CN113038962A - 印楝组合物和治疗癌症的方法 - Google Patents

印楝组合物和治疗癌症的方法 Download PDF

Info

Publication number
CN113038962A
CN113038962A CN201980071559.4A CN201980071559A CN113038962A CN 113038962 A CN113038962 A CN 113038962A CN 201980071559 A CN201980071559 A CN 201980071559A CN 113038962 A CN113038962 A CN 113038962A
Authority
CN
China
Prior art keywords
azadirachtin
scne
composition
extract
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980071559.4A
Other languages
English (en)
Inventor
吉里什·苏达卡·索曼
M·沃戈维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ji LishiSudakaSuoman
University of Texas System
Original Assignee
Ji LishiSudakaSuoman
University of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ji LishiSudakaSuoman, University of Texas System filed Critical Ji LishiSudakaSuoman
Publication of CN113038962A publication Critical patent/CN113038962A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/341Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide not condensed with another ring, e.g. ranitidine, furosemide, bufetolol, muscarine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/02Medicinal preparations containing materials or reaction products thereof with undetermined constitution from inanimate materials
    • A61K35/04Tars; Bitumens; Mineral oils; Ammonium bituminosulfonate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/58Meliaceae (Chinaberry or Mahogany family), e.g. Azadirachta (neem)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/006Oral mucosa, e.g. mucoadhesive forms, sublingual droplets; Buccal patches or films; Buccal sprays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/485Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4866Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/37Extraction at elevated pressure or temperature, e.g. pressurized solvent extraction [PSE], supercritical carbon dioxide extraction or subcritical water extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Botany (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本公开涉及治疗受试者的癌症的组合物和方法。所述方法包括向需要治疗的患者施用有效量的超临界CO2印度楝树提取物。本公开还涉及一种制备用于治疗口腔癌和结肠癌的印楝CO2提取物及其草药组合物的工艺。所述方法包括一种制备口服使用的印楝树叶的标准化SCO2提取物及其草药组合物的工艺。

Description

印楝组合物和治疗癌症的方法
相关申请的交叉引用
本申请要求2018年8月31日提交的美国临时申请号62/725,484和2019年9月6日提交的印度申请号201821021206的提交日期的权益。这些较早提交的申请的内容特此以引用的方式整体并入本文。
技术领域
本公开涉及制备用于治疗口腔癌和结肠癌的印楝(Azadirachta indica)CO2提取物及其草药组合物的工艺。更具体地,本公开涉及一种制备用于口服的印楝树叶的标准化SCO2提取物及其草药组合物的工艺。
背景技术
随着全球吸烟、饮酒和HPV暴露持续上升,发展口腔癌的风险在全球范围内日益增加。常规治疗提高了早期疾病患者的5年存活率,而晚期疾病患者的5年存活率低至34%,近40年没有变化。
结肠直肠癌(CRC)是第三最常见诊断的癌症,并且在美国男性和女性中癌症死亡的第二主要原因。抗炎性阻断剂已被证明是结肠直肠癌预防的有前景的途径。然而,NSAID虽然能够有效遏制CRC风险,但对于在癌症预防中长期使用而言毒性太高。
口腔癌是印度排名前三位的癌症类型之一。它表现为口中无法治愈的生长或疮,并且包括嘴唇、舌头、脸颊、口底、硬腭和软腭、舌头、鼻窦和咽部的癌症。口腔癌的最常见类型是鳞状细胞癌。
据统计,2012年印度口腔癌的发病率在男性中为53842例,并且在女性中为23161例。在印度,患病率较高(20/100,000人口),并且发病率预计到2030年上升。国际癌症研究机构预测,印度的癌症发病率在2012年为100万,并且到2035年可能超过170万。这表明在同一时期,由于癌症引起的死亡率也将从100万增加至100-200万。男性中口腔癌的发病率更高。其发病率也随着年龄的增长而增加,大多数口腔癌发生在50至70岁之间。
根据2012年的数据,在全球范围内,唇癌、口腔癌和咽癌占所有癌症病例的约3.8%,并且占癌症总死亡人数的3.6%。根据GLOBOCAN 2012,唇癌和口腔癌是亚洲第12最常见的癌症,并且在男性癌症中排名第8。在亚洲和美洲,发病率分别为3.8%和1.7%,而死亡率分别为2.2%和1%。
诸如烟草消费(无烟烟草或吸烟)和饮酒的各种病因均导致印度口腔癌的高发病率。此外,口腔癌的阳性家族史、诸如HPV的病毒感染、口腔卫生较差、膳食性缺乏和口-牙齿因素也是其他促成因素。
可通过以下症状来检测口腔癌如喉咙痛、口中长期存在的溃疡、牙齿松动和声音变化以及咀嚼和吞咽困难。
结肠直肠癌(CRC),也称为结肠癌或肠癌,是癌症死亡率和发病率的主要原因之一。在世界范围内,它是男性中的第三最常见癌症(占癌症病例的10.0%),并且是女性中的第二最常见癌症(占癌症病例的9.4%),其中60%的病例是在发达国家。每年,全球有130万新的CRC病例,五年患病率为320万。在印度,尽管CRC的发病率略有增加,但它现在成为印度男性和女性中第五最常见的癌症死亡率原因。在印度,男性中结肠癌和直肠癌的年发病率分别为每100000人4.4和4.1例,并且女性中结肠癌的年发病率是每100000人3.9例。因此,结肠癌在男性中排名第8并且直肠癌在男性中排名第9,而对于女性,直肠癌未出现在排名前10的癌症中,而结肠癌排名第9。
CRC的风险因素包括年龄(结肠直肠癌的风险随年龄而增加)、性别(男性比女性高25%)、结肠直肠息肉病的个人病史、炎症性肠病(溃疡性结肠炎或克罗恩病)、结肠直肠癌的家族史以及生活方式相关的因素如肥胖、饮酒和吸烟。不积极运动也会增加发展结肠直肠癌的风险。
结肠直肠癌的体征是排便习惯改变、排便运动后排空不完全的感觉、血液混入粪便、粘液随粪便排出、进食后的饱胀感减少、腹胀、腹痛、体重减轻、便秘、腹泻、频繁迫切排便、疲劳、呕吐、腹部肿胀和疼痛、铁缺乏以及胃部肿块。
手术、化学疗法和放射疗法仍然是主要的常规癌症疗法。然而,超过50%的患者从这些治疗中获益甚微或没有获益,并且他们中的大多数都遭受毒性不良反应。替代药物(如草药)已在癌症患者中变得越来越受欢迎,其使用流行率高达80%。
印度楝树(Neem)(也被称为印楝(Azadirachta indica))在包括印度的许多半热带和热带国家中很常见。几个世纪以来从印度楝树植物中提取的组分已经在传统医学中用于治疗包括癌症的多种疾病。研究显示,有力的证据表明印度楝树的抗癌作用是通过调节多种细胞过程介导的。据报告,从印楝中分离的活性分子印苦楝内酯(Nimbolide)表现出几种药用特性。它已显示出针对几种类型的癌症的有效抗癌活性,并且在若干体内和体外研究中均展示潜在抗癌活性。印苦楝内酯通过产生活性氧物质(ROS)、从而诱导细胞凋亡、抑制转移和血管生成而起作用。另一种组分印楝素(nimbin)(一种从印楝中分离的三萜类化合物)具有抗炎、解热、抗组胺和抗真菌特性。
WO2015035199A1提供了通过向患者施用治疗有效剂量的药物制剂以减轻癌症的一种或多种症状或减少癌细胞的数量来治疗癌症的一种或多种症状的方法,其中所述药物制剂包含印苦楝内酯;印苦楝二醇(Nimbandiol);2’,3’二氢印苦楝内酯;28二氢印苦楝内酯或它们的组合。检查以200mg/kg体重的剂量口服的小鼠的血浆和肿瘤组织上的提取物。靶向癌症是前列腺癌、结肠癌、星形细胞瘤和肉瘤。所述发明提供了来自超临界印度楝树树叶提取物的具有抗肿瘤活性的生物活性化合物。所述专利要求减少癌细胞的数量,但是减少癌细胞对癌症症状的影响尚不清楚/尚未确定/尚未证明。使用超临界CO2在632.76kg/cm2的压力和50℃的温度下进行提取,并且使用干冰/丙酮浴在-49℃下进行收集。提取温度与分离温度之间的这种巨大差异可导致植物成分的无法预料的有害变化。此外,分离温度在商业上不可行或不可扩展用于工业生产。
CN101972246B提供了抗肿瘤药物,所述抗肿瘤药物含有有效量的印楝三萜类化合物1或2或3(参见下文)和药学上可接受的载体。它还提供了含有化合物1至3的药物的制备方法,以及所述化合物应用于制备用于预防和治疗肿瘤疾病的药物。它被提供用于靶向白血病、肝癌、肺癌和乳腺癌。通过首先对草药进行甲醇提取、然后对稀释的甲醇提取物进行石油醚提取和乙酸乙酯提取来进行提取过程。口服、肠胃外、鞘内或心室内施用的每日剂量从0.01-10mg/kg体重变化。
Figure BDA0003044533640000041
CN103864876A涉及从印度楝树果实分离的新的三萜类木果楝(xylocarpusgranatum),并用于制备用于恶性肿瘤、特别是肺癌和乳腺癌的药物。如专利申请中所述,药理试验显示所述化合物对A-549人肺腺癌细胞系具有抑制活性。使用了印度楝树树叶的甲醇提取物。还在人乳腺癌细胞A-549上测试了其抗肿瘤活性。
US5370873A涉及印楝树叶的纯化提取物,其抑制癌细胞和疟疾感染的红细胞对培养的内皮细胞的粘附。所述纯化的提取物还抑制人免疫缺陷病毒(HIV)、黄热病病毒和白蛉热(西西里)病毒的体外重要发育,并且抑制有性(配子体)和无性(裂殖体)形式的人疟原虫的体外发育。它还涉及用于通过索氏提取法、通过多种溶剂如醇、丙酮、吡啶、水等,然后被动沉淀和HPLC分级分离从印度楝树树叶提取纯化的提取物的工艺。所阐述的工作机制是由于印度楝树树叶提取物的抗粘附特性,所述提取物使癌细胞和感染性细胞无效且不增殖。
JP2009274956A提供了一种组合物,所述组合物在印度楝树种子提取物中含有环氧印苦楝二酮(Epoxyazadiradione)、葛杜宁(gedunin)、17-表-17-羟基印苦楝二酮和7-O-苯甲酰基印苦楝素醇(nimbocinol)作为活性成分,以靶向白血病、淋巴瘤、皮肤癌、肺癌、结肠癌、胃癌、乳腺癌、前列腺癌、上皮细胞癌(如甲状腺癌、骨肉瘤等)。通过使用正己烷、随后甲醇以及通过使用柱色谱法进行分级分离而获得提取物。细胞毒活性是基于印度楝树种子提取物中的化合物的凋亡诱导活性。此外,它具有抗肿瘤活性。将测试化合物以1×10-4、1×10-5、1×10-6M的浓度添加至DMSO,并测试其活性。然而,需要确定所述作用是否是剂量依赖性的。
WO2007137389A1提供了用于治疗患有人免疫缺陷病毒的患者的药物组合物。所述组合物可口服。这种组合物包含有效量的获自印楝的组分;和蛋白质补充剂。所述组合物是通过将印度楝树粉末浸入水中以产生水性提取物而产生的。
综上所述,观察到在常规溶剂提取工艺中,分离温度总是大于提取温度。在较高温度下提取草药会破坏或改变提供草药的治疗价值的温度敏感性植物成分的分子和化学结构。此外,从本领域中可以看出,草药是使用被认为对人类有害和致癌的溶剂如己烷、甲醇和丙酮提取的。因此,需要替代但稳健的工艺来制备印楝的CO2提取物,以在提取过程中保护热敏性植物成分,并且由此保护旨在治疗癌症、尤其是口腔癌和结肠癌的草药制剂的治疗价值。
因此,本发明的目的是开发一种在不损害热敏性植物成分的情况下获得印楝树叶提取物的稳健工艺。
发明内容
本文公开了治疗受试者癌症的方法,所述方法包括:(a)确定需要治疗的受试者;以及(b)向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
本文公开了减少有需要的受试者的血清中的至少一种炎性细胞因子的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
本文公开了减轻有需要的受试者的炎症的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
本文公开了治疗有需要的受试者的过度增生性病症的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
本文公开了抑制有需要的受试者中的NFkB和环氧合酶表达的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
本文公开了抑制至少一种细胞中的NFkB和环氧合酶表达的方法,所述方法包括使至少一种细胞与有效量的超临界CO2印度楝树提取物(SCNE)接触的步骤,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
本文公开了改变受试者中的表皮生长因子受体信号传导活性的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
本文公开了在有需要的受试者中诱导细胞凋亡的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
本公开提供了一种通过使用超临界二氧化碳(SCO2)制备印楝树叶提取物的工艺。所制备的提取物可作为胶囊(素食或硬明胶胶囊、液体素食胶囊或软明胶胶囊)口服,或者可用作液体漱口水或舌下口服制剂。
在一个优选的方面,本公开提供了一种制备含有有益植物成分的印楝树叶提取物的工艺。所述工艺涉及以下步骤:
a)将清洁和成熟的印楝树叶干燥以使水分降低至低于12%,然后将干燥的树叶粉化以获得具有尺寸低于0.42mm的颗粒的粉末;
b)在介于31℃至45℃之间的温度下,在80巴(80kg/cm2)与350巴(350kg/cm2)之间变化的压力下,以10至40kg的CO2/kg原料的流速对所述粉末进行超临界CO2提取。
c)保持在40巴至65巴之间变化的压力和介于10℃至30℃之间的温度,分离CO2提取物以获得提取物A;
d)使用CO2和乙醇的混合物,在80巴至350巴之间的压力和31℃至45℃之间的温度下对分离提取物‘A’后剩余的残留粉末进行进一步提取;
e)通过将溶剂压力降低至40巴与65巴之间并且将温度降低至10℃至30℃之间来从分离器收集与提取物掺混(laced)的乙醇,然后真空蒸馏乙醇以获得提取物B;
f)将提取物A和提取物B合并,获得提取物C,提取物C被称为印楝树叶的CO2提取物。
在另一方面,使提取物A经受极高的速度,并且通过微射流或喷嘴以获得微细尺寸的纳米颗粒提取物。纳米级递送技术目前用于活性植物成分的持续且增强的递送。通过对提取物A进行高速微射流,获得最少10%的粒度介于10-100nm之间的提取物A。因此,通过这种工艺获得的提取物被认为是“超临界印度楝树树叶提取物-纳米10%”。
使用超临界CO2提取(SCO2)并且在特定温度和压力条件下提取印楝树叶,以确保提取物不含有害提取溶剂并保留受益成分。
因此,在有或没有夹带乙醇的情况下在本公开中使用的超临界CO2提取(SCO2)不会留下任何有害的溶剂残余物。提取温度保持在31℃至45℃之间,这确保了温度敏感性成分的保留。
本文描述的用于提取的方法(有或没有夹带乙醇的SCO2提取)具有比提取温度低得多的分离温度。在本发明的工艺中,提取的典型温度是31℃至45℃,而分离温度是约10℃至30℃。因此,保持植物成分的完整性,并且保留温度敏感性成分。此外,提取压力比现有技术(WO’199)中使用的压力小得多,这进一步确保了敏感性植物成分的保留,并且因此本发明的SCO2提取物包含与WO’199的公开内容不同的活性组分。
在另一实施方案中,通过使用C18柱(4.6mmx250mmx5μm)进行HPLC分析来使由此获得的CO2提取物标准化,并使用UV检测在215nm下监测结果。样品是在甲醇中制备的,并且流动相是甲醇和水。使用梯度程序序列,流速为1ml/min。
因此,在另一个方面,本公开提供了一种标准化的SCO2提取物,所述提取物包含3mg/gm最小量的印苦楝内酯;130μg/gm最小量的印楝素和200μg/gm最小量的salinin,以确保所述提取物在作为草药制剂施用时的治疗功效。CO2标准化提取物还含有各种其他活性植物成分,如脱乙酰基印楝素、印苦楝二酮、azdirone、印楝波灵(nimbolin)和印楝素烯(nimbinene),它们可有助于这种活性。然而,由于它们的量较少,因此无法量化。
基于如上所述的标准化提取物中的印苦楝内酯、印楝素和nalinin的最低浓度,在人口腔癌和结肠癌细胞系中使用标准化超临界印度楝树提取物(SCNE)进行体外实验。这些实验证明标准化的CO2提取物通过促炎途径和NF-kB抑制而具有抗增殖活性、抑制癌症生长并且诱导细胞凋亡。
因此,在另一个方面,本公开提供了用于口服的草药组合物,所述草药组合物包含有效量的印楝树叶的标准化SCO2提取物,以及一种或多种药物载体/赋形剂,所述提取物针对口腔癌和结肠癌发挥非常好的抗肿瘤活性。
在以下描述、附图和权利要求书中说明了本发明的组合物和方法的其他特征和优点。
附图说明
图1A-F示出了SCNE和印苦楝内酯抑制口腔鳞状癌细胞生长。图1A示出了对SCC4、HSC3、Cal27 OSCC细胞系的SCNE处理(0-400μg/ml)持续8小时或24小时。图1B示出了对SCC4、HSC3、Cal27OSCC细胞系的SCNE处理(0-100μM)持续8小时或24小时。图1C示出了对SCC4、HSC3、Cal27 OSCC细胞系的印苦楝内酯处理(0-400μg/ml)持续48小时。图1D示出了对SCC4、HSC3、Cal27 OSCC细胞系的印苦楝内酯处理(0-100μM)持续48小时。图1E示出了对SCC4、HSC3、Cal27 OSCC细胞系的塞来昔布处理(0-200μM)持续8小时或24小时。图1F示出了对SCC4、HSC3、Cal27 OSCC细胞系的塞来昔布处理(0-200μM)持续48小时。
图2示出了SCNE和印苦楝内酯下调炎性介质。用20μg、60μgSCNE或10μM、50μM印苦楝内酯处理SCC4、Cal27和HSC3细胞24小时。分析了细胞溶质蛋白级分中的COX1、COX2、NFkBp65、STAT3、pSTAT3、EGFR、pEGFR、pERK1/2、AKT和Pakt。分析了核蛋白级分中的pERK1/2、STAT3、pSTAT3和NFkBp65。GapDH和Topo-IIα用作负载对照。
图3A-C示出了SCNE和印苦楝内酯抑制体外细胞迁移。图3A使用划痕(Scratch)测定示出了60μg/ml SCNE和50mM印苦楝内酯抑制SCC4(120小时)、Cal27(72小时)和HSC3(8小时)中的细胞迁移。绿线代表初始划痕锋线,黄色是相应的处理时间后的划痕锋线。图3B示出了通过SCNE和印苦楝内酯处理,SCC4、Cal27和HSC3中的平均伤口宽度显著降低(n=6,*p<0.05,**p<0.01,****p<0.001)。图3C描绘明胶酶酶谱,其示出了来自SCC4、Cal27和HSC3经处理细胞的MMP2和MMP9活性。
图4A-B示出了SCNE和印苦楝内酯抑制小鼠中OSCC源性的肿瘤生长。图4A示出了,SCC4(30天治疗–肿瘤体积减小81.12%)、HSC3(25天治疗–肿瘤体积减小48.81%)和Cal27(35天治疗–肿瘤体积减小49.00%)细胞生长在饲喂SCNE 200mg/kg饮食的小鼠中被显著抑制(*p<0.005,**p<0.001)。图4B示出了在25天后,印苦楝内酯治疗(20mg/kg IP)显著(*p<0.05)减小(66%)小鼠中的HSC3肿瘤体积。
图5A-C示出了SCNE在OSCC的4NQO-1小鼠模型中抑制肿瘤生长。图6A示出了在12周研究中,按200mg/kg SCNE饮食,CBA小鼠未显示体重增加的差异。图5B示出了与无SCNE饮食相比,SCNE饮食使舌头减小5倍(**p<0.01)并且减轻舌癌。图5C示出了SCNE饮食降低小鼠舌头中增殖标志物PCNA、Ki-67、c-Met的水平。
图6.示出了饲喂SCNE的小鼠中来自SCC4、Cal27和HSC3异种移植物的对小鼠循环细胞因子水平的影响。
图7示出了来自4NQO-1致癌物诱导的OSCC模型的对小鼠循环细胞因子水平的影响。
图8示出了SCNE降低异种移植和致癌物诱导的OSCC小鼠模型中的血清炎性细胞因子水平。
图9A-D示出了SCNE降低CRC细胞的活力。将HCT116、HT29和IEC6细胞分别用不同浓度的SCNE(A,B)和印苦楝内酯(C,D)处理48小时和72小时,并通过MTT测定来测量细胞活力。数据表示为来自三个独立实验的平均值±SD。*P<0.05表示与媒介物对照相比的显著差异。
图10A-B示出了SCNE诱导HCT116和HT29细胞的凋亡。将CRC细胞用SCNE(40和75μg/ml)和印苦楝内酯(5和10μM)处理48小时。通过Bax、Bcl-2和细胞周期蛋白D1的蛋白质印迹分析确定了用SCNE(A)和印苦楝内酯(B)处理的HCT116和HT29细胞中凋亡调控蛋白的表达,其中GAPDH用作标准品。每个条带代表三个实验。
图11A-B示出了SCNE参与HT29结肠癌细胞的迁移。采用迁移划痕测定来研究SCNE(75μg/ml)和印苦楝内酯(10μM)在HT29结肠癌细胞迁移中的作用。图11A示出了SCNE(75μg/ml)和印苦楝内酯(10μM)有效地抑制HT29细胞的迁移。图11B示出了用印苦楝内酯处理同样有效地抑制了迁移。
图12A-E示出了结肠癌细胞HCT116和HT29细胞中SCNE和印苦楝内酯对转录因子p65核定位和STAT3磷酸以及促炎性标志物的抑制。图12A示出了用SCNE和印苦楝内酯处理HCT116和HT29细胞48小时,并通过免疫荧光染色检查了p65核转运。SCNE和印苦楝内酯阻断了p65蛋白向细胞核易位。图12B示出了用SCNE(40和75μg/ml)处理HCT116和HT29细胞48小时,并通过蛋白质印迹分析检测pSTAT3、p65、IKKβ和GAPDH蛋白的表达水平。图12C示出了用印苦楝内酯(5和10μM)处理HCT116和HT29细胞48小时,并通过蛋白质印迹分析检测pSTAT3、p65、IKKβ和GAPDH蛋白的表达水平。数据是从3个独立的实验获得的。图12D示出了用SCNE(40和75μg/ml)处理HCT116和HT29细胞48小时,并通过蛋白质印迹分析检测COX1、COX2、IL-6、TNF-α和GAPDH蛋白的表达水平。图12E示出了用印苦楝内酯(5和10μM)处理HCT116和HT29细胞48小时,并通过蛋白质印迹分析检测COX1、COX2、IL-6、TNF-α和GAPDH蛋白的表达水平。GAPDH用作细胞内部蛋白标志物。数据是从3个独立的实验获得的。
图13A-B示出了结肠癌细胞中SCNE和印苦楝内酯对侵袭的抑制。图13A示出了用SCNE(40和75μg/ml)处理HCT116和HT29细胞48小时,并通过蛋白质印迹分析检测MMP2、MMP9和GAPDH蛋白的表达水平。明胶酶谱测定显示SCNE处理对MMP2的蛋白水解活性的浓度依赖性抑制。图13B示出了用印苦楝内酯(5和10μM)处理HCT116和HT29细胞48小时,并通过蛋白质印迹分析检测MMP2、MMP9和GAPDH蛋白的表达水平。明胶酶谱测定显示印苦楝内酯处理对MMP2的蛋白水解活性的浓度依赖性抑制。
图14示出了SCNE对正常IEC6细胞中的细胞活力的剂量和时间依赖性影响。
图15示出了SCNE对HCT 116细胞中的细胞活力的剂量和时间依赖性影响。
图16示出了SCNE对HT 29细胞中的细胞活力的剂量和时间依赖性影响。
图17示出了印苦楝内酯对HCT 116细胞中的细胞活力的剂量和时间依赖性影响。
图18示出了印苦楝内酯对HT 29细胞中的细胞活力的剂量和时间依赖性影响。
图19示出了SCNE诱导人结肠癌细胞的凋亡。用不同浓度的SCNE处理HCT 116细胞72小时,并通过检测Alexa488信号强度来分析DNA断裂。
图20示出了SCNE增加人结肠癌细胞中的DNA缩合。将HCT116细胞用(0-18μg/ml)SCNE处理48小时和72小时。将细胞核用DAPI染成蓝色。
图21示出了SCNE对人结肠癌细胞中的细胞周期的影响。
图22示出了SCNE抑制人结肠癌细胞中NF-kB易位至细胞核。
图23示出了SCNE诱导结肠癌细胞的凋亡。将HCT116和HT 29细胞用(12-18μg/ml)SCNE处理48小时和72小时。
具体实施方式
通过参考本发明的以下详细描述、附图和本文所包括的实施例,可以更容易地理解本公开。
在公开和描述本发明的组合物和方法之前,应理解它们不限于特定的合成方法(除非另外指明)或特定的试剂(除非另外指明),因为此类组合物和方法当然可以变化。还应理解,本文所使用的术语仅出于描述特定方面的目的,并且不意图是限制性的。尽管与本文中描述的那些方法和材料类似或等效的任何方法和材料均可用于本发明的实践或测试,但现在描述示例性方法和材料。
此外,应当理解的是,除非另有明确说明,否则决不意味着本文阐述的任何方法都被解释为要求其步骤以特定次序执行。因此,在方法权利要求项没有实际叙述其步骤所遵循的顺序或在权利要求书或描述中没有另外具体陈述各步骤将限于特定顺序的情况下,决不意图在任何方面推断顺序。这适用于任何可能的未表达的解释原则,包括相对于步骤安排或操作流程的逻辑事项、从语法组织或标点符号得到的清晰含义以及在说明书中描述的方面的数量或类型。
为了公开和描述公布在引用时所涉及的方法和/或材料,本文中提到的所有公布均以引用的方式并入本文。本文所论述的出版物仅仅出于其在本申请的提交日期之前公开而提供。本文中的任何内容均不应解释为承认由于先前发明而使本发明无权先于这些公布。此外,本文中提供的公布日期可能不同于实际的公布日期,它们可能需要单独确认。
如在说明书和所述权利要求中所用,除上下文另外明确规定,否则单数形式“一个/种”和“所述”包括复数指示物。
如本文所用的字词“或”表示特定列表的任何一个成员,并且还包括所述列表的成员的任何组合。
贯穿本说明书的描述和权利要求,词语“包含(comprise)”和所述词语的变化形式如“包含(comprising)”和“包含(comprises)”意指“包括但不限于”并且不意图排除例如其他添加剂、组分、整数或步骤。具体地,在被叙述为包括一个或多个步骤或操作的方法中,特别设想每个步骤包括所列出的事物(除非所述步骤包括限制性术语,诸如“由......组成”),这意味着每个步骤不意图排除例如所述步骤中未列出的其他添加剂、组分、整数或步骤。
范围在本文中可表示为“约(about)”或“大约(approximately)”一个特定值和/或至“约”或“大约”另一特定值。当表示这样一个范围时,另外的方面包括从一个特定值和/或至另一个特定值。类似地,当通过使用先行词“约”或“大约”将值表达为近似值时,将理解的是特定值形成了另外方面。将进一步理解,每个范围的端值相对于另一端值而言都是重要的,并且独立于另一端值。还应理解,本文公开了多个值,并且本文中每个值除所述值本身之外还公开为“约”所述特定值。例如,如果公开了值“10”,则还公开了“约10”。还应理解,还公开了两个特定单位之间的每个单位。例如,如果公开了10和15,则还公开了11、12、13和14。
如本文所使用,术语“任选的”或“任选地”意指随后描述的事件或情况可能发生或可能不发生,并且所述描述包括所述事件或情况发生的实例和不发生的实例。
如本文所用,术语“受试者”是指施用的靶标,例如人。因此,所公开的方法的受试者可以是脊椎动物,诸如哺乳动物、鱼、鸟、爬行动物或两栖动物。术语“受试者”还包括家养动物(例如,猫、犬等)、家畜(例如,牛、马、猪、绵羊、山羊等)和实验室动物(例如,小鼠、兔、大鼠、豚鼠、果蝇等)。在一个方面中,受试者是哺乳动物。在另一个方面中,受试者是人。所述术语不表示特定年龄或性别。因此,意图涵盖成年、儿童、青春期和新生的受试者,以及胎儿,无论是雄性还是雌性。
如本文所用,术语“患者”是指患有疾病或病症的受试者。术语“患者”包括人和兽医受试者。在所公开的方法的一些方面中,例如在施用步骤之前,“患者”已经被诊断出需要治疗癌症。
如本文所用,术语“治疗”是指部分或完全缓解、改善、减轻、延迟特定疾病、病症和/或疾患的发作,抑制或减缓其进展,降低其严重性和/或降低其的一种或多种症状或特征的发生率。可向未表现出疾病、病症和/或疾患的体征的受试者和/或仅表现出疾病、病症和/或疾患的早期体征的受试者施用治疗,以用于降低发展与疾病、病症和/或疾患相关的病理的风险。例如,疾病,病症和/或疾患可以是癌症或过度增生性病症。
如本文所用,术语“抑制”是指相对于无治疗情况下的速率降低肿瘤细胞生长速率和/或使得肿瘤块(例如,癌症)减小。抑制还包括引起肿瘤(例如,癌症)的完全消退。
引言
随着全球吸烟、饮酒和HPV暴露持续上升,发展口腔癌的风险在全球范围内日益增加(癌症事实和数据2015)。口腔鳞状细胞癌(OSCC)占所有口腔癌的90%,并且代表全球第六最常见的癌症和美国第八最常见的癌症(癌症事实和数据2015)。尽管常规治疗提高了早期疾病患者的5年存活率,但晚期疾病(III期和IV期)患者的5年存活率低至34%(癌症事实和数据2015)。此外,这些统计数据在近40年内没有变化。因此,预防OSCC起始和进展对于降低这种破坏性疾病的发病率和死亡率可以是重要的。
印楝或印度楝树属于与桃花心木有关的树科;楝科(Hao F,Kumar S,Yadav N,Chandra D.Neem components as potential agents for cancer prevention andtreatment.Biochim Biophys Acta;1846:247-57)。印度楝树原产于印度、缅甸、孟加拉国、斯里兰卡、马来西亚和巴基斯坦,并生长在世界各地的热带和半热带地区(Hao F,Kumar S,Yadav N,Chandra D.Neem components as potential agents for cancer preventionand treatment.Biochim Biophys Acta;1846:247-57)。印度楝树是高度活跃的柠檬苦素类化合物(liminoid)萜类化合物的来源,统称为azadiractoid,其显示出具有抗癌活性(Manikandan P,Ramalingam SM,Vinothini G,Ramamurthi VP,Singh IP,Anandan R,等人Investigation of the chemopreventive potential of neem leaf subfractions inthe hamster buccal pouch model and phytochemical characterization.Eur J MedChem;56:271-81)。OSCC中印度楝树提取物的先前研究仅限于在仓鼠颊囊致癌模型中评估的印度楝树树叶中相对不纯的乙醇有机提取物,在所述模型中显示一些活性(SubapriyaR,Kumaraguruparan R,Nagini S.Expression of PCNA,cytokeratin,Bcl-2and p53during chemoprevention of hamster buccal pouch carcinogenesis by ethanolicneem(Azadirachta indica)leaf extract.Clin Biochem 2006;39:1080-7;和DasguptaT,Banerjee S,Yadava PK,Rao AR.Chemopreventive potential of Azadirachta indica(Neem)leaf extract in murine carcinogenesis model systems.J Ethnopharmacol2004;92:23-36)。胃癌和皮肤癌的鼠类模型也证明了印度楝树树叶乙醇提取物的功效,所述印度楝树树叶乙醇提取物含有至少35种生物活性化合物(Dasgupta T,Banerjee S,Yadava PK,Rao AR.Chemopreventive potential of Azadirachta indica(Neem)leafextract in murine carcinogenesis model systems.J Ethnopharmacol 2004;92:23-36)。
印度楝树(印楝)的地上部分和种子已被用作治疗多种人疾病的药物。印度楝树在阿育吠陀传统医学中具有丰富的用途,并且其用于治疗促炎性疾患的民俗用途带来了以下假设:其抗炎潜力可用于癌症预防和治疗。支持这一观点的是印度和非洲传统上使用印度楝树治疗急性和慢性炎症性疾病的悠久历史。例如,印度楝树嫩枝长期以来一直在传统上用来维持口腔健康,并且印度楝树已经显示出具有抗细菌、抗真菌和抗溃疡特性。这些观察结果对印度楝树及其成分可调节癌症相关炎症的观点增加了可信度。
印度楝树树叶的有机溶剂提取物已在乳腺癌、前列腺癌和胰腺癌等模型中展现了抗肿瘤作用。超临界提取技术允许从天然化合物中更好地提取生物活性成分,从而避免了活性剂对热量或溶剂降解的不稳定性。在一些方面中,印度楝树树叶的超临界CO2提取物用于本文公开的实施例中,并且制备所述提取物的方法允许更好地保留先天性挥发物。印度楝树富含挥发性萜类化合物(柠檬苦素类化合物),所述萜类化合物导致树叶的苦味,并且作为一类,是发现于印度楝树树叶中的主要生物活性植物化学物质之一。几乎没有印度楝树柠檬苦素类化合物以足以检查作用机制的量被分离出来。在更常见的印度楝树柠檬苦素类化合物中,大部分研究都集中在印苦楝内酯(5,7,4'-三羟基-3',5'-二异戊二烯基黄酮)上。几项研究已经检查了印苦楝内酯用于抑制多种细胞系(包括成神经细胞瘤、白血病和黑素瘤)的生长。还发现印苦楝内酯可诱导乳腺癌和成胶质细胞瘤细胞系中的细胞周期改变,并调节细胞信号传导途径。据初始研究报告,VEGF和其他实现转移的因子的表达在体外受到抑制。超临界树叶提取物使用相对安全,并且不含在印度楝树油中发现的毒性化合物,印度楝树油被广泛用作天然杀虫剂。由于印度楝树树叶的至少一种超临界提取物已作为许多保健产品的成分进入商业市场,因此在一系列结肠癌临床前模型系统中检查了其功效,并将其作用与印苦楝内酯进行了比较。
本文描述的是印度楝树的超临界CO2提取物(SCNE),其纯度较高,因此已鉴定出生物活性成分印苦楝内酯并且已除去了潜在溶质污染物(Rodriguez-Solana R,Salgado JM,Dominguez JM,Cortes-Dieguez S.Comparison of Soxhlet,accelerated solvent andsupercritical fluid extraction techniques for volatile(GC-MS and GC/FID)andphenolic compounds(HPLC-ESI/MS/MS)from Lamiaceae species.Phytochem Anal;26:61-71)。使用基于细胞的测定、OSCC的4NQO-1致癌物模型和人OSCC的小鼠异种移植物模型,评估了SCNE在体外和体内的抗增殖作用。除了破坏驱动90%的OSCC的EGFR信号传导之外,本文还描述了对循环细胞因子以及炎性和凋亡标志物的影响。
制造方法
被称为印度楝树的印楝是一种快速生长的常绿树,其属于楝科。印度楝树的种子、树叶、花、茎、树皮和果实的提取物一直被用作各种疾病的药物。它原产于印度的热带和亚热带地区,包括安得拉邦、泰米尔纳德邦和卡纳塔克邦,并且也见于东南亚。它在西非、加勒比海以及中南美洲也很普遍。
干燥的印楝树叶来自印度拉贾斯坦邦和中央邦。
在本公开中,源自植物的干燥树叶的CO2提取物用于治疗应用。
因此,在一个优选的方面,本发明提供了一种制备印楝树叶的含有有益植物成分的标准化CO2提取物的工艺。所述工艺涉及以下步骤:
a)将水分低于12%的清洁和成熟的干燥印楝树叶粉化,以获得具有尺寸低于0.42mm的细颗粒的粉末;
b)在介于31℃至45℃之间的温度下,在80巴(80kg/cm2)与350巴(350kg/cm2)之间变化的压力下,以10至40kg的CO2/kg原料的流速对所述粉末进行超临界CO2提取;
c)保持在40巴至65巴之间变化的压力并且在低于提取温度的温度下分离CO2提取物,以获得提取物A;
d)使用CO2和乙醇的混合物,在80巴至350巴之间的压力和31℃至45℃之间的温度下对分离提取物‘A’后剩余的残留粉末进行进一步提取;
e)在低于提取温度的温度下,通过将溶剂压力降低至40巴与65巴之间从分离器收集与CO2提取物掺混的乙醇,然后真空蒸馏乙醇以获得提取物B;以及
f)将提取物A和提取物B合并以获得提取物C,提取物C被称为印楝树叶的CO2标准化提取物。
被考虑用于提取的印楝的成熟树叶优选具有相同的年龄。
干燥的粉末状颗粒的尺寸低于0.42mm。
步骤c)中的分离温度和步骤e)中的收集温度被保持在10℃至30℃之间。
在低于45℃的温度下进行乙醇的真空蒸馏。
步骤d)中使用的乙醇的量为CO2的3%至10%。
CO2提取所需的时间取决于提取器的尺寸和一次负载到提取器中的草药的量。取决于草药中存在的亲脂性化合物的溶解性,待被泵送通过草药的CO2的量在10kg CO2/kg草药至40kg CO2/kg草药之间变化。CO2将提取物携带至分离器,在分离器中,将CO2的压力降低至在40巴至65巴之间变化的压力,并且温度在10℃至30℃的范围内,如使溶质(提取物)和CO2分离所需的。
这种提取方法被称为超临界CO2提取,这是用于干燥草药的最安全的提取方法。由此获得的提取物含有存在于草药中的温度敏感性主要和次要成分以及其他亲脂性可溶性化合物。在本发明中,由此获得的提取物被称为提取物A。
使用比例为90%至97%的超临界CO2和3%至10%的乙醇的CO2和乙醇的混合物对分离提取物‘A’后剩余的残留粉末进行进一步提取。提取在80巴至350巴之间的压力和31℃至45℃之间的温度下进行。所泵送的溶剂(CO2+乙醇)的量在10kg/kg草药至40kg/kg草药之间变化。在使溶剂压力降低至40巴与65巴之间并且使温度降低至10℃至30℃之间后使溶质(提取物)和乙醇与CO2分离。从分离器收集与CO2提取物掺混的乙醇的混合物,然后进行真空蒸馏以使乙醇完全与溶质(提取物)分离。这种提取物被称为提取物B。
最后,将两种提取物(提取物A和提取物B)合并以获得提取物C。如以下实施例中所述,这种合并的提取物被称为印楝树叶的SCO2提取物。
在另一方面,使提取物A经受极高的速度,并且通过微射流或喷嘴,然后获得微细尺寸的纳米颗粒提取物。纳米级递送技术已知可潜在改善制剂的作用。获得最少10%的粒度介于10-100nm之间的提取物。因此,在这方面获得的提取物被认为是“超临界印度楝树树叶提取物-纳米10%”。因此,可将这种“超临界印度楝树树叶提取物-纳米10%”与提取物B合并以获得提取物C。
CO2提取的产率可以是2.5%至5%w/w范围内的任何值。
在有或没有夹带乙醇的情况下在本公开中使用的超临界CO2提取(SCO2)不会留下任何有害的溶剂残余物。提取温度保持在31℃至45℃之间,这确保了温度敏感性成分的保留。此外,提取压力比WO’199中报告的工艺的压力小得多。
本文所述的提取方法(在有或没有夹带乙醇情况下的SCO2提取)的分离温度始终比提取温度低得多。较低温度下的提取降低对热不稳定化合物造成损害的风险。因此,除了保留温度敏感性成分外,本公开中植物成分的完整性也得以保持。本发明的SCF(超临界流体)提取的典型温度是31℃至45℃,而分离温度将为约10℃至30℃。
与WO2015035199中报告的方法相比,本公开的另外优点在于,与WO’199中报告的工艺的压力相比,所述方法可在低得多的压力下实现。此外,WO’199中报告的工艺的产率是大约5%。制剂可含有一定量的杂质,因为较高的提取压力可导致作为杂质剩余的蜡和树脂的提取。相反,本公开可具有较低的杂质,因为如本公开中在较低压力下的提取允许活性化合物的选择性提取。
在另一个实施方案中,对印楝树叶的草药粉末进行水提取以获得糊状形式的水溶性提取物。将由此获得的提取物在盘式干燥器/真空干燥器中或在喷雾干燥器中干燥以获得自由流动的粉末提取物。这种提取物被称为水提取物(实施例5)。
在另一个方面,本公开提供了标准化的SCO2印度楝树提取物(SCNE),所述提取物包含3mg/gm最小量的印苦楝内酯;130μg/gm最小量的印楝素和200μg/gm最小量的salinin,以确保所述提取物在作为草药制剂施用时的最大治疗功效。CO2标准化提取物还含有各种其他活性植物成分,如脱乙酰基印楝素、印苦楝二酮、azdirone、印楝波灵和印楝素烯,它们可有助于这种活性。然而,由于它们的量较小,因此无法量化。
因此,在另一个方面,本公开提供了用于口服的治疗性草药组合物,所述草药组合物包含有效量为50至300mg的印楝树叶的标准化SCO2提取物,以及一种或多种药物载体或赋形剂,所述提取物针对口腔癌和结肠癌发挥抗肿瘤活性。
药物赋形剂/载体选自由以下组成的组:蒸馏水、盐水、葡萄糖水溶液、醇(例如乙醇)、表面活性剂、丙二醇、tween-80和聚乙二醇;和油性载体如各种动物油和植物油、白色软石蜡、石蜡、蜡、葡萄糖、果糖、蔗糖、麦芽糖、黄糊精、麦芽糊精、白糊精、气雾剂、充气或气相二氧化硅、磷酸二钙、微晶纤维素、硬脂酸钙、硬脂酸镁、山梨醇、甜菊苷、玉米糖浆、乳糖、柠檬酸、酒石酸、苹果酸、琥珀酸、乳酸、L-抗坏血酸、dl-α-生育酚迷迭香(Rosemary)(迷迭香(Rosemarinus officinalis))CO2提取物、甘油、丙二醇、甘油脂肪酸酯、聚甘油脂肪酸酯、蔗糖脂肪酸酯、脱水山梨糖醇脂肪酸酯、丙二醇脂肪酸酯、阿拉伯胶、角叉菜胶、酪蛋白、明胶、果胶、琼脂、B族维生素、烟酰胺、泛酸钙、氨基酸、充气或气相二氧化硅、钙盐、色素、调味剂和防腐剂。
在一个优选的实施方案中,使用SCO2提取,在有或没有夹带溶剂乙醇的情况下,使用以下提及的条件来制备用于制剂中的提取物。
提取压力:72kg/cm2至550kg/cm2之间
优选的范围:80kg/cm2至350kg/cm2
夹带乙醇:0%-10%(优选的范围为3%至7%)
一般而言,使用常规方法使用常规溶剂提取草药,例如冷压法、常规挤出机压制法、溶剂提取、蒸馏“气调包装”(MAP)。
超临界CO2提取是产生提取物的工艺,所述提取物具有草药中存在的广谱非极性亲脂性成分化合物如油、脂肪酸以及重要的温度敏感性植物营养素。通过使用至多10%的乙醇作为夹带溶剂以及纯CO2,可拓宽提取物的范围。使用这种提取工艺的主要优点是保留了草药中存在的有助于健康的温度敏感性成分。与其中使用有害的溶剂如己烷、氯仿、丙酮的其他溶剂提取方法不同,本发明的提取物不含有害溶剂残余物以及重金属污染。在本发明的提取物中,重金属低于可检测限,因为CO2是高度非极性溶剂,而重金属是高度极性的,并且因此它们不溶于CO2中。
当使用乙醇作为夹带溶剂时,通过将温度保持在45℃以下在真空(27至28.5英寸Hg)下将提取物中的乙醇去除至一定程度而获得所得提取物,以使得残余溶剂(乙醇)保持低于1000ppm,并且因此可安全地用于制造制剂。
通过使用极高的速度并通过微射流或喷嘴,本公开中使用的提取物也被减小为纳米颗粒,至介于10nm至100nm之间的尺寸。通过使用动态光散射(DLS)对颗粒进行表征。DLS是光散射技术。DLS的基本原理是用激光束照射样品,并且用快速光子检测器以已知的散射角检测散射光的波动。对散射光波动的分析得出有关颗粒的信息。
对由此获得的SCNE进行HPLC和LC-MS以鉴定具有潜在癌症预防活性的三萜类化合物的特征。因此,在另一方面,由此获得的SCO2印度楝树提取物的特征在于具有3mg/gm的量的最小浓度的印苦楝内酯;130μg/gm的量的印楝素和200μg/gm的量的salinin,以确保本公开中制备的提取物的功效。
在另一实施方案中,本公开提供了包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,所述提取物的特征在于包含印苦楝内酯、印楝素和salinin。在本公开的SCNE中,印苦楝内酯、印楝素和salinin中的任一者的浓度可变化。然而,在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些其他方面中,SCNE可包含至少130μg/g印楝素。在另一方面中,SCNE可包含至少200μg/g salinin。
在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。
在一些其他方面中,组合物还可包含药学上可接受的赋形剂。
因此,在另一实施方案中,本公开提供了草药药物组合物,所述草药药物组合物包含药物载体/赋形剂中的生理有效量的具有以上最小浓度的印苦楝内酯、印楝素和salinin或其组合的标准化(SCNE)提取物,以抑制口腔癌和结肠癌的增殖、凋亡和抗癌活性的标志物中的至少一种。提取物的生理有效量在每天50至300mg的范围内。通过使用本申请中公开的工艺,在所得SCO2提取物中达到了这种最低浓度的印苦楝内酯、印楝素和salinin或其组合。
可将组合物配制成口服固体或液体剂型。
因此,例如以三种方式制备用于口服的治疗有效制剂以证明本发明。
在一个示例性实施方案中,用于口服的第一种治疗有效制剂含有SCO2印楝树叶提取物:75mg(具有最少0.22mg印苦楝内酯;9.75μg印楝素和salinin 15μg);天然存在的抗氧化剂如维生素E(生育酚)或迷迭香(迷迭香)CO2提取物,其含有最少6%鼠尾草酸:10mg和芝麻油:415mg;或其他天然存在的油作为载体。可使用任何其他合适的抗氧化剂代替维生素E或迷迭香CO2提取物。此制剂以500mg的软凝胶胶囊形式提供。所述胶囊可每天施用给患者2次(每天总计150mg印度楝树树叶提取物作为活性药物)。
在另一个示例性实施方案中,用于口服的第二治疗有效制剂含有SCO2印楝树叶提取物:50mg(具有最少0.15mg印苦楝内酯;6.5μg印楝素和salinin 10μg)、582mg糊精/麦芽糊精或其他天然存在的载体(例如磷酸二钙或任何其他合适的药用级载体);以及18mg充气或气相二氧化硅。制备自由流动的粉末并将其封装在市场上可获得的合适尺寸的硬明胶或素食胶囊中。可每天施用所述第二治疗有效制剂3次以获得150mg如本文所述的印度楝树树叶CO2提取物的治疗剂量。
在另一个实施方案中,用于口服的第三治疗有效制剂含有SCO2印楝树叶提取物:50mg(最少0.156mg印苦楝内酯;6.5μg印楝素和10μg salinin)、582mg获自印度楝树树叶的水提取物和18mg充气或气相二氧化硅。制备自由流动的粉末并将其封装在市场上可获得的合适尺寸的硬明胶或素食胶囊中。可每天施用所述第三治疗有效制剂3次以获得150-300mg如本文所述的印度楝树树叶CO2提取物的治疗剂量。
在另一个实施方案中,可每天施用通过增加速度并使颗粒通过微射流或喷嘴而制备的微细尺寸的纳米颗粒CO2提取物3次,以得到100mg如本文所述的印度楝树树叶CO2提取物纳米颗粒治疗剂量,而不是150mg普通CO2提取物。
在另一个优选的实施方案中,本公开提供了呈膳食补充剂或草药形式的组合物,所述组合物呈软胶囊、硬胶囊、液体胶囊(含或不含载体)、膳食粉、饮料、基本上均匀的混合物(即活性成分均匀地分布)的常规形式。在另一个优选的实施方案中,本公开提供了用于漱口水的药物组合物,所述药物组合物包含4.55%的SCO2印楝树叶提取物与标准载体和添加剂如山梨醇、甘油、乳化剂、水和合适的调味剂(如薄荷,水果)等。本文还公开了液体制剂。可每天施用所述药物组合物3次,每次20ml,以获得15mg如本文所述的印度楝树树叶CO2提取物的治疗剂量。漱口水制剂旨在用于例如口腔癌的情况。
可以本文所述的任何剂型以每剂量5mg至300mg的剂量范围施用含有SCO2印楝树叶提取物的组合物。所推荐的施用剂量是每天两次或每天三次,或每天两次两盖。
在另一个实施方案中,通过测量细胞活力(通过MTT测定)、通过TUNEL测定[末端脱氧核苷酸基转移酶dUTP缺口末端标记]的DNA断裂、DNA缩合分析与DAPI染色、通过蛋白质印迹分析测量凋亡标志物(内在途径:Bax,Bcl-2)蛋白、流式细胞术以研究SCNE对细胞周期的影响来评估SCNE对口腔癌和结肠癌的作用,并得出以下结论。
·SCNE以时间和剂量依赖性方式影响结肠癌细胞的活力(图15至16)。
·SCNE诱导人结肠癌细胞的凋亡。用不同浓度的SCNE处理HCT 116细胞72小时,并通过检测Alexa488信号强度来分析DNA断裂(图19)。
·SCNE导致DNA断裂增加。这与图7中观察到的DNA缩合的急剧增加一致。
·通过流式细胞术进行的细胞周期分析证实了SCNE处理的HCT 116细胞在IC50下48小时的预凋亡峰(图20)。
·SCNE处理抑制NF-kB易位至细胞核(图22)。
·SCNE增加促凋亡蛋白Bax,并减少抗凋亡蛋白Bcl2(图23)。
因此,在另一个实施方案中,研究了超临界CO2印度楝树树叶提取物(SCNE)和单独印苦楝内酯对两种人结肠癌细胞系HCT 116和HT29的癌症预防作用。正常大鼠结肠细胞IEC-6细胞也包括在研究中,以验证SCNE提取物的细胞毒性。将SCNE对细胞活力的影响与印苦楝内酯进行比较,并在本文中讨论结果。
结果证实,即使在48小时后50μg/mL的较高浓度下,SCNE对正常大鼠结肠细胞IEC-6细胞也无毒(图14)。SCNE处理的结肠直肠癌细胞,即HCT116和HT29在72小时结束时在15μg/mL的浓度下分别表现出62%(图15)和44%(图16)细胞活力,并且分别在48小时和72小时结束时在40μg/mL(图15)和75μg/mL(图16)的浓度下表现出零细胞活力。然而,印苦楝内酯处理的结肠直肠癌细胞,即HCT116(图17)和HT29(图18)在48小时结束时在15μg/mL的浓度下分别表现出80%和75%细胞活力。
本文所述的实验最终证实,与单独的印苦楝内酯相比,包含印苦楝内酯、印楝素和salinin的组合的超临界CO2印度楝树树叶提取物(SCNE提取物)具有更高的治疗功效。
组合物
本文公开了可与本文公开的任何方法一起使用的组合物。本文所述的组合物可以是超临界CO2印度楝树提取物(SCNE)。本文还公开了包含超临界CO2印度楝树提取物的组合物。在一些方面中,SCNE可包含印苦楝内酯、印楝素和salinin。如本文所公开,印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/g salinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一些方面中,本文所述的组合物中的任何组分的浓度可变化。
在一些方面中,本文所述的组合物还可包含一种或多种药学上可接受的赋形剂。取决于制剂,药学上可接受的赋形剂的包含可以是任选的。可使用的药学上可接受的赋形剂的实例包括但不限于糊精/麦芽糊精或磷酸二钙、蒸馏水、盐水、葡萄糖水溶液、醇(例如乙醇)、表面活性剂、丙二醇、tween-80和聚乙二醇;和油性载体如各种动物油和植物油、白色软石蜡、石蜡、蜡、葡萄糖、果糖、蔗糖、麦芽糖、黄糊精、麦芽糊精、白糊精、气雾剂、微晶纤维素、硬脂酸钙、硬脂酸镁、山梨醇、甜菊苷、玉米糖浆、乳糖、柠檬酸、酒石酸、苹果酸、琥珀酸、乳酸、L-抗坏血酸、dl-α-生育酚、甘油、丙二醇、甘油脂肪酸酯、聚甘油脂肪酸酯、蔗糖脂肪酸酯、脱水山梨糖醇脂肪酸酯、丙二醇脂肪酸酯、阿拉伯胶、角叉菜胶、酪蛋白、明胶、果胶、琼脂、B族维生素、烟酰胺、泛酸钙、氨基酸、充气或气相二氧化硅、钙盐、色素、调味剂和防腐剂。
在一些方面中,SCNE可包含一种或多种柠檬苦素类化合物。在一些方面中,所述组合物还包含一种或多种生育酚;和芝麻油。生育酚的实例包括但不限于α-生育酚、γ-生育酚、维生素E(生育酚)或迷迭香(迷迭香)CO2提取物或药学上可接受的任何抗氧化剂。在一些方面中,所述组合物还包含一种或多种生育酚;芝麻油;以及充气或气相二氧化硅。
在一些方面中,所述组合物可包含:SNCO2提取物:75mg;抗氧化剂,例如维生素E或迷迭香(迷迭香)CO2提取物:10mg以及芝麻油:415mg。
在一些方面中,所述组合物可包含:SNCO2提取物:50mg;582mg糊精/麦芽糊精或其他载体(例如,磷酸二钙或任何其他药物级载体);和18mg充气或气相二氧化硅。
在一些方面中,所述组合物可包含水提取物,所述水提取物获自印楝树叶并且用作载体以制备50mg通过如本文所述的超临界CO2提取获得的印度楝树树叶提取物的自由流动粉末。
在一些方面中,所述组合物可包含SNCO2提取物:2.28g;薄荷(洋薄荷)油:13.81g;绿薄荷(留兰香)油:9.26g;丁香苞(丁香)CO2油:3.98g;吐温80:20.68g。将1.25g的所述共混物稀释于98.75g的基料中。基料包含:水:73.5g;芦荟水(200x):10g;山梨糖醇:10g;甘油:5.9g;抗坏血酸:0.5g;山梨酸钾:0.1g。
治疗方法
本文公开了治疗受试者的癌症的方法,所述方法包括:(a)确定需要治疗的受试者;以及(b)向所述受试者施用治疗有效量的超临界CO2印度楝树提取物(SCNE)。在一个方面中,SCNE可包含印苦楝内酯、印楝素和salinin。此外,本文公开了治疗受试者的癌症的方法,所述方法包括:(a)确定需要治疗的受试者;以及(b)向所述受试者施用治疗有效量的组合物,所述组合物包含治疗有效量的超临界CO2印度楝树提取物(SCNE)。在一些方面中,SCNE可包含印苦楝内酯、印楝素和salinin。印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/g salinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一些方面中,本文所述的组合物中的任何组分的浓度可变化。在一些方面中,所述组合物还可包含药学上可接受的赋形剂。在一个方面中,所述受试者可以是人。
本文公开了减少有需要的受试者的血清中的至少一种炎性细胞因子的方法。在一些方面中,所述方法可包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物。在一个方面中,SCNE可包含印苦楝内酯、印楝素和salinin。印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/g salinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一些方面中,所述组合物还可包含药学上可接受的赋形剂。在一个方面中,所述受试者可以是人。在一些方面中,至少一种炎性细胞因子可以是IFN-γ、IFN-β、TNF-α、IL-6或IL-1。在一些方面中,所述受试者可患有、疑似患有或被诊断患有口腔癌。在一些方面中,向受试者施用包含治疗有效量的超临界CO2印度楝树提取物的组合物(其中SCNE包含印苦楝内酯、印楝素和salinin)可减少受试者血清中的至少一种炎性细胞因子,其中所述受试者患有、疑似患有或已被诊断患有口腔癌。在一些方面中,至少一种炎性细胞因子可以是IL-6或TNF-α。在一些方面中,在患有、疑似患有或已被诊断患有口腔癌的受试者中施用治疗有效量的本文所述的超临界CO2印度楝树提取物后,IFN-γ、IFN-β、TNF-α、IL-6或IL-1可减少。在一些方面中,在施用包含治疗有效量的超临界CO2印度楝树提取物的组合物之前,当与参考样品相比时,受试者的血清可具有增加水平的至少一种炎性细胞因子。在一些方面中,所述方法还可包括在施用包含治疗有效量的超临界CO2印度楝树提取物的组合物之前,确定受试者的一种或多种细胞中的至少一种炎性细胞因子的水平。在一些方面中,当与参考样品相比时,至少一种炎性细胞因子的水平可更高。
本文公开了减轻有需要的受试者的炎症的方法。所述方法可包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物。在一些方面中,SCNE可包含印苦楝内酯、印楝素和salinin。印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/g salinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一些方面中,所述组合物还可包含药学上可接受的赋形剂。在一个方面中,所述受试者可以是人。在一些方面中,在施用步骤之前,受试者已被诊断患有口腔癌或结肠癌。在一些方面中,可通过减少IFN-γ、IFN-β、TNF-α、IL-6、IL-1、NF-KB、STAT3、COX1或COX2中的一者或多者的表达来减轻炎症。
本文公开了治疗有需要的受试者的过度增生性病症的方法。所述方法可包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物。在一个方面中,SCNE可包含印苦楝内酯、印楝素和salinin。印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/g salinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一些方面中,所述组合物还可包含药学上可接受的赋形剂。在一个方面中,所述受试者可以是人。在一些方面中,在施用步骤之前,受试者已被诊断为需要治疗过度增生性病症。在一个方面中,过度增生性病症可以是癌症。在一些方面中,过度增生性病症可以是口腔癌或结肠癌。
本文公开了抑制有需要的受试者中的NFkB和环氧合酶表达的方法。所述方法可包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物。在一些方面中,SCNE可包含印苦楝内酯、印楝素和salinin。印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/g salinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一些方面中,所述组合物还可包含药学上可接受的赋形剂。在一个方面中,所述受试者可以是人。在一些方面中,在施用步骤之前,受试者已被诊断为需要抑制NFkB和环氧合酶的表达。在一些方面中,在施用步骤之前,受试者已被诊断为需要治疗细胞增殖失控的病症。在一些方面中,所述方法还可包括确定需要治疗细胞增殖失控的病症的受试者的步骤。在一些方面中,细胞增殖失控的病症可以是癌症。在一些方面中,癌症可以是口腔癌。
本文公开了抑制至少一种细胞中的NFkB和环氧合酶表达的方法。在一些方面中,所述方法可包括使至少一种细胞与有效量的超临界CO2印度楝树提取物(SCNE)接触的步骤。在一些方面中,SCNE可包含印苦楝内酯、印楝素和salinin。印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/gsalinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一些方面中,所述组合物还可包含药学上可接受的赋形剂。在一些方面中,至少一种细胞可以是人细胞。在一些方面中,接触步骤可以通过向受试者施用来进行。在一些方面中,在施用步骤之前,受试者已被诊断为需要治疗细胞增殖失控的病症。在一些方面中,受试者患有、疑似患有或已被诊断患有口腔癌。在一些方面中,不受控制的细胞增殖可以是癌症。
本文公开了改变受试者中的表皮生长因子受体信号传导(EGFR)活性的方法。所述方法可包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物。在一些方面中,SCNE可包含印苦楝内酯、印楝素和salinin。印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/gsalinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一些方面中,所述组合物还可包含药学上可接受的赋形剂。在一个方面中,所述受试者可以是人。在一些方面中,受试者已被诊断为需要改变EGFR信号传导活性。在一些方面中,改变可以是抑制。在一些方面中,SCNE可抑制EGFR信号传导活性。在一些方面中,在施用步骤之前,受试者已被诊断为需要治疗细胞增殖失控的病症。在一些方面中,所述方法还包括确定需要治疗细胞增殖失控的病症的受试者的步骤。在一些方面中,细胞增殖失控的病症可以是口腔癌。
本文公开了在有需要的受试者中诱导细胞凋亡的方法。所述方法可包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物。在一些方面中,SCNE可包含印苦楝内酯、印楝素和salinin。印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/g salinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一些方面中,所述组合物还可包含药学上可接受的赋形剂。在一个方面中,所述受试者可以是人。在一些方面中,在施用步骤之前,受试者已被诊断为需要治疗细胞增殖失控的病症。在一些方面中,所述方法还可包括确定需要治疗细胞增殖失控的病症的受试者的步骤。在一些方面中,细胞增殖失控的病症可以是癌症。在一些方面中,癌症可以是结肠癌。
可将本文所述的组合物配制成包含治疗有效量的本文所述的超临界CO2印度楝树提取物。在一个方面中,超临界CO2印度楝树提取物可包含印苦楝内酯、印楝素和salinin。印苦楝内酯、印楝素和salinin中任一者的浓度可变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/g salinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。治疗性施用涵盖预防性用药。基于基因测试和其他预后方法,与其患者会诊的医师可选择预防性施用,其中患者对某种类型的癌症具有临床确定的易患病体质或增加的易感性(在一些情况下,大大增加的易感性)。
印苦楝内酯、印楝素和salinin中的每一种的浓度或量可在单一组合物中变化。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/g salinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。每种组分的浓度或量可根据许多因素(例如,癌症的特定类型和严重程度以及制剂的类型)而变化。
在一些方面中,SCNE可包含一种或多种柠檬苦素类化合物。在一些方面中,SCNE还包含印楝素(azadirachtin)A、印楝素B和脱乙酰基salinin。在一些方面中,SCNE还包含少量的印楝素A、印楝素B和脱乙酰基salinin中的一者或多者。在一个方面中,“少量”可指可处于检测限的量。
在一些方面中,本文所述的组合物还可包含一种或多种生育酚;和芝麻油。生育酚的实例包括但不限于α-生育酚、γ-生育酚、维生素E(生育酚)或迷迭香(迷迭香)CO2提取物或药学上可接受的任何其他天然存在的抗氧化剂。在一些方面中,所述组合物还包含一种或多种生育酚;芝麻油;以及充气或气相二氧化硅。
本文所述的组合物可以足以延迟、减少或优选预防临床疾病发作的量施用于受试者(例如,人患者)。因此,在一些方面中,患者可以是人患者。在治疗应用中,将组合物以足以至少部分地改善疾患的体征或症状或抑制疾患的进展(并且优选阻止疾患的症状、其并发症和后果)的量施用于已患有或被诊断患有癌症的受试者(例如,人患者)。将足够实现此的量定义为“治疗有效剂量”。组合物(例如药物组合物)的治疗有效量可以是达到治愈的量,但结果仅是可达到的多种结果中的一种。如上所述,治疗有效量包括提供治疗的量,其中癌症的发作或进展被延迟、阻碍或预防,或癌症或癌症的症状得到改善。症状中的一种或多种可能不太严重。可加快被治疗的个体的恢复。
本文公开了治疗患有癌症的患者的方法。癌症可以是任何癌症。在一些方面中,癌症可以是口腔癌或结肠癌。在一些方面中,癌症可以是原发性或继发性肿瘤。在一个方面中,在施用步骤之前,受试者已被诊断患有癌症。
可将本文所述的组合物配制成包含治疗有效量的单独或与一种或多种治疗剂或疗法或治疗方案组合的本文所述的超临界CO2印度楝树提取物。在一个方面中,一种或多种治疗剂或疗法或治疗方案可以是化学疗法或放射疗法。在一个方面中,SCNE可包含在药物制剂内。在一个方面中,药物制剂可以是单位剂量制剂。本文所述的组合物可以各种组合来配制。SCNE与一种或多种化学治疗剂或放射疗法的特定组合可根据许多因素(例如癌症的特定类型和严重程度)变化。
可由本领域普通技术人员考虑个体在年龄、体重、性别方面的差异、所施用的其他药物以及主治医生的判断来确定应用于哺乳动物(例如人)的如本文公开的方法中使用的如本文所述的超临界CO2印度楝树提取物的治疗有效量或剂量。可预期所需剂量的变化。可使用标准经验途径来调整剂量水平的变化以进行优化。施用于患者的药物组合物的具体剂量将取决于多种考虑因素(例如,癌症症状的严重性)、受试者的年龄和身体特征以及本领域普通技术人员已知的其他考虑因素。可使用本领域普通技术人员已知的临床方法来确立剂量。
用本文提供的任何组合物治疗的持续时间可以是从短至一天到长至宿主的寿命(例如许多年)的任何时间长度。例如,所述组合物可每天一次;每周一次(例如4周到数月或数年);每月一次(例如,三到十二个月或许多年);或每年一次持续5年、10年或更长的时间段施用。还应注意,治疗的频率可以是可变的。例如,本发明的组合物可每天、每周、每月或每年施用一次(或两次、三次等)。在一个方面中,本文所述的组合物可每天施用两次至三次。在一些方面中,本文所述的组合物可每天施用两至三次,持续两周至三周至四周(或更长时间)。在一些方面中,本文所述的组合物可每天施用两至三次。在一些方面中,本文所述的组合物可每天施用两至三次,持续两周、三周或四周。
SCNE的剂量可在50mg至1000mg/天的范围内。在一个方面中,SCNE可以约50mg至1000mg/天范围内的剂量施用。在一个方面中,SCNE的剂量可以是25、50、75、100、125或150mg/天或其间的任何量。在一些方面中,SCNE的剂量可大于150mg/天。在一些方面中,SCNE的剂量可以是160、170、180、190、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950或1000mg/天或其间的任何量。在一个方面中,本文所述的组合物可呈胶囊的形式。在一些方面中,胶囊可每天口服一次、两次或三次。在一些方面中,所述组合物可每天口服一次、两次或三次,持续21或28天。在一些方面中,所述组合物可每天口服两次或三次,持续21或28天。在一些方面中,所述组合物可施用1个月、2个月、3个月、4个月、5个月或6个月或更长时间。在一些方面中,所述组合物可每天口服两次或三次,持续6个月。
在一些方面中,本文公开的组合物的总有效量可作为单剂量,作为大丸剂在相对较短的时间段内施用于受试者,或者可使用分次治疗方案来施用,其中在更长时间段内施用多次剂量。
在一些方面中,本文所述的组合物可与其他治疗方式联合施用于需要治疗的受试者。可在用其他剂或方案治疗之前、同时或之后给予本发明的化合物。例如,本文所述的超临界CO2印度楝树提取物可与用于治疗癌症的标准疗法联合施用。在一个方面中,本文所述的任何组合物可与化学疗法或放射疗法一起施用或使用。
药物组合物
本文公开了药物组合物,所述药物组合物包含如本文所述的超临界CO2印度楝树提取物和本文所述的药学上可接受的载体。在一些方面中,SCNE可被配制成用于口服。可将组合物配制为通过多种施用途径中的任一种施用,并且可包含一种或多种生理学上可接受的赋形剂,其可根据施用途径而变化。如本文所用,术语“赋形剂”是指任何化合物或物质,包括也可称为“载体”或“稀释剂”的那些化合物或物质。制备制药上和生理学上可接受的组合物在本领域中被认为是常规的,并且因此,如果需要的话,本领域的普通技术人员可向众多权威咨询以获得指导。
在一些方面中,本文公开的组合物可直接施用于受试者。一般而言,可将组合物悬浮在药学上可接受的载体(例如,生理盐水或缓冲盐水溶液)中以促进其递送。将组合物包封在合适的递送媒介物(例如,聚合物微粒或可植入装置)中可提高递送效率。
在一些方面中,可以各种方式将组合物配制用于肠胃外或非肠胃外施用。在合适的情况下,口服制剂可采取片剂、丸剂、胶囊或粉末的形式,其可进行肠溶包衣或以其他方式进行保护。也可使用持续释放制剂、悬浮液、酏剂、气雾剂等。在一个方面中,所述组合物可呈包括胶囊的形式。
可掺入药学上可接受的载体和赋形剂(例如水、盐水、右旋糖水溶液和乙二醇、油(包括石油、动物、植物或合成来源的油)、淀粉、纤维素、滑石、葡萄糖、乳糖、蔗糖、明胶、麦芽、大米、面粉、白垩、硅胶、硬脂酸镁、硬脂酸钠、单硬脂酸甘油酯、氯化钠、脱脂奶粉、甘油、丙二醇、乙醇等)。在一些方面中,药学上可接受的赋形剂可以是糊精/麦芽糊精或磷酸二钙。在一些方面中,赋形剂可根据制剂而变化。在一些方面中,赋形剂可以是任选的。在一些方面中,药学上可接受的赋形剂和载体可选自由以下组成的组:蒸馏水、盐水、葡萄糖水溶液、醇(例如乙醇)、表面活性剂、丙二醇、tween-80和聚乙二醇;和油性载体如各种动物油和植物油、白色软石蜡、石蜡、蜡、葡萄糖、果糖、蔗糖、麦芽糖、黄糊精、麦芽糊精、白糊精、气雾剂、微晶纤维素、硬脂酸钙、硬脂酸镁、山梨醇、甜菊苷、玉米糖浆、乳糖、柠檬酸、酒石酸、苹果酸、琥珀酸、乳酸、L-抗坏血酸、dl-α-生育酚、甘油、丙二醇、甘油脂肪酸酯、聚甘油脂肪酸酯、蔗糖脂肪酸酯、脱水山梨糖醇脂肪酸酯、丙二醇脂肪酸酯、阿拉伯胶、角叉菜胶、酪蛋白、明胶、果胶、琼脂、B族维生素、烟酰胺、泛酸钙、氨基酸、充气或气相二氧化硅、钙盐、色素、调味剂和防腐剂。组合物可经受常规药物手段如灭菌,并且可含有常规药物添加剂,如防腐剂、稳定剂、湿润剂或乳化剂、用于调节渗透压的盐、缓冲剂等。合适的药物载体及其制剂描述于E.W.Martin的"Remington's Pharmaceutical Sciences"中,所述文献以引用的方式并入本文。在任何情况下,此类组合物将含有有效量的组合物以及合适量的载体,以便制备用于适当施用于患者的合适剂型。
如本文所公开的药物组合物可被制备来用于口服。在一个方面中,所述组合物可口服。被制备用于肠胃外施用的药物组合物包括被制备用于静脉内(或动脉内)、肌内、皮下、腹膜内、经粘膜(例如,鼻内、阴道内或直肠)或经皮(例如,局部)施用的那些药物组合物。也可使用气雾剂吸入。因此,可制备用于肠胃外施用的组合物,所述组合物包含溶解或悬浮在可接受的载体中的SCNE,所述可接受的载体包括但不限于水性载体,诸如水、缓冲水、盐水、缓冲盐水(例如,PBS)等。所包含的赋形剂中的一种或多种赋形剂可有助于接近生理条件,诸如为pH调节剂和缓冲剂、毒性调节剂、湿润剂、去污剂等。在组合物包含固体组分(当它们可用于口服时)的情况下,赋形剂中的一种或多种可充当粘合剂或填充剂(例如,用于片剂、胶囊等的制剂)。在一个方面中,所述组合物可用于液体制剂(例如,漱口水)。药物组合物可为无菌的,并且可通过常规的灭菌技术进行灭菌或进行无菌过滤。水溶液可按原样被包装使用或被冻干,本公开所涵盖的冻干制备物可在施用之前与无菌溶液混合。药物组合物的pH通常将介于3与11之间(例如,介于约5与9之间)或介于6与8之间(例如,介于约7与8之间)。可将固体形式的所得组合物以多个单剂量单位进行包装,每个单剂量单位包含固定量的一种或多种上述剂,诸如在片剂或胶囊的密封包装中。在一个方面中,可将组合物包装在包含多个呈液体形式的剂量的容器中。
在一个方面中,药物组合物包含SCNE;以及任选地,药学上可接受的载体。SCNE可包含印苦楝内酯、印楝素和salinin。在一些方面中,SCNE可包含至少3mg/g印苦楝内酯。在一些方面中,SCNE可包含至少130μg/g印楝素。在一些方面中,SCNE可包含至少200μg/gsalinin。在一些方面中,组合物中存在的印苦楝内酯的量可以是至少3mg/g;组合物中存在的印楝素的量可以是至少130μg/g印楝素;并且组合物中存在的salinin可以是至少200μg/g。在一个方面中,所述药物组合物可被配制成用于口服。在一个方面中,所述组合物可被配制成胶囊或液体。
在一些方面中,本文所述的组合物可以用于口服的治疗有效制剂的形式提供,所述制剂包含:SNCO2提取物:75mg;抗氧化剂,例如维生素E(生育酚)或迷迭香(迷迭香)CO2提取物:10mg以及芝麻油:415mg。可将所述组合物置于500mg的软胶囊中。在一些方面中,可将所述胶囊每天两次总计50-1000mg至每天四次总计1000mg的印度楝树树叶提取物作为活性药物施用于患者。
在一些方面中,本文所述的组合物可以用于口服的治疗有效制剂的形式提供,所述制剂包含:SNCO2提取物:50mg;582mg糊精/麦芽糊精或其他载体(例如,磷酸二钙或任何其他药物级载体);和18mg充气或气相二氧化硅。可制备自由流动的粉末并将其封装在“00”号硬明胶或素食胶囊中。在一个方面中,所述治疗方案可以是在21或28天的周期中每天两次,每次1个胶囊至每天三次每次3个胶囊,共6个周期。在一些方面中,本文所述的组合物可以用于口服的治疗有效制剂的形式提供,所述制剂包含:水提取物,所述水提取物获自印楝树叶并且用作载体以制备50mg通过如本文所述的超临界CO2提取获得的印度楝树树叶提取物的自由流动粉末。可每天两次施用所述组合物以达到150mg的治疗剂量至每天四次施用总计1000mg如本文所述的印度楝树树叶CO2提取物。
在一些方面中,本文所述的组合物可以作为漱口水的治疗有效制剂的形式提供,所述制剂包含:SNCO2提取物:2.28g;薄荷(洋薄荷)油:13.81g;绿薄荷(留兰香)油:9.26g;丁香苞(丁香)CO2油:3.98g;吐温80:20.68g。将1.25g的所述共混物稀释于98.75g的基料中。基料包含:水:73.5g;芦荟水(200x):10g;山梨糖醇:10g;甘油:5.9g;抗坏血酸:0.5g;山梨酸钾:0.1g。本文所述的制剂是液体制剂,所述制剂可每天施用1-3次,每次20ml,以达到150-1000mg如上所述的印度楝树树叶CO2提取物的治疗剂量。漱口水制剂可用于治疗或预防口腔癌。
在一些方面中,微细尺寸的纳米颗粒CO2(其中最少10%的提取物是纳米颗粒)可通过增加速度并使颗粒通过微射流或喷嘴来制备,可每天口服2至3次,以达到100-500mg如上所述的印度楝树树叶CO2提取物的治疗有效剂量,而不是1000mg的普通CO2提取物。
可使用本文所述的纳米颗粒提取物来制备本文公开的制剂。
制品
可将本文所述的组合物包装在经标记的合适容器中,例如以用作治疗癌症的疗法或用于本文所公开的任何方法。因此,包装产品(例如,含有本文所述的组合物并以浓缩或即用浓度包装用于储存、运输或销售的无菌容器)和药盒(至少包括如本文所述的SCNE和使用说明书)在本公开的范围内。产品可包括含有本文所述的组合物的容器(例如,小瓶、广口瓶、瓶、袋等)。此外,制品还可包括例如包装材料、使用说明书、注射器、缓冲剂或其他用于治疗或监测需要预防或治疗的疾患的对照试剂。产品还可包括图例(例如,印刷的标签或插页或描述产品用途的其他媒介(例如,录音带或录像带))。图例可与容器相关联(例如,固定至容器上),并且可描述其中的化合物应施用的方式(例如,施用的频率和途径)、其适应症以及其他用途。所述化合物可以是预备好施用的(例如,以剂量合适的单位存在),并且可包含药学上可接受的佐剂、载体或其他稀释剂。可替代地,化合物可以浓缩形式与稀释剂和稀释说明书一起提供。
实施例
实施例1:印度楝树(印楝)提取物在体内对口腔鳞状细胞癌的生长抑制:通过用天然印度楝树树叶提取物治疗,破坏炎症级联反应,减少口腔鳞状细胞癌的肿瘤发生和体积。
印度楝树(印楝)的树叶和树皮已在传统的阿育吠陀医学中使用了多个世纪用于治疗口腔疾病。本文所述的实验测试以下假设:使用这种印度楝树树叶提取物可预防OSCC的起始和/或进展。印度楝树树叶提取物的抗癌潜力已在体外和体内平台上进行测试。在不同时间点用所述树叶提取物处理OSCC细胞系(SCC4、Cal27、HSC3),同时分析炎症、侵袭和增殖的标志物。在异位异种移植物小鼠模型和致癌物诱导的口腔癌小鼠模型中也评估了SCNE的预防作用。用印度楝树树叶提取物处理抑制OSCC细胞增殖,降低OSCC细胞中炎症标志物的水平。印度楝树树叶提取物减少伤口闭合,显示出对转移的抑制。异种移植裸鼠显示出OSCC肿瘤发生的显著减少和肿瘤生长减少。印度楝树树叶提取物还显著减少4NQO-1小鼠口腔致癌物模型中的肿瘤和舌头发育异常。在两种癌症动物模型中,印度楝树树叶提取物均抑制循环炎性细胞因子。还在体外和体内检查了SCNE对抑制和预防OSCC的化学预防作用。结果显示肿瘤增殖显著减少、炎症标志物和循环细胞因子减少,这有力地支持了SCNE在独立方案中或与标准前线疗法组合地作为预防剂来改善患者结果的潜力。
材料和方法
试剂。超临界CO2印度楝树提取物由印度萨尔塔拉的Nisarga Ltd提供。将来自有机生长的印度楝树的树叶用超临界CO2进行加工。超临界提取物具有以优异的溶解力替代有机溶剂的优点,并且没有有机残余物剩余,从而产生高纯度的印度楝树提取物(SCNE)(Lindskog MA,Nelander H,Jonson AC,Halvarsson T.Delivering the promise of SFC:a case study.Drug Discov Today;19:1607-12)。在体外使用在100%DMSO中的50mg/ml原液。印苦楝内酯购自Biovision(#2356),并溶解于100%DMSO中得到1mg/ml的原液。SCNE饮食由Harlan Teklad生产,递送200mg/kg的SCNE–SNCE溶解于玉米油中并与剩余的饮食成分均匀混合并且形成团块。将塞来昔布(PZ0008,Sigma,USA)溶解于100%DMSO中得到1mg/ml的原液。
人OSCC细胞系和MTT测定。SCC4和Cal27口腔癌细胞获自ATCC,并在37℃和5%CO2下保持在补充有10%胎牛血清和1%青霉素/链霉素的DMEM中。对于SCC4细胞,在完全培养基中提供400ng/ml的氢化可的松。对于细胞处理,使用SCNE(Nisarga Ltd.)并以不同浓度(1-400μg/m)施加8小时、24小时或48小时至75%汇合细胞。对于每种细胞系,待测试的剂量将包括IC50。对照细胞将接受DMSO。将印苦楝内酯以不同浓度(1-100μM)施加8小时、24小时或48小时至50%汇合细胞。对于塞来昔布处理,将细胞以不同浓度(1-200ug/ml)处理8小时、24小时或48小时。将细胞在完全培养基中培养过夜,使血清饥饿24小时,并如本文所述用媒介物、SCNE、印苦楝内酯或塞来昔布处理。随后,向每个孔添加10μl 12mM MTT(LifeTechnologies;Carlsbad,CA)溶液,在37℃下孵育4小时,并用DMSO中和。在540nm处测量吸光度并计算活力百分比。
明胶酶酶谱。在非还原条件下,在0.1%明胶存在下,在10%SDS聚丙烯酰胺凝胶中进行明胶酶酶谱分析。在96孔板中生长结肠癌细胞。从每个孔(3X的池)收集200μl培养基,并浓缩至最终体积20μl。将培养基(20μl)与样品缓冲液混合,并负载用于SDS-PAGE,无需煮沸。电泳后,将凝胶在含有Triton X-100(Thermo Scientific,MA)的1X酶谱复性缓冲液中于室温下洗涤两次(每次1小时),以除去SDS。然后将凝胶在含有底物(Thermo Scientific,MA)的1X酶谱显影缓冲液中在37℃下孵育48小时,并用50%甲醇和10%冰醋酸中的0.5%考马斯蓝R250染色60分钟并脱色。在酶复性后,明胶酶消化凝胶中的明胶,并在强烈染色的背景下产生清晰条带。同时运行蛋白质标准品和2%胎牛血清(阳性对照),并通过绘制已知蛋白质的相对迁移率(PMID 28440509)来确定适当的分子量。
细胞迁移测定。在完全生长培养基中的96孔板中培养SCC4、Cal27和HSC3细胞。使用WoundMaker进行划痕,并使用IncuCyte ZOOM实时成像系统(Essen BioScience,MI,USA)可视化。用20或60μg/ml SCNE或10或50μM印苦楝内酯处理细胞,并以3小时间隔成像72-120小时,以监测细胞迁移和伤口愈合。
蛋白质表达。如前所述,将制备细胞蛋白提取物并定量蛋白质。简言之,将细胞用1x PBS洗涤两次,通过刮擦收集,并在4℃下在300g下离心6分钟。将团块重悬于250μl的缓冲液A(10mM Tris-HCl pH 7.8,10mM KCl,1.5mM MgCl2,1片蛋白酶抑制剂和水)中,并在冰上孵育10分钟。然后将样品在冰上以15,000rpm匀化45秒,然后在4℃下以4,600g离心5分钟。上清液将被除去并作为细胞溶质蛋白级分储存在-80℃下。将收集的团块重悬于100μl缓冲液B(210mM Tris-HCl pH 7.8,420mM KCl,1.5mM MgCl2,20%甘油,1片蛋白酶抑制剂和水)中,然后在4℃下轻轻搅拌30分钟,并且在4℃下以10,000g离心10分钟。将收集上清液,并作为核蛋白级分储存在-80℃下。将通过SDS-PAGE(12%凝胶)分离50微克的细胞溶质或核蛋白级分,并转移至PVDF膜(Bio-Rad,USA)。将用第一抗体(Cell Signalling,USA)NFkB p65(8242S)、STAT3(8768S)、pSTAT3(9131S)、COX1(9896S)、COX2(12282S)、EGFR(4267S)、pEGFR(4404S)、ERK1/2(T202/Y204–9101S)、AKT(9272S)、pAKT(9271S),然后辣根过氧化物酶结合的抗兔(7074S)探测膜。GAPDH(2118S)或Topo IIα(12286S)将用于确保相等的蛋白质负载。将使用化学发光底物(Clarity ECL,Bio-Rad)使免疫反应性条带在ChemiDoc Touch(Bio-Rad,USA)上可视化。将使用ChemiDoc软件(Bio-Rad)对条带进行定量。
动物。在无病原体条件下,将六周大的雌性无胸腺裸鼠(Harlan,Indianapolis,IN)用于层流气流橱中。在可控制的温度和湿度下,为它们提供12小时明/暗时间表,可随意获取食物和水。在研究开始之前,使小鼠适应一周。
OSCC小鼠异种移植物模型。如先前所述,将小鼠在右侧腹皮下注射0.2ml无菌PBS中的3×106个HSC3或10x106个SCC4或6x 106个Cal27细胞。将小鼠置于AIN76A合成饮食中24小时。然后将SCNE饮食(200mg/kg)放入印度楝树处理组,然后对照组保持AIN76A。对于HSC3动物组,从肿瘤注射后第10天开始以5mg或20mg印苦楝内酯/kg小鼠通过腹膜内连续5天注射印苦楝内酯。通过椭圆公式计算肿瘤体积:1/2(长度x宽度2)(Jensen MM,Jorgensen JT,Binderup T,Kjaer A.Tumor volume in subcutaneous mouse xenografts measured bymicroCT is more accurate and reproducible than determined by18F-FDG-microPETor external caliper.BMC Med Imaging 2008;8:16)。在终止时抽血并分离血清用于细胞因子分析。
CBA致癌物诱导的口腔癌模型。将20只CBA小鼠置于AIN76A或200mg/kg SCNE饮食,并在其饮用水中以100μg/ml给予4-NQO-1(Sigma)。将小鼠保持4NQO-1水8周,然后4周常规水。在第12周时,在终止时抽血以进行血清细胞因子分析,并切除舌头且固定在福尔马林中。
免疫组织化学。将福尔马林固定的舌头用石蜡包埋并以1微米切片。使用以下抗体(Abcam:PCNA ab18197;Ki-67ab16667;c-Met ab51067),按照先前公布的方法(PMID27167203)进行免疫染色。
细胞因子和趋化因子测定。在终止时获取血清细胞因子/趋化因子谱,并储存在-80℃,直到使用Bio-Plex Pro第1组小鼠细胞因子23-plex测定试剂盒进行分析,并使用基于Bio-Plex 200Luminex的多重分析系统(Bio-Rad,Hercules,CA)进行分析。
统计分析。使用GraphPad Prism4(San Diego,California)进行统计分析。通过单向ANOVA和邦弗朗尼事后检验(Bonferroni’s post-hoc test)分析了细胞活力和迁移测定。使用邦弗朗尼事后检验进行重复测量,使用方差分析进行肿瘤生长的统计分析。小于0.05的p值被视为统计学上显著的。
结果
SCNE和印苦楝内酯抑制口腔鳞状癌细胞生长。先前报告了印度楝树提取物的一些抗癌作用,主要是醇来源的,以及印苦楝内酯(来自印度楝树树叶提取物的单一化合物)的作用。然而,迄今为止,尚无报告研究印度楝树树叶的无溶剂含疏水性和亲水性成分的超临界CO2提取物的抗癌潜力。利用SCNE和印苦楝内酯,以不同的剂量和三个时间点(8小时、24小时、48小时)处理三种不同的OSCC人细胞系,以确定细胞毒性浓度和IC50(图1A-D)。SCNE以剂量和时间依赖性方式减少细胞生长,在所测试的时间点IC50为50μg/ml的SNCE(图1A,1C)且对于三个时间点IC50为15μM印苦楝内酯(图1B,1D)。接下来,将SCNE和印苦楝内酯的细胞毒性作用与标准的非类固醇类抗炎药塞来昔布进行比较(图1E-F)。在8小时和24小时处理中,塞来昔布的IC50为75μM,并且在48小时的相似IC50明显低于印苦楝内酯。这些结果表明,SCNE和印苦楝内酯对OSCC细胞系具有的细胞毒性作用类似于或略高于标准NSAID。从此数据中,选择20和60μg/ml SCNE以及10和50μM以进一步了解其作用机制。
SCNE和印苦楝内酯下调炎性介质。为了阐明SCNE和印苦楝内酯的一种或多种作用机制,用20μg、60μg/ml SCNE和10mM、50mM印苦楝内酯处理三种OSCC细胞系,并分析细胞溶质和核蛋白组分(PMID 27167203)。报告显示,OSCC中炎症标志物如NFkB、环氧合酶以及细胞增殖物STAT3、AKT和ERK1/2升高。用SCNE或印苦楝内酯处理适度地降低COX2水平,对COX1的影响最小(图2),但在较高剂量的SCNE和印苦楝内酯下观察到对NFkBp65的适度影响。SNCE和印苦楝内酯均显示pSTAT3、pAKT和pERK1/2的急剧下调。然而,响应于处理未观察到EGFR和pEGFR的变化。在核酸酶中,SCNE和印苦楝内酯显示对NFkBp65和pERK1/2的更强减少。响应于SCNE和印苦楝内酯,也观察到STAT3和pSTAT3减少的相似趋势。这些结果证实了SCNE和印苦楝内酯在OSCC中的抗炎和抗增殖能力。
SCNE和印苦楝内酯抑制体外细胞迁移。体外结果表明,通过下调炎性介质和细胞增殖标志物,对OSCC具有较强细胞毒性作用。为了更好地了解SCNE和印苦楝内酯的抗癌潜力,评估了它们的抗转移作用。利用伤口愈合测定,观察到SCNE和印苦楝内酯两者均显著减少细胞迁移(图3A-B)。高度移动的细胞系HSC3在8小时内减少了伤口(90%),然而,SCNE和印苦楝内酯抑制了这种闭合,闭合率不到10%。在移动性较小的细胞系中,SCC4、SCNE和印苦楝内酯以类似的方式阻止跨伤口的细胞迁移,尽管这在120小时后发生(图3A-B)。Cal27细胞的移动性不是非常高,然而与未处理组相比,SNCE和印苦楝内酯确实抑制了适度细胞迁移。鉴于这些干扰细胞迁移的强大结果,评估了SCNE和印苦楝内酯对两种金属蛋白酶蛋白MMP2和MMP9的作用。在高度移动的HSC3 OSCC细胞系中,SNCE和印苦楝内酯降低MMP2活性,MMP9略有降低。在SCC4细胞系中,通过SCNE和印苦楝内酯MMP9显著减少,而MMP2几乎没有变化。非移动Cal27细胞系通过SCNE处理具有MMP2活性的适度降低,并且通过用印苦楝内酯处理具有MMP9活性的适度降低。总之,体外结果表明SCNE和印苦楝内酯通过下调增殖标志物、减少炎症标志物和减少细胞迁移的强抗肿瘤作用。
SNCE和印苦楝内酯抑制小鼠中OSCC源性的肿瘤生长。为了证实来自OSCC实验的结果,在异种移植小鼠模型中使用了相同的三种细胞系(图4)。将200mg/kg SCNE掺入饮食中以递送治疗性印度楝树提取物,并且合成AIN73A饮食作为对照。在一种细胞系HSC3中,连续5天通过IP注射5mg或20mg印苦楝内酯。与未处理的对照组相比,在终止时SCNE饮食显著减小SCC4肿瘤体积(81%)和Cal27(49%)体积(图4A)。SCNE确实减小HSC3肿瘤体积(49%),然而,高方差并未产生显著结果。20mg/kg印苦楝内酯处理确实显著减小肿瘤体积(69%),并且5mg/kg处理显示适度体积减小(40%)(图4B)。体重数据在实验组之间是相当的(数据未示出)。这些数据证实SCNE和印苦楝内酯在体内具有极大抗肿瘤活性。
SCNE和印苦楝内酯降低异种移植小鼠的血清炎性细胞因子水平。对用于研究SCNE对循环炎性细胞因子群体的影响的来自上述小鼠的血清进行分析(图8)。提取物强烈降低IL-1b、TNFα、IFNγ和IL-6血清水平。对于IL-1α,在异种移植小鼠中鉴定出的IL-1α水平适度降低。对于IL-10观察到相似的模式,但是在携带HSC3肿瘤的小鼠中发生了更强的降低。检查了来自这些动物的许多其他细胞因子(图6),并且与对照相比,总体SCNE处理产生不同的特征。与肿瘤体积减小结合,数据表明SCNE可减少肿瘤负担和有害的炎性细胞因子。
SCNE在OSCC的4NQO-1小鼠模型中抑制肿瘤生长。为了进一步验证SCNE的体内抗癌潜力,建立了CBA品系中4-NQO-1诱导的舌头OSCC模型。在饮用水中施用4NQO-1(50μg/ml)持续8周,然后用普通水代替它持续另外4周。在整个12周研究中,对照组小鼠自由饲喂AIN73A饮食,并且处理组给予相同的200mg/kg SCNE饮食。为了评估饮食的适口性,每两周测量小鼠体重,并且小鼠未显示体重增加的差异(图5A)。在终止时,针对任何发育异常和/或肿瘤检查舌头病理生物学。与对照相比,SCNE显著减少早期发育异常,并且OSCC肿瘤减少66%(图5B)。舌头中增殖标志物的表达水平也通过免疫组织化学来表征,并且发现SCNE降低PCNA、Ki-67和c-Met蛋白水平(图5C)。
SCNE减少致癌物诱导的OSCC小鼠模型中的血清炎性细胞因子。除了这些小鼠的病理生物学以外,还检查了血清循环细胞因子炎性群体。在这些动物中,SCNE显著降低IFNγ、IL-1β和TNFα水平(图8)。在12周SCNE饮食消耗后,两种其他细胞因子IL-6(30%)和IL-1α(25%)水平降低。检查了来自这些动物的许多其他细胞因子(图7),并且与对照相比,总体SCNE和印苦楝内酯处理产生不同的特征。这种模式遵循异种移植物动物研究中的类似减少,从而进一步表明SCNE的抗癌和抗炎作用。
讨论
SCNE在OSCC中的抗癌作用被证明是通过下调关键肿瘤增殖标志物和减少炎症调节剂来实现的。印度楝树树叶提取物减少伤口闭合,显示出对转移的抑制。异种移植裸鼠显示出OSCC肿瘤发生的显著减少和肿瘤生长减少。印度楝树树叶提取物还显著减少4NQO-1小鼠口腔致癌物模型中的肿瘤和舌头发育异常。在两种癌症动物模型中,印度楝树树叶提取物均抑制循环炎性细胞因子。
目前,OSCC癌症正在增加,并且在临床上,大多数化学疗法属于标准种类,几乎没有二线选择。为了改善这种情况,使用新型剂和联合疗法进行治疗的新途径可克服这一问题。例如,已证明在OSCC病例中COX2表达升高,并且有助于放射抵抗。
在体内和体外关于OSCC的抑制和预防检查了SCNE的化学预防作用(以其生物医学特性著称)。本文所述的数据显示肿瘤增殖、炎性标志物减少和循环细胞因子的显著减少。由于缺乏OSCC一线和二线疗法的临床治疗选择,因此这种提取物可在独立方案中或与标准一线疗法结合用作预防剂,以改善患者结果和/或复发患者的耐药复发性肿瘤。
实施例2:印度楝树树叶(印楝)的超临界CO2提取物及其生物活性柠檬苦素类化合物、印苦楝内酯通过调节促炎性途径在临床前模型中抑制结肠癌。
为了探索印度楝树在CRC中的作用,将人结肠癌细胞系HCT116和HT29细胞用纯化的超临界印度楝树提取物(SCNE)或印苦楝内酯处理。SCNE处理显示对CRC细胞增殖的剂量依赖性抑制和细胞凋亡增加。发现SCNE和印苦楝内酯的处理均显示由于CRC细胞中p65的不良核定位、转录因子磷酸化STAT3和促炎性细胞因子COX1、COX2、IL-6和TNF-α的蛋白表达降低而产生的抗炎作用。蛋白质印迹和酶谱结果显示,在用SCNE处理后由于CRC细胞中MMP2和MMP9蛋白的表达降低而产生的抗侵袭作用。总体而言,这些数据证实SCNE的潜在抗癌作用,减少人结肠癌细胞中的细胞增殖、炎症、迁移和侵袭并诱导细胞凋亡。
材料和方法
细胞系和细胞培养物。人结肠癌细胞系HCT116和HT29从美国典型培养物保藏中心(ATCC)获得。这两种细胞系均在McCoy的5A培养基中培养,所述培养基补充有丙酮酸、维生素、氨基酸、抗生素和10%胎牛血清。大鼠结肠正常上皮细胞系IEC6从美国典型培养物保藏中心[IEC6](
Figure BDA0003044533640000491
CRL-1592TM)获得。在含有4mM谷氨酰胺、1.5g/L碳酸氢钠、4.5g/L葡萄糖、0.1单位/ml牛胰岛素和10%胎牛血清的杜尔贝科氏改良的伊格尔氏培养基(DMEM)中培养IEC6细胞。将培养物在37℃保持在具有5%CO2的增湿器孵育箱中。为了确定蛋白质和基因表达的剂量依赖性变化,将细胞用不同浓度的超临界提取物印度楝树提取物SCNE(Nisarga,India)和印苦楝内酯(Biovision,USA)或等体积的二甲基亚砜(DMSO)作为媒介物进行处理根据需要持续不同的时间段。
细胞活力测定。将结肠直肠癌细胞HCT116和HT29以及正常大鼠结肠细胞IEC-6细胞涂铺在96孔板中,第二天将细胞血清饥饿24小时,并用SCNE(0-150μg/mL)和印苦楝内酯(1-100μM)处理48小时和72小时。在处理后,根据制造商的说明书,通过MTT[3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑鎓溴化物]测定(Sigma Aldrich,MO)测量细胞活力。简言之,添加MTT(5mg/mL),并将板在37℃下孵育4小时,然后将二甲基亚砜添加至每个孔。最后,使用酶标仪(Molecular Devices,Sunnyvale,CA,USA)在540nm波长下读取每个孔的吸光度。结果表示为存活细胞相对于未处理细胞的百分比。
迁移划痕测定。使用IncuCyte ZOOM系统(Essen BioScience,Inc.,MI)进行迁移测定,以测量没有或有SCNE和印苦楝内酯处理的情况下结肠癌细胞的迁移。在每个孔的汇合细胞中创建伤口(10个重复),并通过在0小时针对未处理的细胞掩蔽伤口边界,在一定时间段内计算细胞的向内生长以测量伤口闭合。
蛋白质印迹分析。使HCT-116和HT-29细胞在100mm培养皿中生长至汇合。使细胞血清饥饿24小时。第二天,在37℃下将细胞相对于媒介物(DMSO)用不同剂量的SCNE和印苦楝内酯处理48小时。用RIPA裂解缓冲液制备全细胞裂解物。核蛋白提取:将未处理和处理的HCT-116和HT-29细胞在冰上用低盐裂解缓冲液(10mM HEPES,10mM KCl,1mM EDTA)保持10分钟,然后刮擦并离心。收集团块,并添加50-100μl高盐裂解缓冲液,并且在冰上伴随中等涡旋孵育30分钟。将管离心,并从上清液中收集核蛋白。使用Pierce BCA蛋白质测定试剂盒(Thermo Scientific,MA)测定蛋白质浓度。
在7.5%、10%和12%SDS_PAGE上分离等量的蛋白质。然后,将蛋白质转移至Immun-Blot PVDF膜进行蛋白质印迹(Bio Rad,CA),并在室温下在含0.1%Tween-20(TBST)的Tris缓冲盐水中的5%脱脂奶中封闭1小时。将针对COX1(Cell Signaling Technology,MA)、COX2(Cell Signaling Technology,MA)、Bcl-2(Abcam,MA)、Bax1(Abcam,MA)、TNF-αCOX2(1:500;Cell Signaling Technology,MA)、IL-6(Cell Signaling Technology,MA)、细胞周期蛋白D1(Cell Signaling Technology,MA)、p65(Abcam,MA)、IKKβ(Abcam,MA)、MMP2(Abcam,MA)、MMP9(Abcam,MA)、pSTAT3(Y705)(Cell Signaling Technology,MA)、拓扑异构酶(Abcam,MA)和GAPDH(Sigma-Aldrich,MO)的抗体稀释在5%脱脂奶中。辣根过氧化物酶缀合的山羊抗兔(Abcam,MA)抗体用作第二抗体。
明胶酶酶谱:在非还原条件下,在0.1%明胶存在下,在10%SDS聚丙烯酰胺凝胶中进行明胶酶酶谱分析。在96孔板中生长结肠癌细胞。从每个孔(3X的池)收集200μl培养基,并浓缩至最终体积20μl。将培养基(20μl)与样品缓冲液混合,并负载用于SDS-PAGE,无需煮沸。电泳后,将凝胶在含有Triton X-100(Thermo Scientific,MA)的1X酶谱复性缓冲液中于室温下洗涤两次(每次1小时),以除去SDS。然后将凝胶在含有底物(Thermo Scientific,MA)的1X酶谱显影缓冲液中在37℃下孵育48小时,并用50%甲醇和10%冰醋酸中的0.5%考马斯蓝R250染色60分钟并脱色。在酶复性后,明胶酶消化凝胶中的明胶,并在强烈染色的背景下产生清晰条带。同时运行蛋白质标准品和2%胎牛血清(阳性对照),并通过绘制已知蛋白质的相对迁移率(25997494)来确定适当的分子量。
免疫荧光显微术:将静态人CRC细胞在多孔塑料室载玻片中生长,并用SCNE或印苦楝内酯处理48小时。在研究时间结束时,将细胞用冰冷PBS洗涤两次,并在-20℃下在甲醇中固定5分钟。短暂漂洗后,将细胞用PBS中的0.1%BSA封闭,然后使用间接免疫荧光法用p65染色。Alexa Fluor 594驴抗兔抗体用作第二抗体(Thermo Fisher Scientific,MA)。将染色的细胞用PBS洗涤,用具有DAPI(Thermo Fisher Scientific,MA)的prolong Gold抗褪色试剂封固,用盖玻片封固,使用Zeiss LSM710共聚焦显微镜(Carl Zeiss Microscopy,LLC,NY)观察并拍照。
结果
SCNE和印苦楝内酯抑制人CRC细胞的增殖。为了评估SCNE对人CRC细胞的作用,使用MTT测定分析细胞活力。为了研究SCNE和印苦楝内酯是否对CRC细胞具有直接作用,通过MTT测定,在HCT-116和HT-29人CRC细胞系以及正常啮齿动物结肠细胞系IEC-6中测试了由SCNE和印苦楝内酯引起的增殖抑制。用不同浓度的SCNE和印苦楝内酯处理HCT-116和HT2948小时和72小时导致细胞活力降低(图9)。正常啮齿动物结肠细胞系生长(IEC6)不受SCNE和印苦楝内酯的影响。这些结果表明SCNE能够以浓度和时间依赖性方式抑制CRC细胞活力。SCNE和印苦楝内酯的IC50分别被确定为<75μg/ml和<10μM。在进一步实验中,将CRC细胞用40μg/ml和75μg/ml的SCNE剂量以及5μM和10μM的印苦楝内酯剂量处理48小时。
SCNE诱导CRC细胞的凋亡。认为在致癌过程中抑制细胞凋亡在一些癌症的发展和进展中起核心作用。肿瘤细胞可通过表达抗凋亡蛋白(如Bcl-2)或下调促凋亡蛋白(如Bax)来获得对细胞凋亡的抗性。为了弄清楚通过SCNE处理诱导细胞凋亡与其调控蛋白表达之间的关系,研究了细胞凋亡调控蛋白的表达。SCNE导致HCT116和HT29细胞两者中抗凋亡标志物Bcl-2蛋白的表达降低和促凋亡标志物Bax蛋白的上调(图10A),这与HCT116和HT29细胞中的印苦楝内酯处理相似(图10B)。
细胞周期蛋白D1是通过细胞周期的G1期进展所需的蛋白质。细胞周期蛋白D1的过表达已被证明与早期癌症发作和肿瘤进展有关。CRC细胞系显示细胞周期D1蛋白的较高表达,在用SCNE和印苦楝内酯处理48小时后,其表达显著降低(图10)。
SCNE抑制人CRC细胞的迁移。然后确定SCNE和印苦楝内酯的细胞抗增殖和凋亡活性是否可能转化为对细胞迁移的可能抑制,从而预测对侵袭的潜在抑制。为了测试这一点,使用IncuCyte ZOOM系统进行迁移测定,以测量没有和有SCNE和印苦楝内酯处理的情况下CRC细胞的迁移。发现SCNE和印苦楝内酯两者在HT-29人结肠癌细胞中在72小时处理后均以剂量依赖性方式抑制伤口闭合(图11)。SCNE在CRC细胞中具有抗炎活性–NF-κB/IL-6/STAT3表达。NF-κB和STAT3调控参与炎症的大量基因的表达。为了确定对CRC细胞系HCT-116和HT-29的SCNE和印苦楝内酯处理是否表现出抗炎作用,评估了SCNE和印苦楝内酯处理对CRC细胞系的影响。在此,发现用SCNE和印苦楝内酯的IC50处理HCT-116和HT-29细胞48小时导致p65从细胞质向细胞核的易位减少(图12A,12B,12C)以及pSTAT3蛋白表达的表达降低,从而表明可用的NF-κB和STAT3转录因子丢失至细胞核。
IL-6和TNF-α是促炎性细胞因子,并且在癌症期间高度表达。来自本文所述的实验的结果表明,用SCNE和印苦楝内酯处理CRC细胞系显著降低IL-6和TNF-α蛋白的表达(图12D,12E)。
COX1在人结肠组织中组成性地表达,而致肿瘤因子(如COX2)一直参与结肠肿瘤发生。结果显示,SCNE和印苦楝内酯的处理降低CRC细胞系中COX1和COX2的蛋白质表达(图12D,12E)。总之,这些数据表明SCNE和印苦楝内酯对CRC细胞系具有抗炎作用。
SCNE抑制人CRC细胞的侵袭。MMP参与侵袭、迁移、转移和肿瘤发生。在已鉴定的许多MMP中,明胶酶、尤其是MMP-2(明胶酶A)和MMP-9(明胶酶B)被认为在IV型胶原和明胶的降解中起关键作用,IV型胶原和明胶是ECM的两种主要组分。为了检查金属蛋白酶的作用,对相对于媒介物用SCNE和印苦楝内酯处理的HCT116和HT29细胞进行明胶酶酶谱分析。HCT116和HT29细胞在无血清培养基中展现MMP2的强分泌,在处理48小时后,所述分泌受到SCNE和印苦楝内酯的抑制(图13A,13B)。培养基中更多的MMP2表达与凝胶中明胶的更多消化直接相关,从而在未处理的细胞中产生清晰的条带。人CRC细胞系的蛋白质印迹分析显示,未处理的细胞中MMP2和MMP9的表达较高。用SCNE和印苦楝内酯处理结肠直肠癌细胞显著降低MMP的表达。
讨论
鉴于结肠癌所致的高死亡率以及当前化疗方案的显著发病率、明显毒性和较差的应答率,大力推动鉴定具有较低毒性概况的新型治疗方式。现在针对VEGF(贝伐单抗)或针对EGFR(西妥昔单抗)的靶向疗法通常被用作CRC治疗。然而,患者对此类治疗产生耐药性;因此,需要新的策略来替代或补充当前的疗法。饮食改变可导致几种类型的癌症的风险和发生率的广泛差异。此外,长期食用存在于水果和香料中的天然产品具有公认的安全性,有利于其在癌症化学预防中的使用。许多科学家加强了使用安全且无毒的新型植物来源的剂预防肿瘤的方法。已经对大量天然产物作为抗癌剂的潜在用途进行研究。印度楝树是这样一种具有明显抗癌特性的天然草药,并且是几种柠檬苦素类化合物(limonoid)的来源,柠檬苦素类化合物是一类氧化的三萜烯,被称为四降萜类。这些柠檬苦素类化合物负责印度楝树树叶提取物(NLE)的抗肿瘤作用。然而,其抑制结肠直肠癌细胞增殖和转移的潜在机制仍有待阐明。
如本文所述,研究了SCNE是否能够通过调节CRC细胞和动物模型中的促炎途径来发挥针对CRC的抗癌活性。在不存在或存在各种浓度的SCNE的情况下,使用MTT测定评估细胞活力。发现SCNE抑制CRC细胞的增殖、迁移并诱导凋亡。因此,在本研究中观察到的SCNE的抗增殖和抗迁移作用取决于其癌症预防作用。印苦楝内酯导致细胞周期停滞在G1/S期。显然,发现印苦楝内酯降低结肠癌细胞进展通过S期所必需的细胞周期蛋白A水平,从而诱导细胞周期停滞并导致细胞生长受到抑制。抗凋亡蛋白和促凋亡蛋白调控半胱天冬酶3的激活水平。印苦楝内酯处理降低前列腺癌细胞中抗凋亡蛋白(Bcl-xL、Bcl-2、存活素、半胱天冬酶抑制剂分子)的表达,并增加促凋亡蛋白(细胞色素c、Bax、Bad、Bid、裂解的半胱天冬酶)的表达,这与本文公开的CRC细胞中的SCNE处理的结果相似。与细胞存活和细胞增殖相关的蛋白质的过表达已被证明促成肿瘤发展。与细胞存活和增殖有关的蛋白质表达的下调可有助于结肠癌细胞的生长减少。所观察到的SCNE的抗增殖和凋亡诱导特性与其他人在白血病和结肠癌中观察到的特性一致。
在本研究中,本文描述的结果表明SCNE能够抑制参与肿瘤侵袭、转移和血管生成的蛋白质(MMP-9,MMP-2)的表达,这进一步支持了SCNE针对CRC的作用。岩藻依聚糖通过抑制PI3K/Akt/mTOR途径并降低人HT-29结肠癌细胞中MMP-2的表达而抑制细胞生长、迁移和球体形成。厚朴酚显著下调了基质金属蛋白酶-9(MMP9)(一种对肿瘤侵袭至关重要的酶)表达,并且还抑制核因子-kB(NF-kB)转录活性,从而表明其在人乳腺癌中通过经由NF-kB途径抑制MMP-9来抑制肿瘤侵袭的作用。(24226295)。印苦楝内酯抑制CRC细胞的增殖、诱导细胞凋亡并抑制NF-κB激活和NF-κB调控的致肿瘤蛋白。肿瘤接种后腹膜内注射的印苦楝内酯显著减小CRC异种移植物的体积。经柠檬苦素类化合物处理的异种移植物表现出参与肿瘤细胞存活(Bcl-2、Bcl-xL、c-IAP-1、存活素、Mcl-1)、增殖(cMyc、细胞周期蛋白D1)、侵袭(MMP-9、ICAM-1)、转移(CXCR4)和血管生成(VEGF)的蛋白质的表达的显著下调。
发现HCT-116和HT-29结肠癌细胞表现出组成型NF-κB,并且SCNE抑制了这种激活。结果表明,印苦楝内酯抑制白血病和多发性骨髓瘤细胞的诱导型和组成型NF-κB激活。已经发现,通过调控参与肿瘤发展的蛋白质的表达,组成型NF-κB对于各种肿瘤细胞类型的存活和增殖是重要的。因此,印苦楝内酯可能通过使NF-κB失活而发挥其对肿瘤存活和生长的抑制作用。肿瘤细胞中NF-κB的组成型激活的可能机制之一是通过IKK激活。发现Avicin是TNF-α诱导的NF-κB的有效抑制剂,并且减缓了NF-κB的p65亚基在细胞核中的累积。AvicinG处理降低NF-κB调控蛋白(如iNOS和COX-2)的表达。其他研究表明,用三萜类化合物预处理细胞24小时显著降低通过TNF-α介导的NF-κB的诱导。来自兴安升麻的环菠萝蜜烷三萜抑制cdc2和COX-2蛋白的表达。这些结果表明三萜类化合物具有潜在抗肿瘤活性,并且通过细胞凋亡和G2/M细胞周期阻滞发挥其细胞毒性。发现印苦楝内酯抑制IκB降解并阻止NF-κB的核易位。这随后通过下调参与细胞增殖的许多基因而导致细胞周期停滞。印苦楝内酯可通过NF-κB的失活诱导细胞凋亡。这导致Bcl-2的显著抑制,伴随Bax、细胞色素C和Smac/DIABLO表达的同时增加(Kavitha 2012)。
然而,本文所述的结果首次证明了SCNE在抑制CRC细胞生长和异种移植裸鼠模型中的潜力。已经发现SCNE可通过调节许多肿瘤发生相关蛋白的表达来介导体内抗肿瘤活性。首先,SCNE下调了已知促进肿瘤存活的Bcl-2的表达。其次,SCNE下调了已知在CRC中过表达并促进肿瘤生长的细胞周期蛋白D1的表达。第三,SCNE下调了参与肿瘤侵袭、转移和血管生成的蛋白质(如MMP-9和MMP2)的表达。第四,已知调控所有这些蛋白质的表达的组成型活性NF-κB和STAT3也受到SCNE处理的抑制。
参考文献
Arsene D,Galais MP,Bouhier-Leporrier K,Reimund JM.Recent developmentsin colorectal cancer treatment by monoclonal antibodies.Expert Opin BiolTher.2006;6:1175-92.
Babvkutty S,Priya PS,Nandini RJ,Kumar MAS,Nair MS,Srinivas P andGopala S.Nimbolide retards tumor cell migration,invasion,and angiogenesis bydownregulating MMP-2/9expression via inhibiting ERK1/2and reducing DNA-binding activity of NF-kappa B in colon cancer cells.MolecularCarcinogenesis.2012;51(6):475-490.
Deeb,D.;Gao,X.;Jiang,H.;Dulchavsky,S.A.;Gautam,S.C.Oleananetriterpenoid CDDO-Me inhibits growth and induces apoptosis in prostate cancercells by independently targeting pro-survival Akt and mTOR.Prostate 2009,69,851-860.
Fakih M.Anti-EGFR monoclonl antibodies in metastatic colorectalcancer:time for an
Greten FR,Eckmann L,Greten TF,Park JM,Li ZW,Egan LJ,et al.IKKbetalinks infl ammation and tumorigenesis in a mouse model of colitis-associatedcancer.Cell.2004;118:285-96.
Gupta SC,Prasad S,Reuter S,Kannappan R,Yadav VR,Ravindran J,etal.Modification of cysteine 179 ofIkappaBalpha kinase by nimbolide leads todown-regulation of NF-kappaB-regulated cell survival and proliferativeproteins and sensitization of tumor cells to chemotherapeutic agents.J BiolChem.2010;285:35406-17.
Gupta SC,Reuter S,Phromnoi K,Park B,Hema PS,Nair M,et al.Nimbolidesensitizes human colon cancer cells to TRAIL through reactive oxygen species-and ERK-dependent up-regulation of death receptors,p53,and Bax.J BiolChem.2011;286:1134-46.
Gupta Subhash C,Sahdeo Prasad,Dhanya R.Sethumadhavan,Mangalam S.Nair,Yin-Yuan Mo and Bharat B.Aggarwal.Nimbolide,a Limonoid Triterpene,InhibitsGrowth of Human Colorectal Cancer Xenografts by Suppressing theProinflammatory Microenvironment.Clin Cancer Res.2013;19(16):44654476.doi:10.1158/1078-0432.CCR-13-0080.
Jackson-Bemitsas DG,Ichikawa H,Takada Y,Myers JN,Lin XL,Darnay BG,etal.Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediatesconstitutive NF-kappaB activation and proliferation in human head and necksquamous cell carcinoma Oncogene.2007;26:1385-97.
Han Yong-Seok,Lee Jun Hee,Lee Sang Hun.Fucoidan inhibits themigration and proliferation of HT-29 human colon cancer cells via thephosphoinositide-3 kinase/Akt/mechanistic target of rapamycinpathway.Molecular medicine reports,12:3446-3452,2015.DOI:10.3892/mmr.20153804.
Haridas,V.;Arntzen,C.J.;Gutterman,J.U.Avicins,a family oftriterpenoid saponins from Acacia victoriae(Bentham),inhibit activation ofnuclear factor-kappaB by inhibiting both its nuclear localization and abilityto bind DNA.Proc.Natl.Acad.Sci.USA 2001;98(20):11557-62.
Fakih M.Anti-EGFR monoclonal antibodies in metastatic colorectalcancer:time for an individualized approach?Expert Rev Anticancer Ther.2008;8:1471-80.[PubMed:18759698]
Karin M,Cao Y,Greten FR,LiZW.NF-kappaB in cancer:from innocentbystander to major culprit.Nat Rev Cancer.2002;2:301-10.
Kavitha K,Priyadarsini RV,Anitha P,RamalingamK,Sakthivel R,Purushothaman G,Singh AK,Karunagaran D and Nagini S.Nimbolide,a neem limonoidabrogates canonical NF-kappa B and Wnt signaling to ininduce caspasedependentapoptosis in human hepatocarcinoma(HepG2)cells.European Journal ofPharmacology.2012;681(1-3):614.
Kumar HarishG,Vidya Priyadarsini R,Vinothini G,Vidjaya Letchoumy P,Nagini S.The neem limonoids azadirachtin and nimbolide inhibit cellproliferation and induce apoptosis in an animal model of oraloncogenesis.Invest New Drugs.2010;28:392-401.
Mermelshtein A,Gerson A,Walfisch S,Delgado B,Shechter-Maor G,DelgadoJ,et al.Expression ofD-type cyclins in colon cancer and in cell lines fromcolon carcinomas.Br J Cancer.2005;93:338-45.
Park W,Amin AR,Chen ZG,Shin DM(2013)New perspectives of curcumin incancer prevention.Cancer Prev Res(Phila)6:387-400.
Singh PR,Arunkumar R,Sivakamasundari V,Sharmila G,Elumalai P,Suganthapriya E,Mercy AB,Senthilkumar K and ArunakaranJ.Anti-proliferativeand apoptosis inducing effect of nimbolide by altering molecules involved inapoptosis and IGF signalling via PI3K/Akt in prostate cancer(PC-3)cellline.Cell Biochemistry and Function.2014;32(3):217-228
Tian,Z.;Yang,M.;Huang,F.;Li,K;Si,J.;Shi,L.;Chen,S.;Xiao,P.Cytotoxicity of three cycloartane triterpenoids from Cimicifugadahurica.Cancer Lett.2005,226(1):65-75.
Ying Liu,Wei CaoBo Zhang,Yong-qiang Liu,Zhong-yuan Wang,Yan-ping Wu,Xian-jun Yu,Xu-dong Zhang,Ping-hong Ming,Guang-biao Zhou,Laiqiang Huang.Thenatural compound magnolol inhibits invasion and exhibits potential in humanbreast cancer therapy.Scientific Reports 2013;3:3098|DOI:10.1038/srep03098.
Youns M,Efferth T,Hoheisel JD(2009b)Microarray analysis of geneexpression in medicinal plant research.Drug Discov Ther 3:200-207
Youns M,Efferth T,Reichling J,Fellenberg K,Bauer A,Hoheisel JD(2009a)Gene expression profiling identifies novel key players ininvolved in thecytotoxic effect of Artesunate on pancreatic cancer cells.Biochem Pharmacol78:273-283.doi:10.1016/j.bcp.2009.04.014
Youns M,Hoheisel JD,Efferth T(2010)Toxicogenomics for the predictionof toxicity related to herbs from traditional Chinese medicine.Planta Med 76:2019-2025.doi:10.1055/s-0030-1250432
Paul R,Prasad M,Sah NK.Anticancer biology of Azadirachta indica L(neem):a mini review.Cancer Biol Ther 2011;12:467-476.
实施例3:印楝(Azadirachta indica)的CO2树叶提取物。
取得1KG清洁和成熟的印楝树叶,并且在阴凉处干燥,以将水分含量降低至小于12%。确保粉末含有小于12%的水分。将这种干燥的草药粉末化为粒度低于0.42mm,然后在介于80巴(80kg/cm2)与350巴(350kg/cm2)之间的压力下在31℃与45℃之间的温度下进行SCO2提取。取决于提取器的大小和一次负载到提取器中的草药的量,使CO2通过草药持续2-3小时的时间段。取决于草药中存在的亲脂性化合物的溶解性,待被泵送通过草药的CO2的量在10kg CO2/kg草药至40kg CO2/kg草药之间变化。从分离器收集CO2携带的提取物,在分离器中,将CO2的压力降低至在40巴至65巴之间变化的压力,并且温度介于10℃至30℃之间,以使溶质(提取物)与CO2分离。由此获得的提取物含有存在于草药中的温度敏感性成分以及其他亲脂性可溶性化合物。由此获得的提取物是提取物A。
使用比例为90%至97%的超临界CO2和3%至10%的乙醇的CO2和乙醇的混合物对分离提取物‘A’后的残留粉末进行提取。提取是在80巴至300巴之间的压力和31℃至45℃之间的温度下进行的。所泵送的溶剂(CO2+乙醇)的量在10kg/kg草药至40kg/kg草药之间变化。在使溶剂压力降低至40巴与65巴之间并且使温度降低至10℃至30℃之间后使溶质(提取物)和乙醇与CO2分离。从分离器收集与提取物掺混的乙醇。然后对混合物进行真空蒸馏(27至28.5英寸Hg),保持温度低于45℃,以使乙醇完全与溶质(提取物)分离,所述提取物被称为提取物B。
残余溶剂(乙醇):少于1000ppm
将提取物‘A’和提取物‘B’两者合并在一起,获得提取物C。
产率:2.5%-5%
实施例4:印楝的水提取物。
对印楝树叶的草药粉末(1KG)进行水提取以获得糊状形式的水溶性提取物。将由此获得的提取物在盘式干燥器/真空干燥器中或在喷雾干燥器中干燥以获得自由流动的粉末提取物。这种提取物被称为水提取物。
产率:5:1%。
实施例5:CO2提取物的标准化。
使用HPLC对CO2提取物进行标准化。使用C18柱(4mm x 250mm x 5μm)。样品是在甲醇中制备的,并且流动相是甲醇和水。使用梯度程序序列,其中运行时间为60分钟,并且流速为1ml/min。所获得的提取物具有最低3mg/gm量的印苦楝内酯、130μg/gm量的印楝素和200μg/gm量的salinin。
实施例6:用于口服的治疗有效制剂。
制剂1。SCO2印楝树叶提取物:75mg(最少0.22mg印苦楝内酯;9.75μg印楝素和salinin 15μg);抗氧化剂如维生素E(生育酚)或迷迭香(迷迭香)CO2提取物,其含有最少6%鼠尾草酸:10mg和芝麻油:415mg;将此制剂填充在500mg的软胶囊中。
这种胶囊可每天施用给患者2-4次(每天总计150-300mg印度楝树树叶提取物作为活性药物)。
制剂2。SCO2印楝树叶提取物:50mg(最少0.15mg印苦楝内酯;6.5μg印楝素和salinin 10μg)、582mg糊精/麦芽糊精或其他载体(例如磷酸二钙或任何其他药用级载体);以及18mg充气或气相二氧化硅。
制备自由流动的粉末并将其封装在市场上可获得的合适尺寸的硬明胶或素食胶囊中。这种制剂可每天施用3-4次,以获得150-300mg印度楝树树叶CO2提取物的治疗剂量。
制剂3。SCO2印楝树叶提取物:50mg(最少0.15mg印苦楝内酯;6.5μg印楝素和10μgsalinin)、582mg获自印度楝树树叶的水提取物和18mg充气或气相二氧化硅。
制备自由流动的粉末并将其封装在市场上可获得的合适尺寸的硬明胶或素食胶囊中。这种制剂可每天施用3-4次,以获得150-300mg印度楝树树叶CO2提取物的治疗剂量。
制剂4。含有SCO2印楝树叶提取物的漱口水制剂:2.28g(最少印苦楝内酯:7.2mg;印楝素:296.4μg和salinin 456μg);薄荷(洋薄荷)油:13.81g;绿薄荷(留兰香)油:9.26g;丁香苞(丁香)CO2油:3.98g;Tween 80:20.68g。将1.25g的所述共混物稀释于98.75g的基料中。基料含有水:73.5g;芦荟水(200x):10g;山梨糖醇:10g;甘油:5.9g;抗坏血酸:0.5g;山梨酸钾:0.1g。
制备液体制剂。可每天施用所述药物组合物3次,每次20ml,以获得15mg如本文所述的印度楝树树叶CO2提取物的治疗剂量。可每天施用所述药物组合物3次,每次20ml,以获得150mg如本文所述的印度楝树树叶CO2提取物的治疗剂量。
可替代地,使用高速均质器,使用上述2gm的SCO2提取物、95.6gm的软化水、2gm的薄荷油和0.2gm的迷迭香CO2提取物制备脂质体水基制剂,以获得100gm的漱口水制剂,其含有最少添加剂与标准药物级乳化剂,如“Polysorbate 80”0.2gm。
实施例7:树叶的超临界CO2印度楝树提取物(SCNE)的癌症预防作用。
细胞活力测定:将结肠直肠癌细胞HCT116和HT29以及正常大鼠结肠细胞IEC-6细胞涂铺在96孔板中,第二天将细胞血清饥饿24小时,并用SCNE(0-75μg/mL)和印苦楝内酯(1-15μM)处理48小时和72小时。在处理后,根据制造商的说明书,通过MTT[3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑鎓溴化物]测定(Sigma Aldrich,MO)测量细胞活力。简言之,添加MTT(5mg/mL),并将板在37℃下孵育4小时,然后将二甲基亚砜添加至每个孔。最后,使用酶标仪(Molecular Devices,Sunnyvale,CA,USA)在540nm波长下读取每个孔的吸光度。结果表示为存活细胞相对于未处理细胞的百分比。
结果证实,即使在48小时后50μg/mL的较高浓度下,SCNE对正常大鼠结肠细胞IEC-6细胞也无毒(图14)。SCNE处理的结肠直肠癌细胞,即HCT116和HT29在72小时结束时在15μg/mL的浓度下分别表现出62%(图15)和44%(图16)细胞活力,并且分别在72小时结束时在40μg/mL(图15)和75μg/mL(图16)的浓度下表现出零细胞活力。印苦楝内酯处理的结肠直肠癌细胞,即HCT116(图17)和HT29(图18)在48小时结束时在15μg/mL的浓度下分别表现出80%和75%细胞活力。
本文所述的实验最终证实,与单独的印苦楝内酯相比,包含印苦楝内酯、印楝素和salinin的组合的超临界CO2印度楝树树叶提取物(SCNE提取物)具有更高的治疗功效。
总体而言,数据表明SCNE通过经由促炎途径和NF-kB抑制诱导细胞凋亡而有效抑制人结肠直肠癌的生长。

Claims (83)

1.一种治疗受试者的癌症的方法,所述方法包括:
(a)确定需要治疗的受试者;以及
(b)向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
2.如权利要求1所述的方法,所述方法还包含药学上可接受的赋形剂。
3.如权利要求1所述的方法,其中所述受试者是人。
4.如权利要求1所述的方法,其中所述药学上可接受的赋形剂选自以下的组:磷酸二钙、蒸馏水、盐水、葡萄糖水溶液、醇(例如乙醇)、表面活性剂、丙二醇、tween-80和聚乙二醇;和油性载体如各种动物油和植物油、白色软石蜡、石蜡、蜡、葡萄糖、果糖、蔗糖、麦芽糖、黄糊精、麦芽糊精、白糊精、气雾剂、微晶纤维素、硬脂酸钙、硬脂酸镁、山梨醇、甜菊苷、玉米糖浆、乳糖、柠檬酸、酒石酸、苹果酸、琥珀酸、乳酸、L-抗坏血酸、dl-α-生育酚、甘油、丙二醇、甘油脂肪酸酯、聚甘油脂肪酸酯、蔗糖脂肪酸酯、脱水山梨糖醇脂肪酸酯、丙二醇脂肪酸酯、阿拉伯胶、角叉菜胶、酪蛋白、明胶、果胶、琼脂、B族维生素、烟酰胺、泛酸钙、氨基酸、充气或气相二氧化硅、钙盐、色素、调味剂和防腐剂。
5.如权利要求1所述的方法,其中所述SCNE以50mg至1000mg/天范围内的剂量施用。
6.如权利要求5所述的方法,其中SCNE的量是约50mg至1000mg/天。
7.如权利要求1所述的方法,其中所述组合物中存在的印苦楝内酯的量是至少3mg/g,所述组合物中存在的印楝素的量是至少130μg/g印楝素;并且salinin的量是至少200μg/g。
8.如权利要求1所述的方法,其中所述SCNE包含一种或多种柠檬苦素类化合物。
9.如权利要求1所述的方法,其中所述组合物还包含一种或多种生育酚;和芝麻油。
10.如权利要求9所述的方法,其中所述一种或多种生育酚是α-生育酚、γ-生育酚、维生素E或迷迭香。
11.如权利要求1所述的方法,其中所述组合物还包含一种或多种生育酚;芝麻油;以及充气或气相二氧化硅。
12.如权利要求1所述的方法,其中所述组合物呈包括胶囊的形式。
13.如权利要求1所述的方法,其中口服施用所述组合物。
14.如权利要求12所述的方法,其中所述胶囊每天口服施用两次或三次。
15.如权利要求1所述的方法,其中所述癌症是原发性或继发性肿瘤。
16.如权利要求1所述的方法,其中所述癌症是口腔癌或结肠癌。
17.一种减少有需要的受试者的血清中的至少一种炎性细胞因子的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
18.如权利要求17所述的方法,其中SCNE的量是约50mg至75mg。
19.如权利要求17所述的方法,其中所述SCNE以50mg至1000mg/天范围内的剂量施用。
20.如权利要求17所述的方法,其中所述组合物中存在的印苦楝内酯的量是至少3mg/g;所述组合物中存在的印楝素的量是至少130μg/g;并且salinin的量是至少200μg/g。
21.如权利要求17所述的方法,其中所述SCNE包含一种或多种柠檬苦素类化合物。
22.如权利要求17所述的方法,其中所述组合物还包含一种或多种生育酚;和芝麻油。
23.如权利要求22所述的方法,其中所述一种或多种生育酚是α-生育酚、γ-生育酚、维生素E或迷迭香。
24.如权利要求17所述的方法,其中所述组合物还包含一种或多种生育酚;芝麻油;以及充气或气相二氧化硅。
25.如权利要求17所述的方法,其中所述组合物呈包括胶囊的形式。
26.如权利要求17所述的方法,其中口服施用所述组合物。
27.如权利要求25所述的方法,其中所述胶囊每天口服施用两次或三次。
28.如权利要求17所述的方法,其中所述组合物还包含药学上可接受的赋形剂。
29.如权利要求17所述的方法,其中所述受试者是人。
30.如权利要求17所述的方法,其中在所述施用步骤之前,所述受试者已被诊断患有口腔癌或结肠癌。
31.如权利要求17所述的方法,其中所述至少一种炎性细胞因子是IFN-γ、IFN-β、TNF-α、IL-6或IL-1。
32.如权利要求31所述的方法,其中所述至少一种炎性细胞因子是IL-6或TNF-α。
33.如权利要求17所述的方法,其中在施用包含治疗有效量的超临界CO2印度楝树提取物的组合物之前,与参考样品相比,所述受试者的血清具有增加的至少一种炎性细胞因子的水平。
34.如权利要求17所述的方法,所述方法还包括在施用包含治疗有效量的超临界CO2印度楝树提取物的组合物之前,测定受试者的一种或多种细胞中的至少一种炎性细胞因子的水平,其中与参考样品相比,至少一种炎性细胞因子的所述水平更高。
35.一种减轻有需要的受试者的炎症的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
36.如权利要求35所述的方法,其中所述受试者是人。
37.如权利要求35所述的方法,其中在所述施用步骤之前,所述受试者已被诊断患有口腔癌或结肠癌。
38.如权利要求35所述的方法,其中通过减少IFN-γ、IFN-β、TNF-α、IL-6、IL-1、NF-KB、STAT3、COX1或COX2中的一者或多者的表达来减轻所述炎症。
39.一种治疗有需要的受试者的过度增生性病症的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
40.如权利要求39所述的方法,所述方法还包含药学上可接受的赋形剂。
41.如权利要求39所述的方法,其中所述受试者是人。
42.如权利要求39所述的方法,其中在所述施用步骤之前,所述受试者已被诊断为需要治疗所述病症。
43.如权利要求39所述的方法,其中所述过度增生性病症是癌症。
44.如权利要求43所述的方法,其中所述癌症是口腔癌或结肠癌。
45.一种抑制有需要的受试者中的NFkB和环氧合酶表达的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
46.如权利要求45所述的方法,所述方法还包含药学上可接受的赋形剂。
47.如权利要求45所述的方法,其中在所述施用步骤之前,所述受试者已被诊断为需要抑制NFkB和环氧合酶的表达。
48.如权利要求45所述的方法,其中在所述施用步骤之前,所述受试者已被诊断为需要治疗细胞增殖失控的病症。
49.如权利要求45所述的方法,所述方法还包括确定需要治疗细胞增殖失控的病症的受试者的步骤。
50.如权利要求49所述的方法,其中所述细胞增殖失控的病症是癌症。
51.如权利要求50所述的方法,其中所述癌症是口腔癌。
52.一种抑制至少一种细胞中的NFkB和环氧合酶表达的方法,所述方法包括使至少一种细胞与有效量的超临界CO2印度楝树提取物(SCNE)接触的步骤,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
53.如权利要求52所述的方法,所述方法还包含药学上可接受的赋形剂。
54.如权利要求52所述的方法,其中所述至少一种细胞是人细胞。
55.如权利要求52所述的方法,其中所述接触是通过向受试者施用来进行。
56.如权利要求55所述的方法,其中在所述施用步骤之前,所述受试者已被诊断为需要治疗细胞增殖失控的病症。
57.一种改变受试者中的表皮生长因子受体(EGFR)信号传导活性的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
58.如权利要求57所述的方法,所述方法还包含药学上可接受的赋形剂。
59.如权利要求57所述的方法,其中所述受试者是人。
60.如权利要求57所述的方法,其中所述受试者已被诊断为需要改变EFGR信号传导活性。
61.如权利要求57所述的方法,其中所述改变是抑制。
62.如权利要求57所述的方法,其中在所述施用步骤之前,所述受试者已被诊断为需要治疗细胞增殖失控的病症。
63.如权利要求62所述的方法,所述方法还包括确定需要治疗细胞增殖失控的病症的受试者的步骤。
64.如权利要求63所述的方法,其中所述细胞增殖失控的病症是口腔癌。
65.一种在有需要的受试者中诱导细胞凋亡的方法,所述方法包括向所述受试者施用包含治疗有效量的超临界CO2印度楝树提取物(SCNE)的组合物,其中所述SCNE包含印苦楝内酯、印楝素和salinin。
66.如权利要求65所述的方法,所述方法还包含药学上可接受的赋形剂。
67.如权利要求65所述的方法,其中所述受试者是人。
68.如权利要求65所述的方法,其中在所述施用步骤之前,所述受试者已被诊断为需要治疗细胞增殖失控的病症。
69.如权利要求68所述的方法,所述方法还包括确定需要治疗细胞增殖失控的病症的受试者的步骤。
70.如权利要求69所述的方法,其中所述细胞增殖失控的病症是癌症。
71.如权利要求70所述的方法,其中所述癌症是结肠癌。
72.一种用于制备印楝树叶的标准化CO2提取物的工艺,所述工艺包括:
a)将水分含量低于12%的清洁和成熟的干燥印楝树叶粉化,以获得具有尺寸低于0.42mm的细颗粒的粉末;
b)在31℃至45℃的温度范围以及在80巴(80kg/cm2)与350巴(350kg/cm2)之间变化的压力下,以10至40kg的CO2/kg原料的流速对步骤a)的所述粉末进行超临界CO2提取;
c)在40巴至65巴之间变化的压力下,在低于提取温度的温度下分离CO2提取物,以获得提取物A;
d)使用CO2和乙醇的混合物,在所述80巴至350巴之间的压力和31℃至45℃的温度范围下对分离提取物‘A’后剩余的残留粉末进行进一步提取;
e)在低于所述提取温度的温度下,通过将溶剂压力降低至40巴与65巴之间从分离器收集与提取物掺混的乙醇,然后真空蒸馏所述乙醇以获得提取物B;以及
f)将提取物A和提取物B合并以获得印楝树叶的标准化CO2提取物。
73.如权利要求72所述的工艺,其中使所述提取物A任选地经受高速微射流或喷嘴以得到10nm-100nm的粒度。
74.如权利要求72所述的工艺,其中所述乙醇以所述CO2的3%至10%的量使用。
75.如权利要求72所述的工艺,其中将步骤c)中的所述分离温度和步骤e)中的收集温度保持在10℃至30℃之间。
76.如权利要求72所述的工艺,其中在低于45℃的温度下进行乙醇的所述真空蒸馏。
77.如权利要求72所述的工艺,其中在步骤f)中获得的所述标准化提取物包含3mg/gm最小量的印苦楝内酯;130μg/gm最小量的印楝素以及200μg/gm最小量的salinin。
78.一种印楝的标准化CO2提取物,所述标准化CO2提取物包含3mg/gm最小量的印苦楝内酯;130μg/gm最小量的印楝素以及200μg/gm最小量的salinin。
79.如权利要求78所述的标准化提取物,其中所述提取物还含有少量的各种其他活性植物成分,如脱乙酰基印楝素、印苦楝二酮、zzdirone、印楝波灵和印楝素烯。
80.一种治疗性草药组合物,所述草药组合物包含50至300mg有效量的如权利要求78或权利要求79所述的印楝的标准化CO2提取物以及一种或多种药物载体/赋形剂。
81.如权利要求80所述的草药组合物,其中所述提取物包含3mg/gm最小量的印苦楝内酯;130μg/gm最小量的印楝素和200μg/gm最小量的salinin,以及少量的其他活性植物成分、脱乙酰基印楝素、印苦楝二酮、azdirone、印楝波灵和印楝素烯。
82.如权利要求80所述的草药组合物,其中所述药物赋形剂/载体选自由以下组成的组:蒸馏水、盐水、葡萄糖水溶液、醇(例如乙醇)、表面活性剂、丙二醇、tween-80和聚乙二醇;和油性载体如各种动物油和植物油、白色软石蜡、石蜡、蜡、葡萄糖、果糖、蔗糖、麦芽糖、黄糊精、麦芽糊精、白糊精、气雾剂、微晶纤维素、硬脂酸钙、硬脂酸镁、山梨醇、甜菊苷、玉米糖浆、乳糖、柠檬酸、酒石酸、苹果酸、琥珀酸、乳酸、L-抗坏血酸、dl-α-生育酚、甘油、丙二醇、甘油脂肪酸酯、聚甘油脂肪酸酯、蔗糖脂肪酸酯、脱水山梨糖醇脂肪酸酯、丙二醇脂肪酸酯、阿拉伯胶、角叉菜胶、酪蛋白、明胶、果胶、琼脂、B族维生素、烟酰胺、泛酸钙、氨基酸、充气或气相二氧化硅、钙盐、色素、调味剂和防腐剂。
83.如权利要求80所述的草药组合物,其中所述组合物能够被配制成口服固体或液体剂型。
CN201980071559.4A 2018-08-31 2019-08-30 印楝组合物和治疗癌症的方法 Pending CN113038962A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862725484P 2018-08-31 2018-08-31
US62/725,484 2018-08-31
IN201821021206 2018-09-06
IN201821021206 2018-09-06
PCT/US2019/049059 WO2020047405A1 (en) 2018-08-31 2019-08-30 Compositions of azadirachta indica and methods of treating cancer

Publications (1)

Publication Number Publication Date
CN113038962A true CN113038962A (zh) 2021-06-25

Family

ID=69643771

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201980071559.4A Pending CN113038962A (zh) 2018-08-31 2019-08-30 印楝组合物和治疗癌症的方法
CN201980072181.XA Pending CN113056568A (zh) 2018-08-31 2019-08-30 印楝组合物和治疗癌症的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201980072181.XA Pending CN113056568A (zh) 2018-08-31 2019-08-30 印楝组合物和治疗癌症的方法

Country Status (6)

Country Link
US (3) US20210315960A1 (zh)
EP (2) EP3843764A4 (zh)
KR (2) KR20210081334A (zh)
CN (2) CN113038962A (zh)
AU (2) AU2019327552A1 (zh)
WO (2) WO2020047405A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171100A (zh) * 2020-01-15 2020-05-19 中国药科大学 一种具有抗肿瘤活性柠檬苦素类化合物及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3169459A1 (en) * 2020-03-04 2021-09-10 Sanyasi Kalidindi Anti-cancer and anti-proliferative compositions, and methods for their use in treating cancer
EP4342482A1 (en) * 2022-09-23 2024-03-27 Laurenz Vorderwülbecke Neem tree leaves extract

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010031782A1 (en) * 1998-12-17 2001-10-18 Wechter William J. Use of gamma-tocopherol and its oxidative metabolite LLU-alpha in the treatment of disease
WO2015035199A1 (en) * 2013-09-06 2015-03-12 Mayo Foundation For Medical Education And Research Neem compositions used for the treatment of cancer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19601482A1 (de) * 1996-01-17 1997-07-24 Rembold Heinz Verfahren zur Extraktion von Inhaltsstoffen des Neem-Baumes
DE10021560A1 (de) * 2000-05-03 2001-11-08 Promelia Produkte Mit Naturext Hautpflegemittel mit insektenrepellierender Wirkung
GB2369072A (en) * 2000-10-16 2002-05-22 Neem Biotech Ltd Extraction of azadirachtin from neem seeds
US8206753B2 (en) * 2001-06-20 2012-06-26 Metaproteomics, Llc Anti-inflammatory botanical products for the treatment of metabolic syndrome and diabetes
CN1158928C (zh) * 2002-02-08 2004-07-28 云南中科生物产业有限公司 超临界二氧化碳技术萃取印楝素工艺
US20050191369A1 (en) * 2004-02-26 2005-09-01 Proethic Laboratories, L.L.C. Compositions comprising vitamin E and saw palmetto
CN101972246B (zh) * 2010-10-09 2012-05-30 中国科学院昆明植物研究所 治疗癌症的药物,其制备方法和在制药中的应用
US11291647B2 (en) * 2018-08-30 2022-04-05 Nisarga Biotech Private Limited Process for preparation of CO2 extract of Azadirachta indica and herbal compositions thereof for treatment of cancers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010031782A1 (en) * 1998-12-17 2001-10-18 Wechter William J. Use of gamma-tocopherol and its oxidative metabolite LLU-alpha in the treatment of disease
WO2015035199A1 (en) * 2013-09-06 2015-03-12 Mayo Foundation For Medical Education And Research Neem compositions used for the treatment of cancer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHETAN YEWALE ET AL.,: "Epidermal growth factor receptor targeting in cancer: A review of trends and strategies", 《BIOMATERIALS》 *
JAE-WON LEE ET AL.,: "Protective effects of neem (Azadirachta indica A. Juss.) leaf extract against cigarette smoke- and lipopolysaccharide-induced pulmonary inflammation", 《INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE》 *
MANDAKINI J. PATEL ET AL.,: "A supercritical CO2 extract of neem leaf (A. indica) and its bioactive liminoid, nimbolide,suppresses colon cancer in preclinical models by modulating pro-inflammatory pathways", 《 MOLECULAR CARCINOGENESIS》 *
MOHAMMAD A. ALZOHAIRY: "Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment", 《EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE》 *
MOHD ZABIDI MAJID ET AL.,: "Apoptosis-inducing effect of three medicinal plants on oral cancer cells KB and ORL-48", 《THE SCIENTIFIC WORLD JOURNAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171100A (zh) * 2020-01-15 2020-05-19 中国药科大学 一种具有抗肿瘤活性柠檬苦素类化合物及其制备方法
CN111171100B (zh) * 2020-01-15 2022-02-11 中国药科大学 一种具有抗肿瘤活性柠檬苦素类化合物及其制备方法

Also Published As

Publication number Publication date
AU2019333306A1 (en) 2021-05-06
US20210315960A1 (en) 2021-10-14
AU2019327552A1 (en) 2021-05-06
KR20210081334A (ko) 2021-07-01
WO2020047405A1 (en) 2020-03-05
US20200253916A1 (en) 2020-08-13
EP3844312A1 (en) 2021-07-07
EP3843764A1 (en) 2021-07-07
KR20210098947A (ko) 2021-08-11
WO2020047401A1 (en) 2020-03-05
EP3843764A4 (en) 2022-08-03
EP3844312A4 (en) 2022-06-22
US20220133680A1 (en) 2022-05-05
CN113056568A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
Majolo et al. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery
Bose et al. Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy
Abdal Dayem et al. The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: molecular mechanisms
Curti et al. In vitro polyphenol effects on apoptosis: An update of literature data
Dudhatra et al. A comprehensive review on pharmacotherapeutics of herbal bioenhancers
Girisa et al. Xanthohumol from Hop: Hope for cancer prevention and treatment
Yan et al. Combination of metformin and luteolin synergistically protects carbon tetrachloride‐induced hepatotoxicity: Mechanism involves antioxidant, anti‐inflammatory, antiapoptotic, and Nrf2/HO‐1 signaling pathway
Chang et al. The protective role of carotenoids and polyphenols in patients with head and neck cancer
Wang et al. Recent advances in natural therapeutic approaches for the treatment of cancer
Talib et al. Combination anticancer therapies using selected phytochemicals
CN113038962A (zh) 印楝组合物和治疗癌症的方法
Aqil et al. Anticancer phytocompounds: experimental and clinical updates
Morovati et al. A systematic review on potential anticancer activities of Ficus carica L. with focus on cellular and molecular mechanisms
Woo et al. Barley grass extract causes apoptosis of cancer cells by increasing intracellular reactive oxygen species production
Adedokun et al. Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery
El-Nashar et al. The Impact of Polyphenolics in the Management of Breast Cancer: Mechanistic Aspects and Recent Patents
Cheikh et al. Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention
Rohilla et al. Anticancer potential of Solanaceae plants: A review
Sahin et al. Lycopene: multitargeted applications in cancer therapy
US11291647B2 (en) Process for preparation of CO2 extract of Azadirachta indica and herbal compositions thereof for treatment of cancers
Bhuyan et al. An array of bioactive compounds from Australian eucalypts and their relevance in pancreatic cancer therapeutics
Sharma et al. Immunomodulatory potential of phytochemicals: Recent updates
Baliga et al. Use of Indian indigenous fruits in cancer prevention and treatment
Pal et al. Plant leads for mitigation of oral submucous fibrosis: Current scenario and future prospect
Barakat et al. The effect of natural products on inflammatory cytokines production and secretion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination