度下的高分辨率、长时间序列声速剖面信息。
步骤1的具体步骤如下:
步骤1.1,参照高分辨率海洋再分析产品的网格单元结构,设计高分辨率、长时间序列声速剖面的数据结构;其中,高分辨率海洋再分析产品对海域范围内的经度、纬度采用等间距网格划分(分辨率为0.1°),在深度维度上采用非等间距网格划分(共50层),时间分辨率为每3小时输出一次;高分辨率海洋再分析产品提供的海水温度、盐度数据为海洋水体的物理量,在陆地和海底沉积层处的海水温度、盐度数据为缺省值状态(默认为NAN);
步骤1.2,以高分辨率海洋再分析产品的经度、纬度、深度网格为基础,采用声速公式获得海域的海水声速剖面数据,所述的声速公式表达式如下:
C(S,T,p)=Cω(T,p)+A(T,p)S+B(T,p)S3/2+D(T,p)S2
式中:C为海水声速值,S、T、P分别为海水盐度、水温、静压力;
其中Cω、A、B、D为与海水温度和静压力相关的经验函数,具体含义见《Preciseequation of state of seawater for oceanic ranges of salinity,temperature andpressure(作者:CT Chen,FJ Millero.1977)》、《Speed of sound in seawater at highpressures(作者:Chen,Chen-Tung.1977)》以及《海洋物理学(叶安乐、李凤岐.1992)》;
其中0≤S≤40、0°≤T≤40°、0Pa≤p≤108Pa,声速计算值的标准差为0.19m/s;
步骤1.3,海域高分辨率、长时间序列的声速剖面数据单元存储为浮点数类型;采用声速公式获得的声速剖面数据在范围内的水平空间分辨率为0.1°×0.1°,垂向空间分辨率为50层,时间分辨率为每3小时输出一次;所述的垂向空间分辨率为50层的声速剖面数据的深度最大值不小于5000米;声速剖面数据的时段与产出的高分辨率海洋再分析产品相同;在陆地和海底沉积层处的声速剖面数据为缺省值状态(默认为NAN)。
步骤2的具体步骤如下:
步骤2.1,以典型海水声速剖面的分层结构,作为声速剖面数据延拓的先验信息;在海洋声学应用技术领域,典型声速剖面分为表面层、跃变层、等温层共三层结构;其中,跃变层的声速呈现负梯度分布,等温层的声速呈现正梯度分布;
步骤2.2,在特定经度、纬度的位置处,修改网格深度为海底沉积层的声速值;参照典型声速剖面的垂向分层结构,将声速剖面数据延拓至海底沉积层(参考图2);特定经度、纬度位置处延拓后的声速剖面数据共K=50层;
步骤2.3,提取2014全年176.05°E~179.95°E,41.05°N~44.95°N太平洋海区的声速剖面数据作为分析对象,该海区的经度纬度的网格空间位置共计40×40=1600个;通过遍历经度纬度的网格空间位置,获取该海区延拓后的高分辨率、长时间序列声速剖面数据,形成统一的深度分层海水声速剖面数据;某一时空维度下的经度纬度网格空间位置共I=1600个,数据采样时刻共计J=2920个。
步骤3的具体步骤如下:
步骤3.1,在统一的深度分层框架下,构建某一时空维度下的声速剖面数据矩阵;所述的声速剖面数据矩阵的行数为深度分层数K=50,列数为经度纬度网格空间位置数I×数据采样时刻数J=1600×2920=4672000;某一时空维度下深度分层的声速平均值向量确定为M,深度分层下的声速平均值详见表1;
表1深度分层下的声速平均值
Figure BDA0003040989100000071
Figure BDA0003040989100000081
步骤3.2,对声速剖面数据矩阵进行距平化后作协方差处理,获得对应的协方差矩阵YK×K;所述的声速剖面数据矩阵进行距平化后的矩阵为XK×IJ;所述的协方差矩阵YK×K的行数与列数均为K;所述的协方差矩阵YK×K的计算表达式如下:
Figure BDA0003040989100000082
步骤3.3,求解协方差矩阵YK×K的特征值和特征向量,所述的特征值共计K个、特征向量为K个;特征值与特征向量的计算表达式如下:
Y50×50×V50×50=V50×50×E50×50
式中:VK×K为K个特征向量组成的方阵;EK×K为K个特征值(λ123,…,λK)组成的对角阵,具体表示如下:
Figure BDA0003040989100000083
步骤4的具体步骤如下:
步骤4.1,对特征值按照由大到小的顺序进行排列,将对应的特征向量按列排序组成模态矩阵F;所述的特征值按照由大到小的顺序排列为λ123>…>λ50,各个模态对应的特征值详见表2;所述的模态矩阵F的行数与列数均为K=50。
表2各个模态对应的特征值
Figure BDA0003040989100000084
Figure BDA0003040989100000091
步骤4.2,求解50个模态对应的累积方差贡献率;其中,第K个模态对应的累积方差贡献率的计算表达式如下:
Figure BDA0003040989100000092
求解获得的各个模态对应的累积方差贡献率详见表3;
表3各个模态对应的累积方差贡献率
模态编号 贡献率 模态编号 贡献率
1 67.78% 26 99.99%
2 91.01% 27 100.00%
3 95.34% 28 100.00%
4 96.85% 29 100.00%
5 98.07% 30 100.00%
6 98.80% 31 100.00%
7 99.26% 32 100.00%
8 99.49% 33 100.00%
9 99.63% 34 100.00%
10 99.73% 35 100.00%
11 99.79% 36 100.00%
12 99.84% 37 100.00%
13 99.88% 38 100.00%
14 99.91% 39 100.00%
15 99.93% 40 100.00%
16 99.94% 41 100.00%
17 99.96% 42 100.00%
18 99.96% 43 100.00%
19 99.97% 44 100.00%
20 99.98% 45 100.00%
21 99.98% 46 100.00%
22 99.99% 47 100.00%
23 99.99% 48 100.00%
24 99.99% 49 100.00%
25 99.99% 50 100.00%
步骤4.3,选取累积方差贡献率大于95%的模态为高分辨率、长时间序列声速剖面经验正交函数分解的主模态;所述的声速剖面经验正交函数分解的主模态为N=3个;所述的主模态个数N=3远小于模态总个数K=50;
步骤4.4,从模态矩阵F中抽取N个主模态对应的特征向量作为声速剖面经验正交函数分解的基函数组成压缩模态矩阵
Figure BDA0003040989100000101
详见表4;按列将声速平均值向量M扩展为与声速剖面数据矩阵相同的维度,组成声速平均值矩阵
Figure BDA0003040989100000102
所述的压缩模态矩阵
Figure BDA0003040989100000103
的行数为K=50、列数为N=3,声速平均值矩阵
Figure BDA0003040989100000104
的行数为K=50、列数为I×J=4672000;
表4基于主模态的压缩模态矩阵
Figure BDA0003040989100000105
步骤4.5,转置后的压缩模态矩阵与声速剖面数据矩阵距平化后的矩阵的乘积确定为数据压缩矩阵QN×IJ;以压缩模态矩阵
Figure BDA0003040989100000106
数据压缩矩阵QN×IJ、声速平均值矩阵
Figure BDA0003040989100000107
为基础,重构某一时空维度下的声速剖面信息
Figure BDA0003040989100000108
实现高分辨率、长时间序列声速剖面数据的压缩表示;所述的重构的声速剖面信息计算表达式如下:
Figure BDA0003040989100000111
参考图3为本实施例中的声速剖面原始数据,参考图4为本实施例中的声速剖面重构数据,参考图5为数据采样时刻下的声速平均误差值;所述的声速平均误差值为50个深度分层下原始声速值与重构声速值之间的误差平均值;
本实施例中各个数据采样时刻下的声速平均误差值均小于3.0m/s,与声速值之间的相对误差约为(3.0÷1500)×100%=0.2%;采用经验正交函数分解的3个主模态重构高分辨率、长时间序列声速剖面的压缩率大小为94%:
在海洋声学的实际应用过程中,特定经度、纬度位置处的声速剖面数据为截去重构的声速剖面信息在海底沉积层的数值。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (6)

1.一种基于经验正交函数分解的高分辨率声速剖面数据压缩方法,其特征在于,包括如下步骤:
步骤1,以高分辨率海洋再分析产品提供海域的经度、纬度以及海水的温度、盐度、水深数据,采用声速公式转换获得海域的海水声速剖面数据;
步骤2,参照典型声速剖面的垂向分层结构,将某一时空维度下的高分辨率、长时间序列声速剖面数据延拓至海底沉积层;
步骤3,在统一的深度分层框架下,按照空间经度纬度网格、数据采样时刻组织声速剖面数据,求解声速剖面数据矩阵的协方差矩阵及其特征值、特征向量;
步骤4,以主模态的特征向量作为声速剖面经验正交函数分解的基函数,压缩表示某一时空维度下的高分辨率、长时间序列声速剖面信息。
2.根据权利要求1所述一种基于经验正交函数分解的高分辨率声速剖面数据压缩方法,其特征在于,所述步骤1的具体步骤如下:
步骤1.1,参照高分辨率海洋再分析产品的网格单元结构,设计高分辨率、长时间序列声速剖面的数据结构;其中,高分辨率海洋再分析产品对海域范围内的经度、纬度采用等间距网格划分,在深度维度上采用非等间距网格划分;高分辨率海洋再分析产品提供的海水温度、盐度数据为海洋水体的物理量,在陆地和海底沉积层处的海水温度、盐度数据为缺省值状态;
步骤1.2,以高分辨率海洋再分析产品的经度、纬度、深度网格为基础,采用声速公式获得海域的海水声速剖面数据,所述的声速公式表达式如下:
C(S,T,p)=Cω(T,p)+A(T,p)S+B(T,p)S3/2+D(T,p)S2
式中:C为海水声速值,S、T、P分别为海水盐度、水温、静压力,Cω、A、B、D为与海水温度和静压力相关的经验函数,0≤S≤40、0°≤T≤40°、0Pa≤p≤108Pa,声速计算值的标准差为0.19m/s;
步骤1.3,基于海域高分辨率、长时间序列的声速剖面数据单元存储为浮点数类型;采用声速公式获得的声速剖面数据在范围内的水平空间分辨率为0.1°×0.1°,垂向空间分辨率为50层,时间分辨率为每3小时输出一次;所述的垂向空间分辨率为50层的声速剖面数据的深度最大值不小于5000米;声速剖面数据的时段与产出的高分辨率海洋再分析产品相同;在陆地和海底沉积层处的声速剖面数据为缺省值状态。
3.根据权利要求2所述一种基于经验正交函数分解的高分辨率声速剖面数据压缩方法,其特征在于,所述步骤2的具体步骤如下:
步骤2.1,以典型海水声速剖面的分层结构,作为声速剖面数据延拓的先验信息;所述典型声速剖面分为表面层、跃变层、等温层三层结构;
步骤2.2,在特定经度、纬度的位置处,修改网格深度为海底沉积层的声速值;参照典型声速剖面的垂向分层结构,将声速剖面数据延拓至海底沉积层;特定经度、纬度位置处延拓后的声速剖面数据共K层;
步骤2.3,在特定的时空维度下,循环遍历经度纬度的网格空间位置,获取延拓后的高分辨率、长时间序列声速剖面数据,形成统一的深度分层海水声速剖面数据;某一时空维度下的经度纬度网格空间位置共I个,数据采样时刻共计J个。
4.根据权利要求3所述一种基于经验正交函数分解的高分辨率声速剖面数据压缩方法,其特征在于,所述步骤3的具体步骤如下:
步骤3.1,以统一的深度分层海水声速剖面为对象,构建某一时空维度下的声速剖面数据矩阵;所述的声速剖面数据矩阵的行数为声速剖面数据层数K,列数为经度纬度网格空间位置数I×数据采样时刻数J;某一时空维度下深度分层的声速平均值向量确定为M;
步骤3.2,对声速剖面数据矩阵进行距平化后作协方差处理,获得对应的协方差矩阵YK×K;所述的声速剖面数据矩阵进行距平化后的矩阵为XK×IJ;所述的协方差矩阵YK×K的行数与列数均为K;所述的协方差矩阵YK×K的计算表达式如下:
Figure FDA0003040989090000021
步骤3.3,求解协方差矩阵YK×K的特征值和特征向量,所述的特征值共计K个、特征向量为K个;特征值与特征向量的计算表达式如下:
YK×K×VK×K=VK×K×EK×K
式中:VK×K为K个特征向量组成的方阵;EK×K为K个特征值(λ123,…,λK)组成的对角阵,具体表示如下:
Figure FDA0003040989090000022
5.根据权利要求4所述一种基于经验正交函数分解的高分辨率声速剖面数据压缩方法,其特征在于,所述步骤4的具体步骤如下:
步骤4.1,对特征值按照由大到小的顺序进行排列,并将对应的特征向量按列排序组成模态矩阵F;所述的特征值按照由大到小的顺序排列为λ123>…>λK;所述的模态矩阵F的行数与列数均为K;
步骤4.2,求解K个模态对应的累积方差贡献率;其中,第K个模态对应的累积方差贡献率的计算表达式如下:
Figure FDA0003040989090000031
步骤4.3,选取累积方差贡献率大于95%的模态为高分辨率、长时间序列声速剖面经验正交函数分解的主模态;所述的声速剖面经验正交函数分解的主模态为N个;所述的主模态个数N远小于模态总个数K;
步骤4.4,从模态矩阵F中抽取N个主模态对应的特征向量作为声速剖面经验正交函数分解的基函数组成压缩模态矩阵
Figure FDA0003040989090000032
按列将声速平均值向量M扩展为与声速剖面数据矩阵相同的维度,组成声速平均值矩阵
Figure FDA0003040989090000033
所述的压缩模态矩阵
Figure FDA0003040989090000034
的行数为K、列数为N,声速平均值矩阵
Figure FDA0003040989090000035
的行数为K、列数为I×J;
步骤4.5,转置后的压缩模态矩阵与声速剖面数据矩阵距平化后的矩阵的乘积确定为数据压缩矩阵QN×IJ;以压缩模态矩阵
Figure FDA0003040989090000036
数据压缩矩阵QN×IJ、声速平均值矩阵
Figure FDA0003040989090000037
为基础,重构某一时空维度下的声速剖面信息
Figure FDA0003040989090000038
实现高分辨率、长时间序列声速剖面数据的压缩表示;所述的重构的声速剖面信息计算表达式如下:
Figure FDA0003040989090000039
6.根据权利要求1所述一种基于经验正交函数分解的高分辨率声速剖面数据压缩方法,其特征在于,在海洋声学的实际应用过程中,特定经度、纬度位置处的声速剖面数据采用下列方式获得:截去重构的声速剖面信息在海底沉积层的数值。
CN202110457459.4A 2021-04-27 2021-04-27 基于经验正交函数分解的高分辨率声速剖面数据压缩方法 Active CN113051260B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110457459.4A CN113051260B (zh) 2021-04-27 2021-04-27 基于经验正交函数分解的高分辨率声速剖面数据压缩方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110457459.4A CN113051260B (zh) 2021-04-27 2021-04-27 基于经验正交函数分解的高分辨率声速剖面数据压缩方法

Publications (2)

Publication Number Publication Date
CN113051260A true CN113051260A (zh) 2021-06-29
CN113051260B CN113051260B (zh) 2022-04-19

Family

ID=76520482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110457459.4A Active CN113051260B (zh) 2021-04-27 2021-04-27 基于经验正交函数分解的高分辨率声速剖面数据压缩方法

Country Status (1)

Country Link
CN (1) CN113051260B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114004300A (zh) * 2021-11-01 2022-02-01 中国人民解放军国防科技大学 基于K-means算法迭代分层聚类声速剖面的海洋锋重构方法
CN114782745A (zh) * 2022-04-19 2022-07-22 广东海洋大学 一种基于机器学习的海洋声速剖面分类方法及装置
CN115204317A (zh) * 2022-09-15 2022-10-18 山东大学 基于正交经验函数分解的声速剖面延拓方法及系统
CN115307714A (zh) * 2022-10-12 2022-11-08 中国海洋大学 基于跨时空声速剖面聚类的声速分布快速估计方法
CN115950618A (zh) * 2023-01-29 2023-04-11 广东海洋大学 一种基于斜压模态的海上平台内孤立波预警方法
CN117668477A (zh) * 2024-01-31 2024-03-08 山东科技大学 一种海洋大数据智能轻量化处理方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030220569A1 (en) * 2002-03-28 2003-11-27 Dione Donald P. Three-dimensional ultrasound computed tomography imaging system
US20100121584A1 (en) * 2008-10-29 2010-05-13 Moreau Andre Method and apparatus for ultrasonic characterization of scale-dependent bulk material heterogeneities
JP2013224845A (ja) * 2012-04-20 2013-10-31 Astro Design Inc 距離計測システム
CN105911551A (zh) * 2016-05-09 2016-08-31 浙江大学 一种基于加权集合卡尔曼滤波算法的声速剖面反演方法
CN109141614A (zh) * 2017-06-27 2019-01-04 中国科学院声学研究所 一种基于网络节点间水声通信信号的声速剖面反演方法
CN110837791A (zh) * 2019-11-02 2020-02-25 山东科技大学 一种基于过完备字典的声速剖面反演方法
CN111639054A (zh) * 2020-05-29 2020-09-08 中国人民解放军国防科技大学 一种海洋模式与资料同化的数据耦合方法、系统及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030220569A1 (en) * 2002-03-28 2003-11-27 Dione Donald P. Three-dimensional ultrasound computed tomography imaging system
US20100121584A1 (en) * 2008-10-29 2010-05-13 Moreau Andre Method and apparatus for ultrasonic characterization of scale-dependent bulk material heterogeneities
JP2013224845A (ja) * 2012-04-20 2013-10-31 Astro Design Inc 距離計測システム
CN105911551A (zh) * 2016-05-09 2016-08-31 浙江大学 一种基于加权集合卡尔曼滤波算法的声速剖面反演方法
CN109141614A (zh) * 2017-06-27 2019-01-04 中国科学院声学研究所 一种基于网络节点间水声通信信号的声速剖面反演方法
CN110837791A (zh) * 2019-11-02 2020-02-25 山东科技大学 一种基于过完备字典的声速剖面反演方法
CN111639054A (zh) * 2020-05-29 2020-09-08 中国人民解放军国防科技大学 一种海洋模式与资料同化的数据耦合方法、系统及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋文华等: "一种声速剖面展开的正交基函数获取方法", 《声学学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114004300A (zh) * 2021-11-01 2022-02-01 中国人民解放军国防科技大学 基于K-means算法迭代分层聚类声速剖面的海洋锋重构方法
CN114782745A (zh) * 2022-04-19 2022-07-22 广东海洋大学 一种基于机器学习的海洋声速剖面分类方法及装置
CN114782745B (zh) * 2022-04-19 2024-04-23 广东海洋大学 一种基于机器学习的海洋声速剖面分类方法及装置
CN115204317A (zh) * 2022-09-15 2022-10-18 山东大学 基于正交经验函数分解的声速剖面延拓方法及系统
CN115204317B (zh) * 2022-09-15 2022-11-25 山东大学 基于正交经验函数分解的声速剖面延拓方法及系统
CN115307714A (zh) * 2022-10-12 2022-11-08 中国海洋大学 基于跨时空声速剖面聚类的声速分布快速估计方法
CN115307714B (zh) * 2022-10-12 2023-02-03 中国海洋大学 基于跨时空声速剖面聚类的声速分布快速估计方法
CN115950618A (zh) * 2023-01-29 2023-04-11 广东海洋大学 一种基于斜压模态的海上平台内孤立波预警方法
CN115950618B (zh) * 2023-01-29 2023-09-05 广东海洋大学 一种基于斜压模态的海上平台内孤立波预警方法
CN117668477A (zh) * 2024-01-31 2024-03-08 山东科技大学 一种海洋大数据智能轻量化处理方法及系统
CN117668477B (zh) * 2024-01-31 2024-04-26 山东科技大学 一种海洋大数据智能轻量化处理方法及系统

Also Published As

Publication number Publication date
CN113051260B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN113051260B (zh) 基于经验正交函数分解的高分辨率声速剖面数据压缩方法
Bilskie et al. Data and numerical analysis of astronomic tides, wind‐waves, and hurricane storm surge along the northern Gulf of Mexico
Jakobsson et al. New grid of Arctic bathymetry aids scientists and mapmakers
Petitgas et al. Spatial organization of pelagic fish: echogram structure, spatio-temporal condition, and biomass in Senegalese waters
Vacchi et al. Millennial variability of rates of sea-level rise in the ancient harbour of Naples (Italy, western Mediterranean Sea)
Tollefsen et al. Ship-of-opportunity noise inversions for geoacoustic profiles of a layered mud-sand seabed
CN113259034A (zh) 一种并行的耦合海洋声学预报系统及运行方法
Satake et al. Tsunami source of the 2004 off the Kii Peninsula earthquakes inferred from offshore tsunami and coastal tide gauges
KR101284839B1 (ko) 해양의 수직 음속 구조를 생성하기 위한 해양/음향 환경자료 생성장치 및 방법, 이를 이용한 수중 무기체계 성능 모델링 장치 및 방법
Rahman Wave diffraction by large offshore structures: an exact second-order theory
CN115345238B (zh) 一种海水透明度融合数据的生成方法及生成装置
CN115082809A (zh) 一种基于遥感影像大数据的潮滩演变监测新方法
Wang et al. Effect of the drag coefficient on a typhoon wave model
Xu et al. Spatio‐Temporal Analysis of Hypoxia in the Central Basin of Lake Erie of North America
Yang et al. The impact of coastal reclamation on tidal and storm surge level in Sanmen Bay, China
Yoo et al. Development of bathymetric data for ocean numerical model using sea-floor topography data: BADA ver. 1
Wang et al. Numerical study of storm surge inundation in the southwestern Hangzhou Bay region during Typhoon Chan-Hom in 2015
CN110334137B (zh) 一种基于潮汐过程的海岛礁形态变化定量描述提取方法
Spiliopoulos et al. A Big Data framework for Modelling and Simulating high-resolution hydrodynamic models in sea harbours
CN113051261B (zh) 基于字典学习的高分辨率声速剖面稀疏编码及存储方法
Zahirovic et al. From Paleogeographic maps to Evolving Deep‐time Digital Earth models
Fan et al. Evaluation of the China ocean reanalysis (CORA) in the South China Sea
McNally et al. Santa Cruz Mountains (Loma Prieta) earthquake
Song et al. Data integration and visualization: Dealing with massive and multi-dimensional marine spatial data
Yaitskaya et al. Preliminary Results of Assessment of the Wave Climate Changes in the Sea of Azov and the Caspian Sea During the XX and XXI Centuries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant