CN113030997A - 一种基于激光雷达的露天矿区可行驶区域检测方法 - Google Patents

一种基于激光雷达的露天矿区可行驶区域检测方法 Download PDF

Info

Publication number
CN113030997A
CN113030997A CN202110581104.6A CN202110581104A CN113030997A CN 113030997 A CN113030997 A CN 113030997A CN 202110581104 A CN202110581104 A CN 202110581104A CN 113030997 A CN113030997 A CN 113030997A
Authority
CN
China
Prior art keywords
ground
grid
point
height
point cloud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110581104.6A
Other languages
English (en)
Other versions
CN113030997B (zh
Inventor
黄立明
李华志
余贵珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Tage Idriver Technology Co Ltd
Original Assignee
Beijing Tage Idriver Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Tage Idriver Technology Co Ltd filed Critical Beijing Tage Idriver Technology Co Ltd
Priority to CN202110581104.6A priority Critical patent/CN113030997B/zh
Publication of CN113030997A publication Critical patent/CN113030997A/zh
Application granted granted Critical
Publication of CN113030997B publication Critical patent/CN113030997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开了一种基于激光雷达的露天矿区可行驶区域检测方法,包括点云和路径点获取、点云预处理、扇形投影、可行驶区域检测、新地面原点确定以及最终检测结果叠加几个步骤。该方法充分利用每个栅格的全局和局部信息,不需要拟合平面,针对矿区复杂多变、崎岖不平的路面状况,能够进行有效的地面检测;采用局部高度和距地面高度相结合的判断方式,能够检测出高于地面的平台,避免可行驶区域的错误检测;采用多次投影的方式,能够有效的避免远处低矮挡墙等障碍物由于观测角度变化导致的无法正常检测问题,且能够使用并行操作的方式提高方法的时间效率。

Description

一种基于激光雷达的露天矿区可行驶区域检测方法
技术领域
本发明涉及露天矿区自动驾驶领域,解决矿用车辆在露天矿区自动驾驶过程中的可行使区域检测问题。
背景技术
与公开道路不同,露天矿区具有环境恶劣、风沙较大、路面崎岖不平、边界非结构化等特点。但矿区场景内的机械运作流程单一,道路车况不可控因素小,适合无人驾驶的应用。
激光雷达作为无人驾驶车辆的传感器,具有数据维度高、深度信息准确、响应频率快和检测精度高的优点。
目前基于激光雷达的可行驶区域检测主要采用拟合平面或者栅格化后阈值比对的方式:
专利CN110008941B描述了一种激光雷达的可行驶区域检测方法,采用扇形分区对点云进行划分后,再对每个扇形分区内点云进行地面点分割,然后采用所有地面点拟合平面的方式判断可行驶区域。该方法的每个扇形分区内采用高度阈值划分的方式,不能够适用于矿区崎岖不平,起伏频繁的复杂路况,且整体拟合平面的方式对斜坡等的鲁棒性较差。
专利CN110781827A提出了一种基于激光雷达和扇状空间分割的路沿检测方法,对每个扇形分区内的点云采用RANSAC算法拟合平面的方式进行非地面点划分,然后识别非地面的路沿。同样该方法存在拟合平面无法解决的地面起伏或车辆存在俯仰时识别错误的问题。
专利CN110569749A提出了一种矿山道路的边界线及可行驶区域检测方法,采用二次栅格化的方式进行地面检测,主要原理是将当前栅格与周围一定范围内的栅格分别计算高度差后与阈值进行比较,以此判断当前栅格内的点是否为地面点。但该方法会将高的平台检测为地面目标,导致可行驶区域的错误检测。
发明内容
针对矿区自动驾驶车辆可行驶区域检测问题,为克服现有技术中存在的对起伏较大和崎岖路段鲁棒性差、较高平台检测出错、远处挡墙识别不稳定等问题,本发明提出了一种基于激光雷达的露天矿区可行驶区域检测方法,该方法包括以下步骤:
S1 点云和路径点获取:采用车载激光雷达获取点云数据,控制器获取规划路径和当前车体位置,以当前车的车体位置作为地面原点,并将路径点根据相对关系投影到点云数据中;
S2 点云预处理:对步骤S1获取的点云数据进行噪声滤除和坐标系转换;
S3 扇形投影:将点云数据根据雷达扫描特性进行扇状栅格化处理,将无序的三维点云数据有序的投影到俯视的二维扇状栅格中;
S4 可行驶区域检测:根据每个栅格中的高度数据进行可行驶区域的检测,分别计算每个栅格的全局角度、局部角度、局部高度和距地面高度,通过与设定阈值的比对,即可有效的判断当前栅格是否为可行驶区域;
S5 新地面原点确定:向前查找N个路径点,在距离路径点距离小于一定阈值的范围内将标记为地面点的最低点作为新的地面原点,若存在这种点,则返回步骤S2;若不存在,则执行步骤S6;
S6 最终检测结果:将迭代的投影检测得到的非可行驶区域检测结果进行叠加,得到全部非可行驶区域,点云中的其余点为最终的可行驶区域检测结果。
优选的,所述步骤S1中的点云数据包括以激光雷达为坐标原点的三维坐标x0、y0、z0和反射强度,其中x轴正方向指向车体右侧,y轴正方向指向汽车前进方向,z轴正方向竖直向上。
优选的,所述步骤S2中的坐标系转换为:
Figure DEST_PATH_IMAGE001
其中x0、y0、z0表示当前点的原始坐标,xzero、yzero、zzero表示地面原点的原始坐标,x、y、z表示当前点经过坐标系转换后的新坐标。
优选的,所述步骤S3中扇状栅格化处理为:
首先使用
Figure DEST_PATH_IMAGE002
将点云按照角度划分为扇形的点云簇,其中angle_loc为当前点的角度坐标,angle_res为角度分辨率;
将每一簇中的数据由
Figure DEST_PATH_IMAGE003
按照距离划分为扇环栅格,radius_loc表示当前点的距离坐标,radius_res为距离分辨率;
分别计算每一个扇环栅格中点云的高度最大值、最小值和均值,设由内到外第i个扇环栅格中点云高度的最大值、最小值和均值分别为zi max、zi min和zi avg,以及其中心点到地面原点的距离
Figure DEST_PATH_IMAGE004
优选的,所述步骤S4中根据每个栅格高度数据进行可行驶区域的检测,选取一簇点云,由原点向外遍历,分别计算每个栅格的:
Figure DEST_PATH_IMAGE005
Figure DEST_PATH_IMAGE006
为全局角度,表示当前栅格中心到地面原点连线与水平面的夹角绝对值;
Figure DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE008
为局部角度,表示当前栅格中心和前一栅格中心连线与水平面的夹角绝对值;
Figure DEST_PATH_IMAGE009
Figure DEST_PATH_IMAGE010
为局部高度,表示当前栅格内最高点和最低点的差值;
Figure DEST_PATH_IMAGE011
Figure DEST_PATH_IMAGE012
为距地面高度,表示当前栅格和本点云簇中最近的地面栅格的高度差的绝对值,其中zground表示在本点云簇中,由中心出发到本栅格的区间内,最后一个判断为地面栅格的扇环栅格的平均高度,所述地面栅格指判断为地面的栅格,初始的地面原点即为原始的地面栅格;
设置五个阈值
Figure DEST_PATH_IMAGE013
,分别表示最大全局角度阈值、最小全局角度阈值、最大局部角度阈值、最大局部高度阈值和最大距地面高度阈值,通过与上述阈值的比对,即可有效的判断栅格是否为地面栅格,即可行驶区域。
优选的,所述步骤S5中N的取值为10-30。
相比于现有技术,本发明与现有技术相比所具有的有益效果:
1. 充分利用每个栅格的全局和局部信息,不需要拟合平面,针对矿区复杂多变、崎岖不平的路面状况,能够进行有效的地面检测;
2.采用局部高度和距地面高度相结合的判断方式,能够检测出高于地面的平台,避免可行驶区域的错误检测;
3.采用多次投影的方式,能够有效的避免远处低矮挡墙等障碍物由于观测角度变化导致的无法正常检测问题,且能够使用并行操作的方式提高方法的时间效率。
附图说明
图1为本发明检测方法的流程图;
图2为本发明检测方法中的扇形投影示意图;
图3为本发明检测方法中的栅格距离计算示意图;
图4为本发明检测方法中的地面栅格选取示意图;
图5为本发明检测方法中单个栅格的可行驶区域检测流程图;
图6为本发明检测方法中地面原点选取示意图;
图7为本发明检测方法中地面原点选取效果图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅仅是作为例示,并非用于限制本发明。
一种基于激光雷达的露天矿区可行驶区域检测方法,该方法的流程图如图1所示,具体包括以下步骤:
可行驶区域检测方法流程如图1所示。
1.点云和路径点获取
通过车顶安装的激光雷达获取点云数据,数据包括以激光雷达为坐标原点的三维坐标x0、y0、z0和反射强度,其中x正方向指向车体右侧,y正方向指向汽车前进方向,z正方向竖直向上。
从控制器获取规划路径和当前车体位置,并将路径点根据相对关系投影到点云数据中,投影后的路径点为一组以当前激光雷达位置为坐标原点的有序三维坐标点集。
2.点云预处理
对原始点云进行噪声滤除和坐标系转换,采用计算每个点近邻点数量的方式对点云进行离群点剔除,然后对点云中所有非离群点进行坐标系转换:
Figure 162197DEST_PATH_IMAGE001
其中x0、y0、z0表示当前点的原始坐标,xzero、yzero、zzero表示地面原点的原始坐标(第一组的地面原点坐标为(0,0,-H),H为雷达安装高度,之后其余地面原点按照步骤6中描述方法选取), x、y、z表示当前点经过坐标系转换后的新坐标。
3.扇形投影
将点云根据雷达扫描特性进行扇状栅格化处理,如图2所示。
首先使用
Figure 518486DEST_PATH_IMAGE002
将原始点云按照角度划分为扇形的点云簇,其中angle_loc为当前点的角度坐标,angle_res为角度分辨率(单位:度)。
之后将每一簇中的数据由
Figure 501485DEST_PATH_IMAGE003
按照距离划分为扇环状栅格,radius_loc表示当前点的距离坐标,radius_res为距离分辨率(单位:米),如图3所示。
通过上述两次处理,将无序的三维点云有序的投影到俯视的二维扇状栅格中,分别计算每一个扇环栅格中点云的高度最大值、最小值和均值,设由内到外第i个扇环中点云高度的最大值、最小值和均值分别为zi max、zi min和zi avg,以及其中心点到地面原点的距离
Figure DEST_PATH_IMAGE014
(计算效果如图3所示)。
4.可行驶区域检测
根据每个栅格高度数据进行可行驶区域的检测,选取一簇点云,由原点向外遍历,分别计算每个栅格的:
Figure 506481DEST_PATH_IMAGE005
Figure 757072DEST_PATH_IMAGE006
为全局角度,表示当前栅格中心到地面原点连线与水平面的夹角绝对值;
Figure 782797DEST_PATH_IMAGE007
Figure 987513DEST_PATH_IMAGE008
为局部角度,表示当前栅格中心和前一栅格中心连线与水平面的夹角绝对值;
Figure 124096DEST_PATH_IMAGE009
Figure 730658DEST_PATH_IMAGE010
为局部高度,表示当前栅格内最高点和最低点的差值;
Figure 163170DEST_PATH_IMAGE011
Figure 120762DEST_PATH_IMAGE012
为距地面高度,表示当前栅格和本点云簇中最近的地面栅格的高度差的绝对值,其中zground表示在本点云簇中,由中心出发到本栅格的区间内,最后一个判断为地面栅格的扇环栅格的平均高度。地面栅格选取如图4所示。(图4中A点即为其右侧点计算时所选取的地面栅格中心点)。
共设置五个阈值
Figure 795457DEST_PATH_IMAGE013
,分别表示最大全局角度阈值、最小全局角度阈值、最大局部角度阈值、最大局部高度阈值和最大距地面高度阈值。通过与设定阈值的比对,即可有效的判断栅格是否为可行驶区域。单个栅格的可行驶区域检测流程如图5所示。
5.新地面原点确定
每次向前查找N个路径点附近(举例:N=10时,第一次循环后查找第10个路径点附近,第二次循环后查找第20个路径点附近,以此类推)一定范围内且标记为地面点的最低点作为新的地面原点,如图6所示。如果存在这样的点,则重复步骤2的坐标转换部分和步骤3、4、5,直到检索路径点超出路径点集范围,如果不存在,则循环终止。最终地面原点选取效果如图7所示。
6.最终检测结果
将多次投影检测得到的非可行驶区域检测结果进行叠加,即为本发明检测方法获得的全部非可行驶区域,点云中的其余点为最终的可行驶区域检测结果。
以上所述之实施例仅为本发明的较佳实施例,并非对本发明做任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,利用上述揭示的技术内容对本发明技术方案作出更多可能的变动和润饰,或修改均为本发明的等效实施例。故凡未脱离本发明技术方案的内容,依据本发明之思路所作的等同等效变化,均应涵盖于本发明的保护范围内。

Claims (6)

1.一种激光雷达的露天矿区可行驶区域检测方法,其特征在于,包括以下步骤:
S1 点云和路径点获取:采用车载激光雷达获取点云数据,控制器获取规划路径和当前车体位置,以当前车的车体位置作为地面原点,并将路径点根据相对关系投影到点云数据中;
S2 点云预处理:对步骤S1获取的点云数据进行噪声滤除和坐标系转换;
S3 扇形投影:将点云数据根据雷达扫描特性进行扇状栅格化处理,将无序的三维点云数据有序的投影到俯视的二维扇状栅格中;
S4 可行驶区域检测:根据每个栅格中的高度数据进行可行驶区域的检测,分别计算每个栅格的全局角度、局部角度、局部高度和距地面高度,通过与设定阈值的比对,即可有效的判断当前栅格是否为可行驶区域;
S5 新地面原点确定:向前查找N个路径点,在距离路径点距离小于一定阈值的范围内将标记为地面点的最低点作为新的地面原点,若存在这种点,则返回步骤S2;若不存在,则执行步骤S6;
S6 最终检测结果:将迭代的投影检测得到的非可行驶区域检测结果进行叠加,得到全部非可行驶区域,点云中的其余点为最终的可行驶区域检测结果。
2.根据权利要求1所述的检测方法,其特征在于,所述步骤S1中的点云数据包括以激光雷达为坐标原点的三维坐标x0、y0、z0和反射强度,其中x轴正方向指向车体右侧,y轴正方向指向汽车前进方向,z轴正方向竖直向上。
3.根据权利要求1所述的检测方法,其特征在于,所述步骤S2中的坐标系转换为:
Figure 110124DEST_PATH_IMAGE001
其中x0、y0、z0表示当前点的原始坐标,xzero、yzero、zzero表示地面原点的原始坐标, x、y、z表示当前点经过坐标系转换后的新坐标。
4.根据权利要求1所述的检测方法,其特征在于,所述步骤S3中扇状栅格化处理为:
首先使用
Figure 710869DEST_PATH_IMAGE002
将点云按照角度划分为扇形的点云簇,其中angle_loc为当前点的角度坐标,angle_res为角度分辨率;
将每一簇中的数据由
Figure 705370DEST_PATH_IMAGE003
按照距离划分为扇环栅格,radius_loc表示当前点的距离坐标,radius_res为距离分辨率;
分别计算每一个扇环栅格中点云的高度最大值、最小值和均值,设由内到外第i个扇环栅格中点云高度的最大值、最小值和均值分别为zi max、zi min和zi avg,以及其中心点到地面原点的距离
Figure 49764DEST_PATH_IMAGE004
5.根据权利要求1所述的检测方法,其特征在于,所述步骤S4中根据每个栅格高度数据进行可行驶区域的检测,选取一簇点云,由原点向外遍历,分别计算每个栅格的:
Figure 850140DEST_PATH_IMAGE005
Figure 887366DEST_PATH_IMAGE006
为全局角度,表示当前栅格中心到地面原点连线与水平面的夹角绝对值;
Figure 838005DEST_PATH_IMAGE007
Figure 986089DEST_PATH_IMAGE008
为局部角度,表示当前栅格中心和前一栅格中心连线与水平面的夹角绝对值;
Figure 604152DEST_PATH_IMAGE009
Figure 77859DEST_PATH_IMAGE010
为局部高度,表示当前栅格内最高点和最低点的差值;
Figure 781373DEST_PATH_IMAGE011
Figure 218302DEST_PATH_IMAGE012
为距地面高度,表示当前栅格和本点云簇中最近的地面栅格的高度差的绝对值,其中zground表示在本点云簇中,由中心出发到本栅格的区间内,最后一个判断为地面栅格的扇环栅格的平均高度,所述地面栅格指判断为地面的栅格,初始的地面原点即为原始的地面栅格;
设置五个阈值
Figure 956450DEST_PATH_IMAGE013
,分别表示最大全局角度阈值、最小全局角度阈值、最大局部角度阈值、最大局部高度阈值和最大距地面高度阈值,通过与上述阈值的比对,即可有效的判断栅格是否为地面栅格,即可行驶区域。
6.根据权利要求1所述的检测方法,其特征在于,所述步骤S5中N的取值为10-30。
CN202110581104.6A 2021-05-27 2021-05-27 一种基于激光雷达的露天矿区可行驶区域检测方法 Active CN113030997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110581104.6A CN113030997B (zh) 2021-05-27 2021-05-27 一种基于激光雷达的露天矿区可行驶区域检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110581104.6A CN113030997B (zh) 2021-05-27 2021-05-27 一种基于激光雷达的露天矿区可行驶区域检测方法

Publications (2)

Publication Number Publication Date
CN113030997A true CN113030997A (zh) 2021-06-25
CN113030997B CN113030997B (zh) 2021-08-20

Family

ID=76455788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110581104.6A Active CN113030997B (zh) 2021-05-27 2021-05-27 一种基于激光雷达的露天矿区可行驶区域检测方法

Country Status (1)

Country Link
CN (1) CN113030997B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114387585A (zh) * 2022-03-22 2022-04-22 新石器慧通(北京)科技有限公司 障碍物检测方法、检测装置及行驶装置
WO2023000221A1 (zh) * 2021-07-21 2023-01-26 深圳市大疆创新科技有限公司 可行驶区域生成方法、可移动平台及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463464B1 (ko) * 2013-06-03 2014-11-21 국방과학연구소 주행가능영역 추정장치 및 이를 포함하는 이동체와 주행가능영역 추정방법
CN110569749A (zh) * 2019-08-22 2019-12-13 江苏徐工工程机械研究院有限公司 一种矿山道路的边界线及可行驶区域检测方法及系统
CN110781891A (zh) * 2019-11-28 2020-02-11 吉林大学 一种基于激光雷达传感器的识别车辆可行驶区域的方法
KR102083482B1 (ko) * 2018-12-13 2020-03-02 국민대학교산학협력단 라이다 기반의 차량주행 가능영역 검출장치 및 방법
CN111353969A (zh) * 2018-12-20 2020-06-30 长沙智能驾驶研究院有限公司 道路可行驶区域的确定方法、装置及计算机设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463464B1 (ko) * 2013-06-03 2014-11-21 국방과학연구소 주행가능영역 추정장치 및 이를 포함하는 이동체와 주행가능영역 추정방법
KR102083482B1 (ko) * 2018-12-13 2020-03-02 국민대학교산학협력단 라이다 기반의 차량주행 가능영역 검출장치 및 방법
CN111353969A (zh) * 2018-12-20 2020-06-30 长沙智能驾驶研究院有限公司 道路可行驶区域的确定方法、装置及计算机设备
CN110569749A (zh) * 2019-08-22 2019-12-13 江苏徐工工程机械研究院有限公司 一种矿山道路的边界线及可行驶区域检测方法及系统
CN110781891A (zh) * 2019-11-28 2020-02-11 吉林大学 一种基于激光雷达传感器的识别车辆可行驶区域的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王福钊 等: ""基于三维激光雷达的智能车可行驶区域提取"", 《军事交通学院学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023000221A1 (zh) * 2021-07-21 2023-01-26 深圳市大疆创新科技有限公司 可行驶区域生成方法、可移动平台及存储介质
CN114387585A (zh) * 2022-03-22 2022-04-22 新石器慧通(北京)科技有限公司 障碍物检测方法、检测装置及行驶装置

Also Published As

Publication number Publication date
CN113030997B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN111337941B (zh) 一种基于稀疏激光雷达数据的动态障碍物追踪方法
EP3349041B1 (en) Object detection system
CN105404844B (zh) 一种基于多线激光雷达的道路边界检测方法
CN106530380B (zh) 一种基于三维激光雷达的地面点云分割方法
CN106842231B (zh) 一种道路边界检测及跟踪方法
US9563808B2 (en) Target grouping techniques for object fusion
Han et al. Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor
CN108958282B (zh) 基于动态球形窗口的三维空间路径规划方法
CN109031346A (zh) 一种基于3d激光雷达的周边泊车位辅助检测方法
CN113030997B (zh) 一种基于激光雷达的露天矿区可行驶区域检测方法
RU2720140C1 (ru) Способ оценки собственной позиции и устройство оценки собственной позиции
US7397548B2 (en) Method of detecting suspended filamentary objects by telemetry
Han et al. Road boundary detection and tracking for structured and unstructured roads using a 2D lidar sensor
CN112184736B (zh) 一种基于欧式聚类的多平面提取方法
CN107766405A (zh) 自动车辆道路模型定义系统
CN113345008B (zh) 考虑轮式机器人位姿估计的激光雷达动态障碍物检测方法
US11959769B2 (en) Information processing device that generates boundary location information of a road on which a vehicle travels by automated driving
CN112285738B (zh) 一种轨道交通车辆的定位方法及其装置
US20200064481A1 (en) Autonomous mobile device, control method and storage medium
CN112346463A (zh) 一种基于速度采样的无人车路径规划方法
CN116448115B (zh) 基于导航雷达和光电的无人艇概率距离地图构建方法
Cai et al. LiDAR object detection based on optimized DBSCAN algorithm
CN115151954A (zh) 可行驶区域检测的方法和装置
CN113012206B (zh) 一种顾及房檐特征的机载与车载LiDAR点云配准方法
CN114089376A (zh) 一种基于单激光雷达的负障碍物检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant