CN113030845A - 主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法 - Google Patents

主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法 Download PDF

Info

Publication number
CN113030845A
CN113030845A CN202110248827.4A CN202110248827A CN113030845A CN 113030845 A CN113030845 A CN 113030845A CN 202110248827 A CN202110248827 A CN 202110248827A CN 113030845 A CN113030845 A CN 113030845A
Authority
CN
China
Prior art keywords
array
main lobe
adaptive
lobe interference
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110248827.4A
Other languages
English (en)
Inventor
李槟槟
陈辉
刘维建
王永良
张昭建
周必雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Early Warning Academy
Original Assignee
Air Force Early Warning Academy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Force Early Warning Academy filed Critical Air Force Early Warning Academy
Priority to CN202110248827.4A priority Critical patent/CN113030845A/zh
Publication of CN113030845A publication Critical patent/CN113030845A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/16Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic
    • G01S3/22Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic derived from different combinations of signals from separate antennas, e.g. comparing sum with difference
    • G01S3/26Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic derived from different combinations of signals from separate antennas, e.g. comparing sum with difference the separate antennas having differently-oriented directivity characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/68Radar-tracking systems; Analogous systems for angle tracking only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了主瓣干扰下极化阵列子阵级空域‑极化域联合自适应测角方法。本发明首先将阵列划分成多个子阵,形成子阵通道数据;然后对每列子阵进行空域‑极化域自适应波束形成,得到一行虚拟均匀线阵的接收数据;然后采用子空间方法求出真实目标的方位角;随后对每行子阵进行空域‑极化域自适应波束形成,得到一列虚拟均匀线阵的接收数据;最后采用子空间方法求出真实目标的俯仰角。本发明通过子阵合成降低数据维度,提升了测角速度;通过空域‑极化域联合自适应,对抗主瓣内多个干扰的同时,仍能较精确地测出目标的二维波达方向。

Description

主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角 方法
技术领域
本发明属于阵列信号处理领域,具体涉及主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法,为下一代雷达抗主瓣干扰提供技术支撑。
背景技术
雷达是现代及未来战争中的千里眼,直接决定着是否能发现、识别和截获目标,从而影响战争的胜负。从敌方的角度出发,他们想方设法阻止雷达看得清、看得远,最常用的方式是施放干扰。当前,雷达能较好地抑制副瓣干扰,而对于主瓣内多个干扰显得无所适从。难以对抗多个主瓣干扰的原因当前抑制主瓣干扰的方法是空域自适应,它将导致主波束严重畸变,进而使得测量真实目标角度性能严重下降。敌方正是抓住实装雷达该弱点,常常施放主瓣干扰,严重制约了我方作战效能发挥。
抗主瓣干扰已成为雷达届的主题,也是亟需解决的重大军事难题。多年来,雷达技术人员致力于探索抗主瓣干扰技术,取得了很多成果,但并未根本解决主瓣干扰问题。穷则思变!于是,雷达技术人员寻求新体制雷达和技术。极化阵列便应运而生,它能额外感知电磁波的极化信息,使其具有更好的抗干扰性能。当前,关于极化阵列的参数估计和自适应波束形成方面的研究硕果累累,但仍然存在以下两方面内容需要进一步研究:一是主瓣干扰背景下的参数估计,二是自适应测角技术。本发明正是在此背景下,发明主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法,为下一代雷达抗主瓣干扰提供技术支撑。
发明内容
鉴于此,本发明提供了主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法,以解决多个主瓣干扰下真实目标角度估计问题。
为了实现上述的发明目的,本发明提供了主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法,包括以下技术步骤:
(1)将阵列划分成多个子阵,形成子阵通道数据;
(2)对每列子阵进行空域-极化域自适应波束形成,得到一行虚拟均匀线阵的接收数据;
(3)采用子空间方法求出真实目标的方位角;
(4)基于步骤(1)中的子阵通道数据,对每行子阵进行空域-极化域自适应波束形成,得到一列虚拟均匀线阵的接收数据;
(5)采用子空间方法求出真实目标的俯仰角。
本发明的优点在于通过子阵合成降低数据维度,提升了测角速度;通过空域-极化域联合自适应,对抗主瓣内多个干扰的同时,仍能较精确地测出目标的二维波达方向。
附图说明
图1是本发明的实施例的结构框图。参照图1,本发明的实施例由子阵合成、求子阵列自适应输出、子空间方法求目标方位角、求子阵行自适应输出以及子空间方法求目标俯仰角组成。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。假设阵列是由矢量传感器(共点式正交电偶极子)组成的M1×M2均匀面阵,阵元全部布置在xoz面中,M1表示阵列的列数,M2表示阵列的行数,阵元间距为半波长,记为d,目标相对阵面的俯仰角记为
Figure BSA0000235590650000021
方位角记为θ,极化辅助角记为γ,极化相位差记为η,单个矢量传感器的导向矢量表示为
Figure BSA0000235590650000022
该极化面阵的空域导向矢量表示为
Figure BSA0000235590650000023
其中
Figure BSA0000235590650000024
Figure BSA0000235590650000025
其中,上标(·)T表示转置运算,符号λ表示信号波长,
Figure BSA0000235590650000026
Figure BSA0000235590650000027
分别为z轴和x轴的空域导向矢量。则极化面阵的空域-极化域联合导向矢量可表示为
Figure BSA0000235590650000028
其中,
Figure BSA0000235590650000029
表示Kronecker积运算。假设有K个远场窄带完全极化的回波信号入射到该阵列,且这些K个回波信号均位于天线主波束内,其中包含1个目标信号和K-1个干扰信号,则匹配滤波后的阵列接收数据可表示为
Figure BSA00002355906500000210
其中,sk(t)表示第k个信号,n(t)是均值为零、方差为σ2的2M1M2×1加性高斯白噪声。为便于理解和行文,将
Figure BSA00002355906500000211
q(θ)、
Figure BSA00002355906500000212
Figure BSA00002355906500000213
分别简写为Θ、b、q、qz、qx和a,且在分析过程中将噪声n(t)省略。
基于上述信号模型,本发明的详细主要步骤如下:
(1)将阵列划分成多个子阵,形成子阵通道数据。假设M1=M2=M,将极化阵列均匀划分成N×N个子阵,令n=M/N,每个子阵的大小为n×n,则第(g,h)个子阵的接收数据为
Figure BSA00002355906500000214
其中
Figure BSA00002355906500000215
表示选择矩阵,g=1,2,…,N,h=1,2,…,N。然后对该子阵进行求和,方法是将放置方向相同的电偶极子接收数据相加,则第(g,h)个子阵的接收数据的和通道数据的维度为2×1,记为xq,h(t),将所有子阵和通道数据按顺序重新组成向量
Figure BSA0000235590650000031
(2)对每列子阵进行空域-极化域自适应波束形成,得到一行虚拟均匀线阵的接收数据。选择出第h列子阵通道数据方法为
xh(t)=J1x(t) (9)
其中
Figure BSA0000235590650000032
进而得到第h列子阵的自适应权为
Figure BSA0000235590650000033
其中,
Figure BSA0000235590650000034
表示第h列子阵的期望导向矢量。则第h列子阵的自适应输出为
Figure BSA0000235590650000035
那么N列子阵的自适应输出可组成一行虚拟均匀线阵的接收数据
Figure BSA0000235590650000036
(3)采用子空间方法求出真实目标的方位角。首先求得式(13)的协方差矩阵
Figure BSA0000235590650000037
其中,L表示快拍数。对协方差矩阵进行特征分解,得到噪声子空间EN。通过搜索下式的最大值来求得真实目标的方位角
Figure BSA0000235590650000038
上式中ar表示一行虚拟均匀线阵的导向矢量,需要指出的是,这里只进行一维搜索,方法与传统极化阵列的降维MUSIC方法一致。
(4)基于步骤(1)中的子阵通道数据,对每行子阵进行空域-极化域自适应波束形成,得到一列虚拟均匀线阵的接收数据。选择出第g行子阵通道数据方法为
xh(t)=J2x(t) (16)
其中
Figure BSA0000235590650000041
进而得到第g行子阵的自适应权为
Figure BSA0000235590650000042
其中,
Figure BSA0000235590650000043
表示第g行子阵的期望导向矢量。则第g行的自适应输出为
Figure BSA0000235590650000044
那么N行子阵的自适应输出可组成一列虚拟均匀线阵的接收数据
Figure BSA0000235590650000045
(5)采用子空间方法求出真实目标的俯仰角。首先求得式(20)的协方差矩阵
Figure BSA0000235590650000046
对协方差矩阵进行特征分解,得到噪声子空间EN。通过搜索下式的最大值来求得真实目标的俯仰角
Figure BSA0000235590650000047
上式中ac表示一列虚拟均匀线阵的导向矢量,同样,这里只进行一维搜索,方法与传统极化阵列的降维MUSIC方法一致。
虽然结合附图描述了本发明的实施方式,但是本领域普通技术人员可以在所附权利要求的范围内做出各种变形或修改。

Claims (4)

1.主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法,包括以下技术步骤:
(1)将阵列划分成多个子阵,形成子阵通道数据;
(2)对每列子阵进行空域-极化域自适应波束形成,得到一行虚拟均匀线阵的接收数据;
(3)采用子空间方法求出真实目标的方位角;
(4)基于步骤(1)中的子阵通道数据,对每行子阵进行空域-极化域自适应波束形成,得到一列虚拟均匀线阵的接收数据;
(5)采用子空间方法求出真实目标的俯仰角。
2.根据权利要求1所述的主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法,其特征在于步骤(1)中形成子阵通道数据的方法,将放置方向相同的电偶极子接收数据进行叠加,而将整个阵列接收数据按先后顺序进行叠加。
3.根据权利要求1所述的主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法,其特征在于步骤(2)中抑制主瓣干扰的方法,通过对每列子阵进行空域-极化域自适应抑制主瓣干扰,以达到主波束保形从而提高后续测目标方位角精度。
4.根据权利要求1所述的主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法,其特征在于步骤(4)中抑制主瓣干扰的方法,通过对每行子阵进行空域-极化域自适应抑制主瓣干扰,以达到主波束保形从而提高后续测目标俯仰角精度。
CN202110248827.4A 2021-03-02 2021-03-02 主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法 Pending CN113030845A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110248827.4A CN113030845A (zh) 2021-03-02 2021-03-02 主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110248827.4A CN113030845A (zh) 2021-03-02 2021-03-02 主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法

Publications (1)

Publication Number Publication Date
CN113030845A true CN113030845A (zh) 2021-06-25

Family

ID=76466754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110248827.4A Pending CN113030845A (zh) 2021-03-02 2021-03-02 主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法

Country Status (1)

Country Link
CN (1) CN113030845A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116068502A (zh) * 2023-04-06 2023-05-05 中国人民解放军空军预警学院 一种多域联合抗复合干扰方法、装置和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116068502A (zh) * 2023-04-06 2023-05-05 中国人民解放军空军预警学院 一种多域联合抗复合干扰方法、装置和系统

Similar Documents

Publication Publication Date Title
He et al. Joint DOD and DOA estimation for MIMO array with velocity receive sensors
CN109765521B (zh) 一种基于子阵划分的波束域成像方法
Liu et al. Low angle estimation in MIMO radar
CN106526531A (zh) 基于三维天线阵列的改进传播算子二维doa估计算法
CN111239677B (zh) 基于数字阵列的多波束被动单脉冲测角方法
CN109188386B (zh) 基于改进二维esprit算法的mimo雷达高分辨率参数估计方法
CN110967673B (zh) 一种多域联合抗主瓣干扰方法
CN107064901A (zh) 一种舰载高频地波超视距雷达的目标方位估计方法
CN112462363B (zh) 非均匀稀疏极化阵列相干目标参数估计方法
CN106646388A (zh) 基于嵌套阵列的mimo雷达抗干扰方法
CN110196417B (zh) 基于发射能量集中的双基地mimo雷达角度估计方法
CN109491009B (zh) 一种光纤组合阵及基于光纤组合阵的栅瓣抑制方法
CN113030845A (zh) 主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法
CN113156380B (zh) 基于收发失配处理的主瓣噪声压制干扰自适应抑制方法
CN112881975B (zh) 基于子阵特征矩阵联合对角化的单脉冲和差波束测角方法
Hassanien et al. Root-MUSIC based source localization using transmit array interpolation in MIMO radar with arbitrary planar arrays
Hassanien et al. Direction finding for MIMO radar with colocated antennas using transmit beamspace preprocessing
Zhang et al. DOA estimation in MIMO radar with broken sensors by difference co-array processing
CN114563760B (zh) 一种基于sca阵型的二阶超波束形成方法、设备及介质
Morency et al. Partially adaptive transmit beamforming for search free 2D DOA estimation in MIMO radar
CN112415469B (zh) 一种两维数字阵列雷达快速干扰测向方法
CN113203977A (zh) 弹载主瓣干扰下基于极化自适应的波达方向估计方法
CN114814739A (zh) 基于分布式fda-mimo雷达的主瓣干扰抑制方法
CN114114163A (zh) 一种基于盲源分离的阵列雷达抗欺骗式干扰方法
CN108845298B (zh) 基于杂波映射的自适应波束形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication