CN113037162B - Bearingless Permanent Magnet Synchronous Motor Neural Network Bandpass Filter Vibration Compensation Controller - Google Patents
Bearingless Permanent Magnet Synchronous Motor Neural Network Bandpass Filter Vibration Compensation Controller Download PDFInfo
- Publication number
- CN113037162B CN113037162B CN202110195977.3A CN202110195977A CN113037162B CN 113037162 B CN113037162 B CN 113037162B CN 202110195977 A CN202110195977 A CN 202110195977A CN 113037162 B CN113037162 B CN 113037162B
- Authority
- CN
- China
- Prior art keywords
- controller
- neural network
- pass filter
- input
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 72
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 44
- 238000006073 displacement reaction Methods 0.000 claims abstract description 73
- 239000000725 suspension Substances 0.000 claims abstract description 27
- 238000004804 winding Methods 0.000 claims description 37
- 238000004364 calculation method Methods 0.000 claims description 31
- 230000009466 transformation Effects 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000003068 static effect Effects 0.000 claims description 2
- 238000005339 levitation Methods 0.000 claims 3
- 230000000694 effects Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/05—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0014—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using neural networks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0474—Active magnetic bearings for rotary movement
- F16C32/0493—Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N15/00—Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/18—Estimation of position or speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明公开一种无轴承永磁同步电机神经网络带通滤波器振动补偿控制器,由位移控制器和转速控制器组成,位移控制器包括振动力补偿控制模块和死区振动补偿模块;振动力补偿控制模块以实际位移与转子机械角度作为输入,输出对应的振动补偿力,由第一神经网络带通滤波器、第二神经网络带通滤波器和第三PID控制器、第四PID控制器组成;死区振动补偿模块以转子电角度与交直轴电流实际电流作为输入,输出交直轴补偿电压,由直轴方向的第三神经网络带通滤波器、交轴方向的第四神经网络带通滤波器以及第六PI控制器、第七PI控制器组成;本发明不仅对偏心问题造成的振动进行分析补偿,还对死区效应造成的振动进行补偿控制,使悬浮控制精度得到有效提高。
The invention discloses a vibration compensation controller of a bearingless permanent magnet synchronous motor neural network band-pass filter, which is composed of a displacement controller and a rotational speed controller. The displacement controller includes a vibration force compensation control module and a dead zone vibration compensation module; the vibration force The compensation control module takes the actual displacement and the mechanical angle of the rotor as input, and outputs the corresponding vibration compensation force. The dead-zone vibration compensation module takes the rotor electrical angle and the actual current of the AC-direction axis as input, and outputs the AC-direction axis compensation voltage. The filter is composed of the sixth PI controller and the seventh PI controller; the invention not only analyzes and compensates the vibration caused by the eccentricity problem, but also compensates and controls the vibration caused by the dead zone effect, so that the suspension control accuracy is effectively improved.
Description
技术领域technical field
本发明属于无轴承电机控制领域,涉及无轴承永磁同步电机死区补偿控制与转子偏心控制技术,用于对无轴承永磁同步电机的振动进行补偿控制。The invention belongs to the field of bearingless motor control, relates to dead zone compensation control and rotor eccentricity control technology of a bearingless permanent magnet synchronous motor, and is used for compensating and controlling the vibration of the bearingless permanent magnet synchronous motor.
背景技术Background technique
无轴承永磁同步电机是一种高转速,高精度及无需润滑的新型特种电机,在航天航空、化工制造、半导体工业及其他需要特殊环境的领域中具有越来越广泛的应用前景。无轴承永磁同步电机作为旋转驱动电机,由于材质不均、加工误差以及装配误差等问题,不可避免会存在一定程度的转子质量偏心,在旋转时产生于转速同频的离心激振力。同时,在无轴承永磁同步电机控制过程中,必须设置死区时间来避免逆变器上下桥臂短路,而死区时间的引入使电流谐波增加,进一步增大了不平衡力的幅值,导致转子不平衡振动,影响转子的悬浮控制精度。Bearingless permanent magnet synchronous motor is a new type of special motor with high speed, high precision and no lubrication. It has more and more extensive application prospects in aerospace, chemical manufacturing, semiconductor industry and other fields that require special environments. Bearingless permanent magnet synchronous motor as a rotating drive motor, due to uneven material, processing error and assembly error, there will inevitably be a certain degree of rotor mass eccentricity, which will generate centrifugal excitation force at the same frequency of rotation during rotation. At the same time, in the control process of the bearingless permanent magnet synchronous motor, the dead time must be set to avoid the short circuit of the upper and lower bridge arms of the inverter, and the introduction of the dead time increases the current harmonics and further increases the amplitude of the unbalanced force , resulting in unbalanced vibration of the rotor, affecting the suspension control accuracy of the rotor.
关于无轴承永磁同步电机的转子不平衡振动控制,现有技术大多是对转子质量偏心造成的不平衡振动进行补偿控制,而对由死区效应引起的不平衡振动却鲜有提及。中国专利公开号为CN104659990A的文献公开了无轴承电机的自适应滤波不平衡振动位移提取方法,为无轴承电机振动补偿控制的首要条件做出铺垫。中国专利公开号为CN105048913A的文献公开了一种基于电流补偿的无轴承异步电机不平衡振动控制系统,通过调节补偿电流实现悬浮振动补偿控制。但是,这些方案中对无轴承电机的振动补偿控制主要以偏心造成的振动情况进行检测与补偿,而对死区效应造成的振动却尚未提及。为提高无轴承永磁同步电机不平衡振动位移控制的精度,不仅需要对由转子质量偏心造成的转子偏心位移进行补偿,还需对死区效应造成的转子不平衡振动进行补偿,这是实现高精度无轴承永磁同步电机控制的重中之重。Regarding the rotor unbalanced vibration control of the bearingless permanent magnet synchronous motor, the prior art mostly compensates and controls the unbalanced vibration caused by the eccentricity of the rotor mass, but seldom mentions the unbalanced vibration caused by the dead zone effect. The Chinese Patent Publication No. CN104659990A discloses an adaptive filtering unbalanced vibration displacement extraction method of a bearingless motor, which lays the groundwork for the primary condition of vibration compensation control of a bearingless motor. The Chinese Patent Publication No. CN105048913A discloses an unbalanced vibration control system for a bearingless asynchronous motor based on current compensation, which realizes suspension vibration compensation control by adjusting the compensation current. However, in these schemes, the vibration compensation control of the bearingless motor mainly detects and compensates for the vibration caused by the eccentricity, while the vibration caused by the dead zone effect has not been mentioned yet. In order to improve the accuracy of the unbalanced vibration displacement control of the bearingless permanent magnet synchronous motor, it is not only necessary to compensate for the rotor eccentric displacement caused by the rotor mass eccentricity, but also to compensate for the rotor unbalanced vibration caused by the dead zone effect. Precision bearingless permanent magnet synchronous motor control is a top priority.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种无轴承永磁同步电机神经网络带通滤波器振动补偿控制器,能抑制无轴承永磁同步电机振动的振动补偿,以解决现有无轴承永磁同步电机在振动补偿控制中只对转子质量偏心进行振动补偿,而忽视死区效应引起的振动问题,从而实现电机转子的稳定悬浮及高效运行,并提高电机控制精度,更好地应用于电气传动系统。The purpose of the present invention is to provide a vibration compensation controller of a bearingless permanent magnet synchronous motor neural network band-pass filter, which can suppress the vibration compensation of the bearingless permanent magnet synchronous motor, so as to solve the problem of the vibration of the existing bearingless permanent magnet synchronous motor. In the compensation control, only the vibration compensation is performed on the eccentricity of the rotor mass, and the vibration problem caused by the dead zone effect is ignored, so as to realize the stable suspension and efficient operation of the motor rotor, and improve the motor control accuracy, which is better applied to the electrical transmission system.
本发明提供的无轴承永磁同步电机神经网络带通滤波器振动补偿控制器所采用的技术方案是:其由位移控制器和转速控制器组成,所述的位移控制器包括振动力补偿控制模块和死区振动补偿模块;The technical solution adopted by the vibration compensation controller of the neural network band-pass filter of the bearingless permanent magnet synchronous motor provided by the present invention is: it is composed of a displacement controller and a rotational speed controller, and the displacement controller includes a vibration force compensation control module and dead zone vibration compensation module;
所述的振动力补偿控制模块以x,y方向上的实际位移x,y与转子机械角度θm作为输入,输出对应的振动补偿力Fxh,Fyh,由第一神经网络带通滤波器、第二神经网络带通滤波器和第三PID控制器、第四PID控制器组成;所述的第一神经网络带通滤波器以x方向上的实际位移x与转子机械角度θm作为输入,输出振动位移以0作为给定值与振动位移作差并将该差值作为第三PID控制器的输入,第三PID控制器输出振动补偿力Fxh;第二神经网络带通滤波器以y方向上的实际位移y与转子机械角度θm作为输入,输出振动位移以0作为给定值与振动位移作差并将该差值作为第四PID控制器的输入,第四PID控制器输出振动补偿力Fyh;所述的振动补偿力Fxh与悬浮绕组x方向的力的给定值Fx求和后输入给力电流转换模块;所述的振动补偿力Fyh与悬浮绕组y方向的力的给定值Fy求和后输入给力电流转换模块,电流转换模块获得交直轴电流给定值和 The vibration force compensation control module takes the actual displacement x, y in the x, y direction and the rotor mechanical angle θ m as input, and outputs the corresponding vibration compensation force F xh , F yh , which is determined by the first neural network band-pass filter. , the second neural network band-pass filter, the third PID controller and the fourth PID controller are composed; the first neural network band-pass filter takes the actual displacement x in the x direction and the rotor mechanical angle θ m as the input , the output vibration displacement Take 0 as the given value and the vibration displacement Make a difference and use the difference as the input of the third PID controller, the third PID controller outputs the vibration compensation force F xh ; the second neural network band-pass filter uses the actual displacement y in the y direction and the rotor mechanical angle θ m As input, output vibration displacement Take 0 as the given value and the vibration displacement Make a difference and use this difference as the input of the 4th PID controller, the 4th PID controller outputs the vibration compensation force F yh ; the given value F x of the described vibration compensation force F xh and the force of the suspension winding x direction is calculated After the sum, input the force-current conversion module; the given value F y of the described vibration compensation force F yh and the force in the y-direction of the suspension winding is summed and input to the force-current conversion module, and the current conversion module obtains the AC-direction axis current given value and
所述的死区振动补偿模块以转子电角度θe与交直轴电流实际电流iBq,iBd作为输入,输出交直轴补偿电压uBqh,uBdh,由直轴方向的第三神经网络带通滤波器、交轴方向的第四神经网络带通滤波器以及第六PI控制器、第七PI控制器组成,第三神经网络带通滤波器以直轴方向上的实际电流iBd与转子电角度θe的6倍作为输入,得到直轴方向的谐波电流以0作为给定值与谐波电流作差并将结果作为第六PI控制器的输入,第六PI控制器得到直轴补偿电压uBdh,将直轴方向上的控制电压uBd与直轴补偿电压uBdh相加获得直轴指令电压第四神经网络带通滤波器以交轴方向上的实际电流iBq与转子电角度θe的6倍作为输入,得到直轴方向的谐波电流以0作为给定值与谐波电流作差并将结果作为第七PI控制器的输入,第七PI控制器得到交轴补偿电压uBqh,将交轴方向上的控制电压uBq与交轴补偿电压uBqh相加获得交轴指令电压 The dead zone vibration compensation module takes the rotor electrical angle θ e and the actual currents i Bq , i Bd as input, and outputs the compensation voltages u Bqh and u Bdh in the direct axis, which are band-passed by the third neural network in the direction of the direct axis. The filter, the fourth neural network bandpass filter in the quadrature axis direction, the sixth PI controller and the seventh PI controller are composed. The third neural network bandpass filter uses the actual current i Bd in the direct axis direction and the rotor current 6 times the angle θ e is used as input to obtain the harmonic current in the direction of the direct axis Taking 0 as a given value and harmonic current Make a difference and use the result as the input of the sixth PI controller, the sixth PI controller obtains the direct axis compensation voltage u Bdh , and adds the control voltage u Bd in the direct axis direction and the direct axis compensation voltage u Bdh to obtain the direct axis command Voltage The fourth neural network band-pass filter takes the actual current i Bq in the quadrature axis direction and 6 times the rotor electrical angle θ e as input, and obtains the harmonic current in the direct axis direction Taking 0 as a given value and harmonic current Make a difference and use the result as the input of the seventh PI controller, the seventh PI controller obtains the quadrature axis compensation voltage u Bqh , and adds the control voltage u Bq in the quadrature axis direction and the quadrature axis compensation voltage u Bqh to obtain the quadrature axis command Voltage
本发明的有益效果是:The beneficial effects of the present invention are:
1)本发明采用死区振动补偿控制,不仅对死区进行了补偿,还能有效地抑制无轴承永磁同步电机运行过程中的振动,提高悬浮控制精度。1) The present invention adopts the dead zone vibration compensation control, which not only compensates the dead zone, but also effectively suppresses the vibration during the operation of the bearingless permanent magnet synchronous motor, and improves the suspension control accuracy.
2)本发明采用的神经网络带通滤波器,工作原理简单,计算过程简洁,并可以根据电机的实时转速获取所需的信号。2) The neural network band-pass filter adopted in the present invention has simple working principle and simple calculation process, and can obtain the required signal according to the real-time speed of the motor.
3)本发明采用PI控制器对振动进行调节,该控制器原理简单,系数调整便捷,并且具有较强的鲁棒性。3) The present invention adopts the PI controller to adjust the vibration. The controller has simple principle, convenient coefficient adjustment and strong robustness.
4)在无轴承永磁同步电机振动补偿控制中,一般只考虑由偏心因素造成的振动并实施补偿控制,而死区效应引起的振动问题却未曾有人提及,这样对整个悬浮控制的精度是不利的。本发明为了使无轴承永磁同步电机有更高的悬浮控制精度,不仅对偏心问题造成的振动进行分析补偿,还对死区效应造成的振动进行补偿控制,使悬浮控制精度得到有效提高。4) In the vibration compensation control of the bearingless permanent magnet synchronous motor, generally only the vibration caused by the eccentric factor is considered and the compensation control is implemented, while the vibration problem caused by the dead zone effect has not been mentioned, so the accuracy of the entire suspension control is Adverse. In order to make the bearingless permanent magnet synchronous motor have higher suspension control accuracy, the invention not only analyzes and compensates the vibration caused by the eccentricity problem, but also compensates and controls the vibration caused by the dead zone effect, so that the suspension control accuracy is effectively improved.
附图说明Description of drawings
为使本发明的内容更加明显易懂,以下结合附图和具体实施方式对本发明进行详细描述:In order to make the content of the present invention more obvious and easy to understand, the present invention is described in detail below in conjunction with the accompanying drawings and specific embodiments:
图1是本发明所述的结构原理框图;Fig. 1 is the structural principle block diagram of the present invention;
图2是图1中转速控制器2的结构原理框图;Fig. 2 is the structural principle block diagram of the
图3是图1中位移控制器1的结构原理框图;Fig. 3 is the structural principle block diagram of the
图4是图3中x方向与y方向的振动力补偿模块5原理框图;Fig. 4 is the principle block diagram of the vibration force compensation module 5 in the x direction and the y direction in Fig. 3;
图5是图3中直轴方向与交轴方向的死区振动补偿模块6原理框图;FIG. 5 is a schematic block diagram of the dead zone vibration compensation module 6 in the direction of the straight axis and the direction of the quadrature axis in FIG. 3;
图6是图4中第一神经网络带通滤波器51的内部结构原理框图;Fig. 6 is the internal structure principle block diagram of the first neural network bandpass filter 51 in Fig. 4;
图7是图5中第二神经网络带通滤波器53的内部结构原理框图;Fig. 7 is the internal structure principle block diagram of the second neural network bandpass filter 53 in Fig. 5;
图8是图6中第三神经网络带通滤波器61的内部结构原理框图;Fig. 8 is the internal structure principle block diagram of the third neural network bandpass filter 61 in Fig. 6;
图9是图7中第四神经网络带通滤波器63的内部结构原理框图;Fig. 9 is the internal structure principle block diagram of the fourth neural network bandpass filter 63 in Fig. 7;
图10是本发明所述的电机振动补偿控制器结构总体实现原理框图。FIG. 10 is a schematic block diagram of the overall realization of the structure of the motor vibration compensation controller according to the present invention.
图中:1.位移控制器;2.转速控制器;3.无轴承永磁同步电机;11.第一PID控制器;12.第二PID控制器;13.力电流转换模块;14.第四PI控制器;15.第五PI控制器;16.第三坐标变换模块;17.角度计算模块;21.第一PI控制器;22.第二PI控制器;23.第三PI控制器;24.第一坐标变换模块;25.第二坐标变换模块;26.第一SVPWM逆变器;27.编码器;28.速度计算模块;5.振动力补偿模块;51.第一神经网络带通滤波器;52.第三PID控制器;53.第二神经网络带通滤波器;54.第四PID控制器;55.第一权值调整模块;56.第二权值调整模块;6.死区振动补偿模块;61.第三神经网络带通滤波器;62.第六PI控制器;63.第四神经网络带通滤波器;64.第七PI控制器;65.第三权值调整模块;66.第四权值调整模块;90.第二SVPWM逆变器;91.第四坐标变换模块;92.位移计算模块。In the figure: 1. Displacement controller; 2. Speed controller; 3. Bearingless permanent magnet synchronous motor; 11. First PID controller; 12. Second PID controller; 13. Force-current conversion module; 14. Section Four PI controller; 15. Fifth PI controller; 16. Third coordinate transformation module; 17. Angle calculation module; 21. First PI controller; 22. Second PI controller; 23.
具体实施方式Detailed ways
本发明的具体思想以及实施步骤为:Concrete thought of the present invention and implementation steps are:
参见图1,本发明所述的无轴承永磁同步电机神经网络带通滤波器振动补偿控制器由位移控制器1和转速控制器2组成,位移控制器1和转速控制器2的输出端连接无轴承永磁同步电机3,对无轴承永磁同步电机3实现控制。Referring to Figure 1, the bearingless permanent magnet synchronous motor neural network band-pass filter vibration compensation controller of the present invention is composed of a
对于转速控制器2,如图2所示,其采用速度电流双闭环控制,其由第一PI控制器21、第二PI控制器22、第三PI控制器23、第一坐标变换模块24、第二坐标变换模块25、第一SVPWM逆变器26、编码器27和速度计算模块28组成。其中,编码器27的输出端连接速度计算模块28,编码器27从无轴承永磁同步电机3的转轴处采集到转速脉冲信号并进行累加运算,将累加后的结果ΔP输入速度计算模块28,经速度计算模块28计算得到电机转子实际转速n,转速n计算公式为:For the
式中:Ts为转速控制器2的中断周期;Le为编码器的线数。In the formula: T s is the interruption period of the
将计算后的实际转速n与转速给定值n*作差,得到转速误差,并将该误差输入至第一PI控制器21,由第一PI控制器21调节后得到转矩绕组交轴电流给定值与此同时,使用电流传感器采集无轴承永磁同步电机3的转矩两相绕组的转矩电流i2A和i2C,将转矩电流i2A和i2C输入到第二坐标变换模块25中,第二坐标变换模块25由Clarke变换和Park变换组成,经过第二坐标变换模块25对i2A和i2C转换后得到旋转坐标系下的转矩绕组交轴电流实际值iMq和转矩绕组直轴电流实际值iMd。以转矩绕组交轴电流给定值和转矩绕组交轴电流实际值iMq的误差作为第二PI控制器22的输入,得到转矩绕组交轴电压给定值以转矩绕组直轴电流作为给定值,将和转矩绕组直轴电流实际值iMd的误差作为第三PI控制器23的输入,得到转矩绕组直轴电压给定值第二PI控制器22和第三PI控制器23的输出端均连接第一坐标变换模块24的输入端,第一坐标变换模块24由Park逆变换组成,该变换可将转矩绕组交轴电压给定值和转矩绕组直轴电压给定值转化为静止坐标系下的转矩绕组电压uMα和uMβ。第一坐标变换模块24的输出端依次串接第一SVPWM逆变器26和无轴承永磁同步电机3,第一坐标变换模块24将电压uMα和uMβ作为第一SVPWM逆变器26的输入,第一SVPWM逆变器26输出连接无轴承永磁同步电机3的输入,经第一SVPWM逆变器26得到无轴承永磁同步电机3的三相输入电压u2A、u2B、u2C。The difference between the calculated actual speed n and the given speed n * is obtained to obtain the speed error, and the error is input to the first PI controller 21, and the torque winding quadrature current is obtained after being adjusted by the first PI controller 21 Desired point At the same time, use the current sensor to collect the torque currents i 2A and i 2C of the torque two-phase windings of the bearingless permanent magnet synchronous motor 3, and input the torque currents i 2A and i 2C into the second coordinate
对于位移控制器1,如图3所示,其采用位移电流双闭环控制,其由第一PID控制器11、第二PID控制器12、振动力补偿模块5、力电流转换模块13、第四PI控制器14、第五PI控制器15、死区振动补偿模块6、第三坐标变换模块16、角度计算模块17、第二SVPWM逆变器90、第四坐标变换模块91、位移计算模块92和编码器27组成。其中,通过位移传感器采集无轴承永磁同步电机3的转子位置并输入位移计算模块92,位移计算模块92将采集到的位移信号转换为实际的x和y方向的位移,将x方向的实际位移x与给定值x*作差,得到位移误差,并将该误差输入至第一PID控制器11中,由第一PID控制器11调节后得到悬浮绕组x方向的力的给定值Fx;将y方向的实际位移y与给定值y*作差,得到位移误差,并将该误差输入至第二PID控制器82中,由第二PID控制器12调节后得到悬浮绕组y方向的力的给定值Fy。For the
编码器27的输出端还连接角度计算模块17,编码器27输出的脉冲信号经过角度计算模块17得到转子机械角度θm,k时刻的转子机械角度计算过程为:The output end of the encoder 27 is also connected to the
式中:ΔP为编码器27输出的脉冲的累加结果。In the formula: ΔP is the cumulative result of the pulses output by the encoder 27 .
角度计算模块17和位移计算模块92的输出端均连接振动力补偿控制模块5的输入端,振动力补偿控制模块5以角度计算模块17输出的转子机械角度θm和位移计算模块92输出的转子实际位移x,y作为输入,获得补偿力Fxh和Fyh。The output ends of the
如图4所示,振动力补偿控制模块5由第一神经网络带通滤波器51、第二神经网络带通滤波器53和第三PID控制器52、第四PID控制器54组成。以x方向上的位移与转子机械角度θm作为第一神经网络带通滤波器51的输入,其输出的是振动位移信号。x方向的第一神经网络带通滤波器51的具体结构如图6所示,其包括第一权值调整模块5,将实际位移x与第一神经网络带通滤波器51输出的振动位移作差,得到误差信号ex,将误差信号ex与转子机械角度θm的正弦和余弦值作为第一权值调整模块55的输入,从而获得更新后的x方向上的权值ωx_1和ωx_2。第一神经网络带通滤波器51输出的振动位移在k时刻的计算公式为:As shown in FIG. 4 , the vibration force compensation control module 5 is composed of a first neural network bandpass filter 51 , a second neural network bandpass filter 53 , a third PID controller 52 , and a fourth PID controller 54 . Taking the displacement in the x direction and the rotor mechanical angle θ m as the input of the first neural network band-pass filter 51, the output is the vibration displacement Signal. The specific structure of the first neural network band-pass filter 51 in the x direction is shown in FIG. 6 , which includes a first weight adjustment module 5 , which compares the actual displacement x with the vibration displacement output by the first neural network band-pass filter 51 . Make a difference to obtain the error signal e x , and use the sine and cosine values of the error signal e x and the rotor mechanical angle θ m as the input of the first
权值ωx_1和ωx_2的计算过程采用如下公式:The calculation process of the weights ω x_1 and ω x_2 adopts the following formulas:
式中:ex为x方向上滤除谐波后的分量;ωx_1,ωx_2为x方向上更新的权值;μ1为步长因子。In the formula: e x is the component after harmonic filtering in the x direction; ω x_1 , ω x_2 are the updated weights in the x direction; μ 1 is the step factor.
从而得到x方向的振动位移如图4,以0作为给定值与振动位移作差,并将位移差值的结果作为第三PID控制器52的输入,经第三PID控制器52调节后获得振动补偿力Fxh。Thus, the vibration displacement in the x-direction is obtained As shown in Figure 4, take 0 as the given value and the vibration displacement Make a difference, and use the result of the displacement difference as the input of the third PID controller 52 , and obtain the vibration compensation force F xh after being adjusted by the third PID controller 52 .
第二神经网络带通滤波器53与第一神经网络带通滤波器51的结构和原理雷同。同理,以y方向上的位移与转子机械角度θm作为第二神经网络带通滤波器53的输入,y方向的第二神经网络带通滤波器53的具体结构如图7所示,将实际位移y与第二神经网络带通滤波器53输出的振动位移作差,得到误差信号ey,并将误差信号ey与转子机械角度θm的正弦和余弦值作为第二权值调整模块56的输入,从而获得更新后的y方向上的权值ωy_1和ωy_2。第二神经网络带通滤波器53输出的k时刻的振动位移信号的计算公式为:The second neural network bandpass filter 53 has the same structure and principle as the first neural network bandpass filter 51 . In the same way, the displacement in the y direction and the rotor mechanical angle θ m are used as the input of the second neural network bandpass filter 53. The specific structure of the second neural network bandpass filter 53 in the y direction is shown in FIG. 7. The actual displacement y and the vibration displacement output by the second neural network bandpass filter 53 Make a difference to obtain the error signal e y , and use the sine and cosine values of the error signal e y and the rotor mechanical angle θ m as the input of the second
权值ωy_1和ωy_2的计算过程采用如下公式:The calculation process of the weights ω y_1 and ω y_2 adopts the following formulas:
式中:ey为y方向上滤除谐波后的分量;ωy_1,ωy_2为y方向上更新的权值;μ1为步长因子。In the formula: e y is the component after harmonic filtering in the y direction; ω y_1 , ω y_2 are the updated weights in the y direction; μ 1 is the step factor.
从而得到y方向的振动位移信号如图4,以0作为给定值与振动位移信号作差,并将位移差值的结果作为第四PID控制器54的输入,经第四PID控制器54调节后得到振动补偿力Fyh。Thereby, the vibration displacement signal in the y direction is obtained. As shown in Figure 4, take 0 as the given value and the vibration displacement signal Make a difference, and use the result of the displacement difference as the input of the fourth PID controller 54 , and obtain the vibration compensation force F yh after being adjusted by the fourth PID controller 54 .
将第一PID控制器11输出的x方向上的力Fx与振动力补偿模块5输出的x方向上的振动补偿力Fxh求和,与第二PID控制器12输出的y方向上的力Fy与振动力补偿模块5输出的y方向上的振动补偿力Fyh求和后一并输入给力电流转换模块13中,进而获得悬浮绕组的交直轴电流给定值和 Summing the force F x in the x direction output by the first PID controller 11 and the vibration compensation force F xh in the x direction output by the vibration force compensation module 5, and the force in the y direction output by the second PID controller 12 F y and the vibration compensating force F yh in the y direction output by the vibration force compensating module 5 are summed and then input into the force-current conversion module 13, and then the AC-direction axis current given value of the suspension winding is obtained. and
将得到的交直轴电流给定值和与悬浮绕组交直轴电流的实际电流iBq和iBd分别作差。其中,iBq和iBd通过电流传感器对无轴承永磁同步电机3的两相悬浮绕组电流进行采集,并将采集到的电流i1A和i1C输入至第四坐标变换模块91中,第四坐标变换模块91由Clarke变换和Park变换组成,i1A和i1C经过第四坐标变换模块91即可获得悬浮绕组交直轴的实际电流iBq和iBd,将与iBq作差后的结果输入至第四PI控制器14中,进而获得悬浮绕组交轴控制电压uBq;将与iBd作差后的结果输入至第五PI控制器15中,进而获得悬浮绕组直轴控制电压uBd。The given value of AC and direct axis current will be obtained and Differences with the actual currents i Bq and i Bd of the AC and DC axis currents of the suspension windings respectively. Among them, i Bq and i Bd collect the two-phase suspension winding current of the bearingless permanent magnet synchronous motor 3 through the current sensor, and input the collected currents i 1A and i 1C into the fourth coordinate transformation module 91, the fourth The coordinate transformation module 91 is composed of Clarke transformation and Park transformation, i 1A and i 1C can obtain the actual currents i Bq and i Bd of the quadrature axis of the suspension winding through the fourth coordinate transformation module 91 . The result after the difference with i Bq is input into the
以转子电角度θe和悬浮绕组交轴电流实际值iBq、悬浮绕组直轴电流实际值iBd一并输入至死区振动补偿模块6中得到补偿电压uBqh和uBdh。其中,通过编码器27采集的无轴承永磁同步电机3的脉冲信号经角度计算模块17后得到转子电角度θe,计算过程为:The rotor electrical angle θ e , the actual value of the suspension winding quadrature axis current i Bq , and the actual value of the suspension winding direct axis current i Bd are input to the dead zone vibration compensation module 6 to obtain the compensation voltages u Bqh and u Bdh . Wherein, the pulse signal of the bearingless permanent magnet synchronous motor 3 collected by the encoder 27 is passed through the
θe(k)=PMθm(k) (7)θ e (k) = P M θ m (k) (7)
式中:θm(k)为公式(2)中k时刻的转子机械角度;PM为转矩绕组极对数。In the formula: θ m (k) is the mechanical angle of the rotor at time k in formula (2); P M is the number of pole pairs of the torque winding.
将得到的转子电角度θe与交直轴电流实际值iBq和iBd一并输入至死区振动补偿模块6,死区振动补偿模块6由直轴方向第三神经网络带通滤波器61、交轴第四神经网络带通滤波器63以及第六PI控制器62、第七PI控制器64组成。在死区振动补偿模块6中,直轴方向与交轴方向的补偿如图5所示。以直轴方向上的电流iBd与转子电角度θe的6倍作为直轴方向的第三神经网络带通滤波器61的输入,从而得到直轴方向的谐波电流信号其中,直轴方向第三神经网络带通滤波器61的内部结构原理图如图8所示,其包括第三权值调整模块65。图8中,将直轴方向上的电流iBd与第三神经网络带通滤波器61输出的谐波电流信号作差,获得误差信号eBd,将误差信号eBd与转子电角度θe的6倍的正余弦值作为第三权值调整模块65的输入,从而获得更新后的直轴方向上的权值ωd6_1和ωd6_2。第三神经网络带通滤波器61输出的k时刻的谐波电流的计算公式为:The obtained rotor electrical angle θ e is input to the dead zone vibration compensation module 6 together with the actual values of the AC and direct axis currents i Bq and i Bd . The dead zone vibration compensation module 6 is composed of the third neural network bandpass filter 61 in the direct axis direction, The quadrature-axis fourth neural network bandpass filter 63 , the
权值ωd6_1和ωd6_2的计算过程采用如下公式:The calculation process of the weights ω d6_1 and ω d6_2 adopts the following formulas:
式中:eBd为直轴方向上滤除谐波后的分量;ωd6_1,ωd6_2为直轴方向上更新的6次谐波的权值;μ2为步长因子。In the formula: e Bd is the component after harmonic filtering in the direction of the direct axis; ω d6_1 , ω d6_2 are the updated weights of the 6th harmonic in the direction of the direct axis; μ 2 is the step factor.
从而得到直轴方向的谐波电流信号如图5中,以0作为给定值与谐波电流信号作差,并将结果作为第六PI控制器62的输入,经第六PI控制器62调节后得到直轴补偿电压uBdh。Thereby, the harmonic current signal in the direct axis direction is obtained. As shown in Figure 5, take 0 as the given value and the harmonic current signal Make a difference, and use the result as the input of the
交轴第四神经网络带通滤波器63和第三神经网络带通滤波器61的结构雷同。同理,以交轴方向上的电流iBq与转子电角度θe的6倍作为交轴第四神经网络带通滤波器63的输入,从而得到直轴方向的谐波电流信号其中,交轴方向第四神经网络带通滤波器63的内部结构原理图如图9所示,其包括第四权值调整模块66。图9中,将交轴方向上的电流iBq与第四神经网络带通滤波器63输出的谐波电流信号作差,获得电流误差eBq信号,将电流误差eBq信号与转子电角度θe的6倍的正余弦值作为第四权值调整模块66的输入,从而获得更新后的直轴方向上的权值ωq6_1和ωq6_2。第四神经网络带通滤波器63输出谐波电流k时刻的谐波电流的计算公式为:The structures of the fourth neural network bandpass filter 63 and the third neural network bandpass filter 61 are the same. In the same way, the current i Bq in the quadrature axis direction and 6 times the rotor electrical angle θ e are used as the input of the quadrature axis fourth neural network bandpass filter 63, so as to obtain the harmonic current signal in the quadrature axis direction. The schematic diagram of the internal structure of the fourth neural network bandpass filter 63 in the quadrature axis direction is shown in FIG. 9 , which includes a fourth
权值ωd6_1和ωd6_2的计算过程采用如下公式:The calculation process of the weights ω d6_1 and ω d6_2 adopts the following formulas:
式中:eBq为交轴方向上滤除谐波后的分量;ωq6_1和ωq6_2为交轴方向上更新的6次谐波的权值;μ2为步长因子。In the formula: e Bq is the component after harmonic filtering in the quadrature axis direction; ω q6_1 and ω q6_2 are the updated weights of the 6th harmonic in the quadrature axis direction; μ 2 is the step factor.
从而得到直轴方向的谐波电流信号如图5所示,以0作为给定值与谐波电流信号作差,并将结果作为第七PI控制器64的输入,经第七PI控制器64调节后得到交轴补偿电压uBqh。Thereby, the harmonic current signal in the direct axis direction is obtained. As shown in Figure 5, taking 0 as a given value and the harmonic current signal Make a difference, and use the result as the input of the
将第四PI控制器14输出的直轴方向上的电压uBd与死区振动补偿模块中输出的直轴补偿电压uBdh相加,获得直轴指令电压将第五PI控制器15输出的交轴方向上的电压uBq与死区振动补偿模块中输出的交轴补偿电压uBqh相加,获得交轴指令电压将得到的与作为第三坐标变换模块16的输入,第三坐标变换模块16由Park反变换组成,经第三坐标变换模块16后得到静止坐标系下的悬浮绕组电压uBα和uBβ。The voltage u Bd in the direct axis direction output by the
将悬浮绕组电压uBα和uBβ作为第二SVPWM逆变器90的输入,第二SVPWM逆变器90输出连接无轴承永磁同步电机3的输入,经第二SVPWM逆变器90得到无轴承永磁同步电机3的三相输入电压u1A、u1B、u1C。The suspension winding voltages u Bα and u Bβ are used as the input of the second SVPWM inverter 90, the output of the second SVPWM inverter 90 is connected to the input of the bearingless permanent magnet synchronous motor 3, and the bearingless motor is obtained through the second SVPWM inverter 90. The three-phase input voltages u 1A , u 1B and u 1C of the permanent magnet synchronous motor 3 .
图10示出的是本发明电机振动补偿控制器结构的总体实现原理框图,通过位移控制器1、转速控制器2以及对其中各个模块进行设计,对速度闭环和位置闭环调节器参数进行调整,实现速度闭环控制和振动补偿控制。其中,转速控制器2采用常用的直轴指令电流为0的矢量控制方法进行调速控制,位移控制器1中通过对位移的调节完成矢量控制,使无轴承永磁同步电机3的转子保持稳定运行,并通过振动力补偿模块5对位移信号中的偏心振动信号进行补偿控制,同时利用死区振动补偿控制模块6对由死区效应引起的存在于电流中的高次谐波信号进行再次补偿,可实现更加精确的振动补偿控制。Figure 10 shows the overall realization principle block diagram of the motor vibration compensation controller structure of the present invention, through the
根据以上所述,便可实现本发明。对本领域的技术人员在不背离本发明的精神和保护范围的情况下做出的其它的变化和修改,仍包括在本发明保护范围之内。From the above, the present invention can be realized. Other changes and modifications made by those skilled in the art without departing from the spirit and protection scope of the present invention are still included in the protection scope of the present invention.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110195977.3A CN113037162B (en) | 2021-02-22 | 2021-02-22 | Bearingless Permanent Magnet Synchronous Motor Neural Network Bandpass Filter Vibration Compensation Controller |
PCT/CN2021/082326 WO2022174488A1 (en) | 2021-02-22 | 2021-03-23 | Neural network bandpass filter-based vibration compensation controller for bearingless permanent-magnet synchronous motor |
US17/625,777 US11705838B2 (en) | 2021-02-22 | 2021-03-23 | Vibration compensation controller with neural network band-pass filters for bearingless permanent magnet synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110195977.3A CN113037162B (en) | 2021-02-22 | 2021-02-22 | Bearingless Permanent Magnet Synchronous Motor Neural Network Bandpass Filter Vibration Compensation Controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113037162A CN113037162A (en) | 2021-06-25 |
CN113037162B true CN113037162B (en) | 2022-04-26 |
Family
ID=76460806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110195977.3A Active CN113037162B (en) | 2021-02-22 | 2021-02-22 | Bearingless Permanent Magnet Synchronous Motor Neural Network Bandpass Filter Vibration Compensation Controller |
Country Status (3)
Country | Link |
---|---|
US (1) | US11705838B2 (en) |
CN (1) | CN113037162B (en) |
WO (1) | WO2022174488A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114754069B (en) * | 2022-03-15 | 2023-12-12 | 格瑞拓动力股份有限公司 | Self-adaptive dead zone control method and system for radial magnetic suspension bearing |
CN116526913B (en) * | 2023-05-04 | 2024-08-20 | 河南科技大学 | Closed-loop anti-disturbance control method for radial displacement of six-phase bearingless permanent magnet synchronous motor |
CN118744437B (en) * | 2024-08-23 | 2024-12-20 | 广州市科益精密机械设备有限公司 | A joint servo module error compensation control method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0920109A2 (en) * | 1997-11-26 | 1999-06-02 | Ebara Corporation | Bearingless rotary machine |
CN104660136A (en) * | 2015-03-11 | 2015-05-27 | 河南科技大学 | Unbalance vibration control system of bearingless asynchronous motor |
CN105048914A (en) * | 2015-07-31 | 2015-11-11 | 河南科技大学 | Vibration compensation control system for rotor of bearing-less asynchronous motor based on torque inverse |
CN111245318A (en) * | 2020-01-18 | 2020-06-05 | 浙江大学 | Radial force accurate compensation decoupling control method for bearingless permanent magnet synchronous motor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005229717A (en) | 2004-02-12 | 2005-08-25 | Yaskawa Electric Corp | Current sensorless-control method and device of synchronous motor |
US8027119B2 (en) * | 2007-11-07 | 2011-09-27 | Seagate Technology Llc | Vibration detection and compensation filter |
JP5488043B2 (en) * | 2010-02-25 | 2014-05-14 | 株式会社明電舎 | Motor torque control device |
CN104579042A (en) | 2013-10-22 | 2015-04-29 | 广东美的制冷设备有限公司 | Control system and torque fluctuation suppression method thereof for permanent magnet synchronous motor |
CN103684179B (en) | 2013-12-17 | 2017-01-18 | 清华大学 | Compensation device and compensation method of current filtering and dead zone of permanent magnet synchronous motor |
CN104659990B (en) | 2015-03-11 | 2017-06-27 | 河南科技大学 | Extraction Method of Unbalanced Vibration Displacement of Bearingless Motor Based on LMS Adaptive Filter |
CN105048913B (en) * | 2015-07-31 | 2017-09-22 | 河南科技大学 | Induction-type bearingless motor unbalance vibration control system based on current compensation |
CN110380658A (en) * | 2019-06-27 | 2019-10-25 | 江苏大学 | A kind of bearing-free flux switch permanent magnet motor rotor eccentric displacement compensating controller |
-
2021
- 2021-02-22 CN CN202110195977.3A patent/CN113037162B/en active Active
- 2021-03-23 WO PCT/CN2021/082326 patent/WO2022174488A1/en active Application Filing
- 2021-03-23 US US17/625,777 patent/US11705838B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0920109A2 (en) * | 1997-11-26 | 1999-06-02 | Ebara Corporation | Bearingless rotary machine |
CN104660136A (en) * | 2015-03-11 | 2015-05-27 | 河南科技大学 | Unbalance vibration control system of bearingless asynchronous motor |
CN105048914A (en) * | 2015-07-31 | 2015-11-11 | 河南科技大学 | Vibration compensation control system for rotor of bearing-less asynchronous motor based on torque inverse |
CN111245318A (en) * | 2020-01-18 | 2020-06-05 | 浙江大学 | Radial force accurate compensation decoupling control method for bearingless permanent magnet synchronous motor |
Non-Patent Citations (2)
Title |
---|
A Vibration Reduction Method of One-Axis Actively Position Regulated Single-Drive Bearingless Motor With Repulsive Passive Magnetic Bearings;Hiroya Sugimoto etal.;《IEEE Transactions on Industry Applications》;20160229;第52卷(第1期);全文 * |
无轴承异步电机动不平衡振动补偿控制;詹立新 等;《电工技术学报》;20141130;第29卷(第11期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
US11705838B2 (en) | 2023-07-18 |
WO2022174488A1 (en) | 2022-08-25 |
US20230008153A1 (en) | 2023-01-12 |
CN113037162A (en) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113037162B (en) | Bearingless Permanent Magnet Synchronous Motor Neural Network Bandpass Filter Vibration Compensation Controller | |
CN105048913B (en) | Induction-type bearingless motor unbalance vibration control system based on current compensation | |
CN107994826B (en) | A Full-Order Observer Velocity Sensorless Control System Based on Error Weighting | |
CN202872721U (en) | Vector control system free of speed sensor and based on cascade high voltage frequency converter | |
CN112968642B (en) | Linear active-disturbance-rejection control method for six-phase single-winding bearingless flux switching motor | |
CN110380658A (en) | A kind of bearing-free flux switch permanent magnet motor rotor eccentric displacement compensating controller | |
CN108631337A (en) | The double-fed fan motor unit subsynchronous resonance suppressing method of damping control is cooperateed with based on converter | |
CN101741297A (en) | Fuzzy Compensation Inverse Control Method and Device for Radial Position of Bearingless Synchronous Reluctance Motor | |
CN109831143B (en) | A Harmonic Current Suppression Method for Permanent Magnet Synchronous Motor Based on Flux Observation | |
CN105048914B (en) | Based on the induction-type bearingless motor rotor oscillation compensation control system that torque is inverse | |
CN111464099B (en) | Control method for low torque and levitation force of single-winding bearingless flux-switching motor | |
CN102281029B (en) | Construction method of suspension system of bearingless synchronous reluctance motor | |
WO2023045469A1 (en) | Power grid frequency detection method, apparatus, power grid frequency adjustment method, and apparatus | |
CN112713831A (en) | Model prediction-based voltage control method for three-phase four-switch inverter permanent magnet synchronous motor system | |
CN110034719B (en) | Control method for phase-lack fault of six-phase single-winding bearingless flux switching motor | |
CN113098335A (en) | Permanent magnet synchronous motor harmonic suppression method based on fuzzy QPR control and voltage compensation | |
CN112332737B (en) | A Decoupling Method of Wound Type Bearingless Asynchronous Motor | |
CN116317760A (en) | Multi-frequency vibration compensation control method for permanent magnet auxiliary bearingless synchronous reluctance motor | |
CN103281025A (en) | DFIG (Double-Fed Induction Generator) system control method based on resonance sliding mode | |
CN106452256B (en) | On-Line Correction Method of Asynchronous Motor Parameters Based on Rotor Flux Observer | |
CN111293946B (en) | Method for suppressing harmonic current of motor | |
CN109150045A (en) | The independent Inverse Decoupling method of induction-type bearingless motor | |
CN113328669A (en) | Method for observing eccentricity of rotor of high-frequency rotating current injection bearingless flux switching motor | |
CN108540031B (en) | Rotating speed estimation method and torque control system of bearingless synchronous reluctance motor | |
CN110504884A (en) | A Radial Force Suspension Control System of Bearingless Asynchronous Motor Based on Differential Geometry Decoupling Control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |