CN113033093A - 一种基于仿真模型的系统设计参数多目标优化方法 - Google Patents

一种基于仿真模型的系统设计参数多目标优化方法 Download PDF

Info

Publication number
CN113033093A
CN113033093A CN202110312987.0A CN202110312987A CN113033093A CN 113033093 A CN113033093 A CN 113033093A CN 202110312987 A CN202110312987 A CN 202110312987A CN 113033093 A CN113033093 A CN 113033093A
Authority
CN
China
Prior art keywords
model
design parameters
design
simulation model
design parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110312987.0A
Other languages
English (en)
Inventor
蔡景
黄艳
康婷玮
代定强
杨天策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202110312987.0A priority Critical patent/CN113033093A/zh
Publication of CN113033093A publication Critical patent/CN113033093A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]

Abstract

本发明公开了一种基于仿真模型的系统设计参数多目标优化方法,首先,确定系统的多个优化目标和重要设计参数,建立设计参数之间的数学模型;其次,根据系统结构和工作原理,利用Mworks等仿真平台搭建系统的仿真模型;然后,在设计参数的取值范围内进行抽样,模拟系统不同工况条件,将抽样样本输入仿真模型中,计算出每组抽样所对应的系统设计目标值,并构建代理模型以拟合设计参数的抽样样本和对应设计目标值之间的函数关系;最后,基于代理模型利用多目标算法寻找优化数学模型的最优解,获得最优设计参数方案。本发明利用仿真模型,实现不同工况下的系统设计参数与设计目标之间的结合,有效优化设计参数,提高系统设计效率。

Description

一种基于仿真模型的系统设计参数多目标优化方法
技术领域:
本发明涉及系统设计参数优化领域,尤其涉及一种基于仿真模型的系统设计参数多目标优化方法。
背景技术:
由于系统的复杂性,其设计目标通常不止一个,且各个目标之间可能存在一定的冲突,需要通过优化多个设计参数,达到各个目标之间的权衡。目前系统的多参数多目标的设计优化方法主要是通过经验或者试验来完成。基于经验的方法由于很难在设计中将各个因素考虑全面,而且目标与多个设计参数的关系往往呈现非线性甚至带有随机因素,很难简单地进行公式推导,无法得到确切的函数表达式,因此,难以达到理想的设计优化结果。基于试验的方法是通过大量的试验数据统计来探测多个目标与多个设计参数之间的关进行优化,存在投入成本高、周期长的特点,因此,难以在实践中真正有效落实。
通过建立系统的仿真模型,基于仿真模型研究各个设计参数与多目标之间的关系,在此基础上,进一步构建面向多目标设计优化的代理模型,是开展系统设计优化的可行途径。
发明内容:
本发明是为了解决上述现有技术存在的问题而提供一种基于仿真模型的系统设计参数多目标优化方法,其利用系统仿真模型,实现不同工况下的系统设计参数与设计目标之间的结合,并构建面向多目标设计优化的代理模型,有效优化设计参数,提高系统设计效率。
本发明所采用的技术方案有:一种基于仿真模型的系统设计参数多目标优化方法,具体步骤如下:
1).确定系统的多个优化目标和重要设计参数,建立设计参数的优化数学模型;
2).根据系统结构和工作原理,利用Mworks仿真平台搭建系统的仿真模型;
3).基于最优拉丁超立方抽样技术,在设计参数的取值范围内进行抽样,模拟系统不同工况条件,将抽样样本输入仿真模型中,计算出每组抽样所对应的系统设计目标值;
4).采用径向基神经网络代理模型技术,以抽样的样本点和仿真结果作为代理模型的初始点,构建关于设计参数的代理模型,并检验模型精度;
5).采用带有精英保留策略的快速非支配排序遗传算法(Non-dominated SortingGenetic Algorithm-Ⅱ,NSGA-Ⅱ),将代理模型的表达式作为该算法的适应度函数,确定最优设计参数方案集。
6)根据实际情况,从最优设计参数方案集中选取最符合实际需求的系统最优设计参数方案。
进一步地,步骤1)的具体步骤如下:
步骤1.1,根据实际情况,反映作动装置释放性能的参数为释放时间和末端速度,即优化目标为释放时间和末端速度,记t为作动装置释放时间,vend为作动装置释放末端速度,选取影响作动装置释放性能的重要设计参数,记为{c1,c2,r,d},其中,c1为释放大弹簧劲度系数,c2为释放小弹簧劲度系数,r为阻尼孔半径,d为阻尼孔间距;
步骤1.2,根据实际调研,确定设计参数的取值范围,其中,c1∈[10000,33000],c2∈[21000,23000],r∈[10000,33000],d∈[0.01,0.03];
步骤1.3,建立作动装置的多目标优化数学模型,为:
Figure BDA0002990668850000021
进一步地,步骤2)的具体步骤如下:
步骤2.1,按照作用的时间先后关系将作动装置划分为锁定机构和执行机构;
步骤2.2,建立作动装置的数学模型,以反映该装置各部件输入输出关系;
步骤2.3,基于作动装置的结构和数学模型,搭建作动装置的仿真模型。
进一步地,步骤3)的具体步骤如下:
步骤3.1,根据重要设计参数及对应的参数取值范围,利用最优拉丁超立方抽样选取100组设计参数的样本点;
步骤3.2,将样本点输入至仿真模型中得出相对应的作动装置释放时间和末端速度,部分样本点及其所对应的仿真结果。
进一步地,步骤4)的具体步骤如下:
步骤4.1,对重要设计参数进行归一化处理,减少数据的离散性;
步骤4.2,将最优拉丁超立方抽样技术所得的设计参数作为输入向量,相对应的释放时间和末端速度作为目标向量,分别对两个目标向量建立径向基神经网络代理模型,为:
net1=newrb((c1,c2,r,d),t,GOALnet,SPREADnet,MNnet,DFnet) (2)
net2=newrb((c1,c2,r,d),vend,GOALnet,SPREADnet,MNnet,DFnet) (3)
步骤4.3,将样本的前80组作为训练样本集,后20组作为测试样本集,对测试样本集进行精度判断。
进一步地,步骤5)
步骤5.1,设置种群规模为50、最大迭代次数为200,随机产生初始种群作为第一代父种群,并将代理模型函数表达式作为适应度函数;
步骤5.2,对第一代父种群进行非支配排序,得到个体排序,并进行选择、交叉、变异得到第一代子种群;
步骤5.3,合并父子代种群;
步骤5.4,对合并种群进行快速非支配排序、拥挤度计算,并选择优越个体保留下来形成与初始种群规模一致的新父种群;
步骤5.5,对新父种群进行选择、交叉、变异,重复以上操作,直至达到最大迭代代数,输出当前最优的Perato最优解集。
步骤5.6,从Perato最优解集中选取释放时间更短、末端速度更小的设计参数组合。
本发明具有如下有益效果:本发明基于仿真模型的系统设计参数多目标优化方法,可为系统的设计效率提高和设计成本减少提供技术手段。
附图说明:
图1为作动装置设计参数的多目标优化方法的流程图。
图2为作动装置性能优化的Pareto最优解集。
图3为优化方案的释放速度—时间曲线图。
具体实施方式:
下面结合附图对本发明作进一步的说明。
图1为作动装置设计参数的多目标优化方法的流程图,具体步骤如下:
1)以作动装置释放时间最短、末端速度最小为优化目标,释放大/小弹簧劲度系数、阻尼孔半径、阻尼孔间距为设计参数,并结合实际情况,确定设计参数的范围,建立作动装置的多目标优化数学模型;
2)根据作动装置的工作原理和相对应的数学模型,按照Mworks建模平台自下而上的原则,搭建作动装置仿真模型;
3)基于最优拉丁超立方抽样技术,选取设计参数范围内的100组样本点,并将样本点输入至仿真模型得出相对应的作动装置释放时间和末端速度;
4)采用径向基神经网络代理模型技术,以抽样的样本点和仿真结果作为代理模型的初始点,分别构建作动装置释放时间和末端速度关于设计参数的代理模型;
5)采用带有精英保留策略的快速非支配排序遗传算法(Non-dominated SortingGenetic Algorithm-Ⅱ,NSGA-Ⅱ),将代理模型的表达式作为该算法的适应度函数,求出最优设计参数方案。
步骤1)的具体步骤如下:
步骤1.1,根据实际情况,反映作动装置释放性能的参数为释放时间和末端速度,即优化目标为释放时间和末端速度,记t为作动装置释放时间,vend为作动装置释放末端速度。选取影响作动装置释放性能的重要设计参数,记为{c1,c2,r,d}。其中,c1为释放大弹簧劲度系数,c2为释放小弹簧劲度系数,r为阻尼孔半径,d为阻尼孔间距;
步骤1.2,根据实际调研,确定设计参数的取值范围。其中,c1∈[10000,33000],c2∈[21000,23000],r∈[10000,33000],d∈[0.01,0.03];
步骤1.3,建立作动装置的多目标优化数学模型,为:
Figure BDA0002990668850000051
步骤2)的具体步骤如下:
步骤2.1,研究作动装置的结构和工作原理,按照作用的时间先后关系将其划分为锁定机构和执行机构;
步骤2.2,建立作动装置的数学模型,以反映该装置各部件输入输出关系;
步骤2.3,基于作动装置的结构和数学模型,搭建作动装置的仿真模型。
步骤3)的具体步骤如下:
步骤3.1,根据重要设计参数及对应的参数取值范围,利用最优拉丁超立方抽样选取100组设计参数的样本点;
步骤3.2,将样本点输入至仿真模型中得出相对应的作动装置释放时间和末端速度,部分样本点及其所对应的仿真结果如表1所示。
表1 部分样本点及其所对应的仿真结果
Figure BDA0002990668850000052
Figure BDA0002990668850000061
步骤4)的具体步骤如下:
步骤4.1,对重要设计参数进行归一化处理,减少数据的离散性,归一化的部分数据如表2所示。
表2 归一化的重要设计参数
Figure BDA0002990668850000062
Figure BDA0002990668850000071
步骤4.2,将最优拉丁超立方抽样技术所得的设计参数作为输入向量,相对应的释放时间和末端速度作为目标向量,分别对两个目标向量建立径向基神经网络代理模型,为:
net1=newrb((c1,c2,r,d),t,GOALnet,SPREADnet,MNnet,DFnet) (2)
net2=newrb((c1,c2,r,d),vend,GOALnet,SPREADnet,MNnet,DFnet) (3)
步骤4.3,将样本的前80组作为训练样本集,后20组作为测试样本集,对测试样本集进行精度判断。当不满足要求时,增加样本数量,重新进行步骤4)和5)抽样和构建代理模型操作。100组抽样情况下的径向基神经网络代理模型的四种误差如表3所示。
表3 径向基神经网络代理模型的四种误差
误差 释放时间(s) 末端速度(m/s)
均方根误差 0.0083 0.0082
最大绝对误差 0.0082 0.0151
平均绝对误差 0.0065 0.0085
决定系数 0.9994 0.9996
其中,均方根误差、平均绝对误差、决定系数主要评判的是代理模型的全局精度,最大绝对误差主要评判的是局部精度。均方根误差、平均绝对误差、最大绝对误差值越接近0,决定系数越接近1,表示代理模型的精度越高。因此100组抽样所建立的代理模型精度较高。
步骤5)的具体步骤如下:
步骤5.1,设置种群规模为50、最大迭代次数为200,随机产生初始种群作为第一代父种群,并将代理模型函数表达式作为适应度函数;
步骤5.2,对第一代父种群进行非支配排序,得到个体排序,并进行选择、交叉、变异得到第一代子种群;
步骤5.3,合并父子代种群;
步骤5.4,对合并种群进行快速非支配排序、拥挤度计算,并选择优越个体保留下来形成与初始种群规模一致的新父种群;
步骤5.5,对新父种群进行选择、交叉、变异,重复以上操作,直至达到最大迭代代数,输出当前最优的Perato最优解集。
步骤5.6,从Perato最优解集中选取释放时间更短、末端速度更小的设计参数组合。
从图2所示的Pareto最优解集中选取比原始设计释放时间更短、末端速度更小的设计参数组合。考虑到加工因素,对参数值进行圆整,设计参数组合如表4所示。
表4 优化后的设计参数组合
Figure BDA0002990668850000081
以其中第6组优化方案为例,利用Mworks仿真出该方案下的释放速度—时间曲线,如图3所示。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (6)

1.一种基于仿真模型的系统设计参数多目标优化方法,其特征在于:具体步骤如下:
1).确定系统的多个优化目标和重要设计参数,建立设计参数的优化数学模型;
2).根据系统结构和工作原理,利用Mworks仿真平台搭建系统的仿真模型;
3).基于最优拉丁超立方抽样技术,在设计参数的取值范围内进行抽样,模拟系统不同工况条件,将抽样样本输入仿真模型中,计算出每组抽样所对应的系统设计目标值;
4).采用径向基神经网络代理模型技术,以抽样的样本点和仿真结果作为代理模型的初始点,构建关于设计参数的代理模型,并检验模型精度;
5).采用带有精英保留策略的快速非支配排序遗传算法(Non-dominated SortingGenetic Algorithm-Ⅱ,NSGA-Ⅱ),将代理模型的表达式作为该算法的适应度函数,确定最优设计参数方案集。
6)根据实际情况,从最优设计参数方案集中选取最符合实际需求的系统最优设计参数方案。
2.如权利要求1所述的基于仿真模型的系统设计参数多目标优化方法,其特征在于:步骤1)的具体步骤如下:
步骤1.1,根据实际情况,反映作动装置释放性能的参数为释放时间和末端速度,即优化目标为释放时间和末端速度,记t为作动装置释放时间,vend为作动装置释放末端速度,选取影响作动装置释放性能的重要设计参数,记为{c1,c2,r,d},其中,c1为释放大弹簧劲度系数,c2为释放小弹簧劲度系数,r为阻尼孔半径,d为阻尼孔间距;
步骤1.2,根据实际调研,确定设计参数的取值范围,其中,c1∈[10000,33000],c2∈[21000,23000],r∈[10000,33000],d∈[0.01,0.03];
步骤1.3,建立作动装置的多目标优化数学模型,为:
Figure FDA0002990668840000011
3.如权利要求2所述的基于仿真模型的系统设计参数多目标优化方法,其特征在于:步骤2)的具体步骤如下:
步骤2.1,按照作用的时间先后关系将作动装置划分为锁定机构和执行机构;
步骤2.2,建立作动装置的数学模型,以反映该装置各部件输入输出关系;
步骤2.3,基于作动装置的结构和数学模型,搭建作动装置的仿真模型。
4.如权利要求3所述的基于仿真模型的系统设计参数多目标优化方法,其特征在于:步骤3)的具体步骤如下:
步骤3.1,根据重要设计参数及对应的参数取值范围,利用最优拉丁超立方抽样选取100组设计参数的样本点;
步骤3.2,将样本点输入至仿真模型中得出相对应的作动装置释放时间和末端速度,部分样本点及其所对应的仿真结果。
5.如权利要求4所述的基于仿真模型的系统设计参数多目标优化方法,其特征在于:步骤4)的具体步骤如下:
步骤4.1,对重要设计参数进行归一化处理,减少数据的离散性;
步骤4.2,将最优拉丁超立方抽样技术所得的设计参数作为输入向量,相对应的释放时间和末端速度作为目标向量,分别对两个目标向量建立径向基神经网络代理模型,为:
net1=newrb((c1,c2,r,d),t,GOALnet,SPREADnet,MNnet,DFnet) (2)
net2=newrb((c1,c2,r,d),vend,GOALnet,SPREADnet,MNnet,DFnet) (3)
步骤4.3,将样本的前80组作为训练样本集,后20组作为测试样本集,对测试样本集进行精度判断。
6.如权利要求5所述的基于仿真模型的系统设计参数多目标优化方法,其特征在于:步骤5)
步骤5.1,设置种群规模为50、最大迭代次数为200,随机产生初始种群作为第一代父种群,并将代理模型函数表达式作为适应度函数;
步骤5.2,对第一代父种群进行非支配排序,得到个体排序,并进行选择、交叉、变异得到第一代子种群;
步骤5.3,合并父子代种群;
步骤5.4,对合并种群进行快速非支配排序、拥挤度计算,并选择优越个体保留下来形成与初始种群规模一致的新父种群;
步骤5.5,对新父种群进行选择、交叉、变异,重复以上操作,直至达到最大迭代代数,输出当前最优的Perato最优解集。
步骤5.6,从Perato最优解集中选取释放时间更短、末端速度更小的设计参数组合。
CN202110312987.0A 2021-03-24 2021-03-24 一种基于仿真模型的系统设计参数多目标优化方法 Pending CN113033093A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110312987.0A CN113033093A (zh) 2021-03-24 2021-03-24 一种基于仿真模型的系统设计参数多目标优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110312987.0A CN113033093A (zh) 2021-03-24 2021-03-24 一种基于仿真模型的系统设计参数多目标优化方法

Publications (1)

Publication Number Publication Date
CN113033093A true CN113033093A (zh) 2021-06-25

Family

ID=76473243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110312987.0A Pending CN113033093A (zh) 2021-03-24 2021-03-24 一种基于仿真模型的系统设计参数多目标优化方法

Country Status (1)

Country Link
CN (1) CN113033093A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235111A (zh) * 2022-02-24 2022-03-25 青岛鼎信通讯股份有限公司 一种基于模型优化的超声波水表流量校准方法
CN114861557A (zh) * 2022-07-05 2022-08-05 武汉大学 一种动态使用神经网络的多目标优化方法及系统
WO2022117127A3 (zh) * 2021-11-05 2022-09-15 广东海洋大学 一种基于深度代理模型的工程叉车多目标性能优化方法
CN115293069A (zh) * 2022-09-26 2022-11-04 北京云庐科技有限公司 一种用于飞行器外流场仿真控制参数智能优化的系统
CN116614830A (zh) * 2023-07-18 2023-08-18 中国电信股份有限公司 网元优化方法、装置、计算机设备、存储介质
CN117034659A (zh) * 2023-10-07 2023-11-10 南京航空航天大学 一种面向冲击波形发生装置阻尼孔的优化设计方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117127A3 (zh) * 2021-11-05 2022-09-15 广东海洋大学 一种基于深度代理模型的工程叉车多目标性能优化方法
CN114235111A (zh) * 2022-02-24 2022-03-25 青岛鼎信通讯股份有限公司 一种基于模型优化的超声波水表流量校准方法
CN114235111B (zh) * 2022-02-24 2022-07-15 青岛鼎信通讯股份有限公司 一种基于模型优化的超声波水表流量校准方法
CN114861557A (zh) * 2022-07-05 2022-08-05 武汉大学 一种动态使用神经网络的多目标优化方法及系统
CN114861557B (zh) * 2022-07-05 2022-10-25 武汉大学 一种动态使用神经网络的多目标优化方法及系统
CN115293069A (zh) * 2022-09-26 2022-11-04 北京云庐科技有限公司 一种用于飞行器外流场仿真控制参数智能优化的系统
CN115293069B (zh) * 2022-09-26 2023-01-06 北京云庐科技有限公司 一种用于飞行器外流场仿真控制参数智能优化的系统
CN116614830A (zh) * 2023-07-18 2023-08-18 中国电信股份有限公司 网元优化方法、装置、计算机设备、存储介质
CN116614830B (zh) * 2023-07-18 2023-10-31 中国电信股份有限公司 网元优化方法、装置、计算机设备、存储介质
CN117034659A (zh) * 2023-10-07 2023-11-10 南京航空航天大学 一种面向冲击波形发生装置阻尼孔的优化设计方法
CN117034659B (zh) * 2023-10-07 2024-01-30 南京航空航天大学 一种面向冲击波形发生装置阻尼孔的优化设计方法

Similar Documents

Publication Publication Date Title
CN113033093A (zh) 一种基于仿真模型的系统设计参数多目标优化方法
CN111784041B (zh) 一种基于图卷积神经网络的风电功率预测方法及系统
CN108304679A (zh) 一种自适应可靠性分析方法
CN110363286A (zh) 神经网络模型的生成方法及装置
CN103105246A (zh) 一种基于遗传算法改进的bp神经网络的温室环境预测反馈方法
CN112597702B (zh) 基于径向基函数的气动建模生成式对抗网络模型训练方法
Ueno et al. Computerized adaptive testing based on decision tree
CN112926265A (zh) 基于遗传算法优化神经网络的大气多孔探针测量校准方法
CN111932039A (zh) 一种列车到站晚点预测方法、装置、电子设备及存储介质
CN113033786B (zh) 基于时间卷积网络的故障诊断模型构建方法及装置
CN113054651B (zh) 一种网络拓扑优化方法、装置以及系统
CN108364098B (zh) 一种天气特征对用户签到影响的度量方法
CN113868765A (zh) 基于近似模型的船舶主尺度参数优化方法
CN112307536B (zh) 一种大坝渗流参数反演方法
CN102799940B (zh) 基于遗传算法和先验知识的网络社区划分方法
Choi et al. Information-maximizing adaptive design of experiments for wind tunnel testing
CN115408949B (zh) 一种负荷模型参数辨识方法、系统、设备和介质
CN114578087B (zh) 基于非支配排序和随机模拟算法的风速不确定性度量方法
CN115879412A (zh) 一种基于迁移学习的版图层级电路图尺寸参数优化方法
CN115238874A (zh) 一种量化因子的搜索方法、装置、计算机设备及存储介质
JP2007310873A (ja) パラメータ抽出方法及び当該パラメータ抽出方法を実行させるプログラムを具備するコンピュータ読み取り可能な記憶媒体
CN110929849B (zh) 一种基于神经网络模型压缩的视频检测方法和装置
CN113642784A (zh) 一种计及风机状态的风电功率超短期预测的方法
CN113255887A (zh) 基于遗传算法优化bp神经网络的雷达误差补偿方法及系统
El-Beltagy et al. Gaussian processes for model fusion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination