CN113030319A - 一种塑料中添加剂的萃取方法 - Google Patents

一种塑料中添加剂的萃取方法 Download PDF

Info

Publication number
CN113030319A
CN113030319A CN202110255436.5A CN202110255436A CN113030319A CN 113030319 A CN113030319 A CN 113030319A CN 202110255436 A CN202110255436 A CN 202110255436A CN 113030319 A CN113030319 A CN 113030319A
Authority
CN
China
Prior art keywords
extraction
plastic
solubility parameter
solvent
solvents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110255436.5A
Other languages
English (en)
Other versions
CN113030319B (zh
Inventor
宋善军
彭子娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Metrology
Original Assignee
National Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Metrology filed Critical National Institute of Metrology
Priority to CN202110255436.5A priority Critical patent/CN113030319B/zh
Publication of CN113030319A publication Critical patent/CN113030319A/zh
Application granted granted Critical
Publication of CN113030319B publication Critical patent/CN113030319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4027Concentrating samples by thermal techniques; Phase changes evaporation leaving a concentrated sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4094Concentrating samples by other techniques involving separation of suspended solids using ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/126Preparation by evaporation evaporating sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/146Preparation by elimination of some components using membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提供一种塑料中添加剂的萃取方法,是一种以溶解度参数为指示参数的提取塑料中添加剂的新方法。使用10种不同溶解度参数的有机溶剂对三种塑料:聚乙烯、聚丙烯和聚对苯二甲酸乙二酯(粒径d50<500μm)中的溴化阻燃剂十溴二苯醚进行了萃取。甲苯、正己烷和丙酮分别是对PE、PP和PET塑料萃取效率较高的溶剂,实验结果证实了溶解度参数法在选择塑料添加剂萃取溶剂中的可行性。最后将该方法应用于15种塑料制品的分析中,结果检测到的四溴二苯醚、BDE‑209、十溴二苯乙烷和对苯二甲酸二(2‑乙基己基)酯的结果均符合该方法,验证了其在实际样品分析中的实用性。

Description

一种塑料中添加剂的萃取方法
技术领域
本发明涉及分析检测技术领域,具体涉及一种通过溶解度参数的计算进行溶剂选择进而提供一种塑料中添加剂的萃取方法。
背景技术
塑料是许多行业中很常见的材料,如食品包装、建筑材料、家用电器和电子电气行业。塑料添加剂(阻燃剂、增塑剂、抗氧化剂等)被广泛用于改善产品的性能。塑料废弃物在使用和后续处理过程中会释放出许多添加剂,对环境和人体健康产生不利影响。例如溴化阻燃剂(BFR),作为一种塑料添加剂,已在全球被公认为环境有机污染物。塑料制品中添加剂的准确定量分析是研究其排放和人体暴露的关键。
目前,从塑料中提取BFR的方法主要为液-固萃取法,如索氏萃取、微波辅助萃取、超声波萃取和加压溶剂萃取。萃取有机物常用的溶剂为二氯甲烷(DCM)、异辛烷、正己烷、甲苯、丙酮(1∶1,v/v)、戊烷/DCM(1∶1,v/v)、甲苯/丙酮(1∶1,v/v)。萃取溶剂的选择主要基于对实验回收率结果的比较,而这种方法耗时长18,19。此外,当塑料在溶剂中的溶解程度低,部分溶解或者溶解时发生团聚以至于在塑料颗粒表面形成包膜,都会造成添加剂萃取效率低的结果。因此,除了考虑萃取溶剂和添加剂之间的溶解程度外,溶剂和塑料之间的溶解状态也对萃取结果有大的影响。
近年来,溶解度参数(δ)在药物合成、天然活性物质的制备、有机污染物的提取、塑料制品的研发中已得到了广泛的应用。溶解度参数δ是按照单位体积物料气化能的平方根来计算的。δ可以用来表征液体分子间相互作用的强度,并且已经可以应用于聚合物-溶剂体系。该参数值可以用于评估和选择溶解塑料的溶剂。塑料和溶剂的体积分数大小和溶解度参数之差(Δδ)均会影响混合焓(ΔH)的大小,ΔH的值决定了塑料是否能溶于该溶剂:ΔH越低,聚合物在溶剂中的溶解度越高,这可以被用来预测溶解过程。本质上,溶解度参数就是“相似相溶”原理的另一种表达方式。在现有技术中溶解度参数可以被用来研究了多溴二苯醚在微孔塑料表面的吸附/解吸过程。然而,对于生产过程中被物理添加到塑料中的添加剂,溶解度参数在选择合适萃取剂中的指示作用还没有得到很好的研究。
发明内容
为克服现有技术存在的问题,本申请结合在线固相萃取-高效液相色谱和电感耦合等离子体质谱技术(Online SPE-HPLC-ICP-MS)的优势,建立了对PBDEs和OH-PBDEs同时定量分析的新方法。
为了实现上述目的,本发明采用的技术方案如下:
一种塑料中添加剂的萃取方法,包括如下步骤:
超声萃取:称量一定量的塑料于干净的玻璃试管中;加入5mL的萃取溶剂,超声30min,萃取之后以3000rpm进行离心分离10min,使塑料颗粒和萃取液初步分层,将上清液移出,重复三次,将所有萃取溶液氮吹至近干,再用甲苯复溶,稀释过滤后进样分析检测;
ASE萃取:称量适量的塑料和硅藻土,混匀并放入ASE萃取池中,萃取温度为70℃,加热5min,静置时间10min,循环次数为3次,清洗净化100s,压力在1600psi左右;使用旋转蒸发仪将萃取溶液蒸发至1-2mL,全部转移至浓缩管后氮吹至近干状态,用甲苯复溶;稀释后过0.2μm的有机滤膜并作为最终待测样品进行仪器分析;
检测方法:液相色谱为HPLC;色谱柱为4.6×250mm,5μm的C18;自动进样,进样量为10μL;流动相组成为体积比42%:50%:8%的乙腈∶甲醇∶水,等浓度洗脱;流速为1.0mL·min-1;紫外检测器的检测波长为226nm。
进一步地,塑料的溶解度参数可以通过基团贡献法计算得到,计算公式如下:
δ=ρ·∑Fi/M (1)
其中,Fi是分子中各基团的摩尔引力常数,ρ是聚合物的密度,M是聚合物链节的摩尔质量。
进一步地,塑料样品中目标物质与标准物质在液相色谱上的保留时间差在0.1min以内。
进一步地,信噪比大于10的化合物用于进行定量分析,信噪比大于3的化合物用于进行定性分析。
进一步地,机滤膜的空隙为0.2μm。
进一步地,实验中使用的容器均为玻璃容器,以避免样品被污染。
进一步地,BDE-209在所有溶剂中的溶解度均满足实验要求。
进一步地,甲苯、正己烷和丙酮分别是对PE、PP和PET塑料萃取效率较高的溶剂。
进一步地,萃取的对象为粒径d50<500μm的聚乙烯(PE)、聚丙烯(PP)和聚对苯二甲酸乙二酯(PET)中的溴化阻燃剂十溴二苯醚。
进一步地,混合溶剂体系的溶解度参数按照以下公式进行计算:
Figure BDA0002968120910000021
其中,Φi,δi是体积分数和溶剂i的溶解度参数,所有溶剂的体积分数之和∑Φi为1。
本申请的塑料中添加剂的萃取方法的有益效果是:
本申请以溶解度参数为指示参数来选择合适的萃取溶剂作为塑料添加剂的萃取剂,这在实际应用中可以大大减少工作量,提高效率。通过使用不同溶解度参数的溶剂,对不同塑料样品中的添加剂进行萃取,以证明溶解度参数法的可行性。塑料样品中添加剂的均匀性、稳定性和数值准确性对于结果的可靠性是至关重要的,因此,本申请使用的聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二酯(PET)塑料选择三种标准物质(CRMs)或CRM候选者,其中添加的BDE-209的含量值已知。本申请对塑料中BDE-209的溶解度参数与浓度的关系进行了讨论和评价,同时,从国内市面上收集了PE、PP、PS、PVC和PET五类塑料制品,通过对塑料制品中添加剂进行萃取,验证了溶解度参数法的可行性,为聚合物添加剂的分析提供了一种实用的方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种塑料中添加剂的萃取方法的PE,PP,PET塑料中BDE-209萃取回收率与溶解度参数的拟合结果示意图;
图2为本申请实施例提供的一种塑料中添加剂的萃取方法的超声萃取(USE)和加压溶剂萃取(ASE)结果的比较示意图;
图3为本申请实施例提供的一种塑料中添加剂的萃取方法的ASE和超声条件下使用混合溶剂体系得到的BDE-209的萃取浓度示意图;
图4(a)、(b)、(c)分别为本申请实施例提供的一种塑料中添加剂的萃取方法的溶解度参数法在塑料制品分析中的应用示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
1材料与方法
1.1化学品及样品
标准溶液:甲苯中的四溴二苯醚(BDE-47)和甲苯中的十溴二苯乙烷(DBDPE),均购买自Accustandard(50.0μg/mL,美国);正己烷中的对苯二甲酸二(2-乙基己基)酯(DEHTP)(10.0μg/mL)和甲苯中的十溴二苯醚(BDE-209,50.0μg/mL)均来自中国国家计量研究所(NIM)。
HPLC级溶剂:甲醇、异丙醇、甲苯、苯、二氯甲烷(DCM)、乙腈(ACN)、丙酮、正己烷、正辛烷、环己烷、异辛烷和乙酸乙酯(EtAc)从默克KGaA(Darmstadt,德国)购买;实验用水由Milli-Q系统(milipore,Bedford,USA)制备。
塑料标准物质:GBW08412(聚乙烯中的十溴二苯醚)来自NIM(中国);PP塑料样品由塑料制造商定制,并由NIM(中国)定值并作为CRM候选值;标准物质JSAC0642(PET中的多溴二苯醚)购自日本分析化学学会。所有塑料在液氮冷冻(粒径d50<500μm)下研磨成颗粒,并在-20℃下储存以供进一步分析。详细信息见表1。
表1三种标准物质CRM/CRM候选物的具体信息
Figure BDA0002968120910000041
从国内市场采购了15种塑料制品。详细信息在表2中列出。所有样品均使用酒精清洗擦拭,同样经过研磨后,将每个样品充分混合,并在-20℃下储存在棕色玻璃瓶中。
表2实际塑料制品的具体信息
Figure BDA0002968120910000042
1.2前处理及检测方法
超声萃取:称量0.2g左右的塑料于干净的玻璃试管中。加入5mL的萃取溶剂,超声30min,萃取之后进行离心分离(3000rpm,10min),使PE塑料颗粒和萃取液初步分层,将上清液移出,重复三次,将所有萃取溶液氮吹至近干,再用1mL甲苯复溶,稀释过滤(0.2μm的有机滤膜)后进样分析检测。
ASE萃取:称量0.2g左右的塑料,1g硅藻土,混匀并放入ASE萃取池中,萃取温度为70℃,加热5min,静置时间10min,循环次数为3次,purge100s,压力在1600psi左右。使用旋转蒸发仪将萃取溶液蒸发至1-2mL,全部转移至浓缩管后氮吹至近干状态,用1mL甲苯复溶。稀释后过0.2μm的有机滤膜并作为最终待测样品进行仪器分析。
检测方法:液相色谱Agilent1290 HPLC;色谱柱为TC-C18(4.6×250mm,5μm;Agilent);自动进样,进样量为10μL;流动相组成为乙腈∶甲醇∶水(42%:50%:8%=v∶v∶v),等浓度洗脱;流速为1.0mL·min-1;紫外检测器(DAD)的检测波长为226nm。
1.3溶解度参数法
1.3.1塑料的溶解度参数
塑料的溶解度参数可以通过基团贡献法计算得到,计算公式如下:
δ=ρ·∑Fi/M (1)
其中,Fi是分子中各基团的摩尔引力常数,ρ是聚合物的密度,M是聚合物链节的摩尔质量。不同现有技术中Fi的值有所差异,因此,我们根据现有技术计算了五组不同Fi值(表3)下的塑料溶解度参数。
表3.摩尔引力常数Fi(J·cm3)1/2
Figure BDA0002968120910000051
随着理论和技术的发展,一些现有技术提出了基于聚合物内压的新溶解度参数基团贡献法。也有研究基于COSMO-SAC模型对聚合物的溶解度参数进行了计算。不同现有技术中聚合物的溶解度参数存在较大差异。表4列出了计算结果和现有技术的其他δ值。
表4.PE,PP,PET的溶解度参数δ(J/cm3)1/2
Figure BDA0002968120910000052
Figure BDA0002968120910000061
1.3.2溶剂的溶解度参数
单一体系溶剂的溶解度参数参考现有技术。混合溶剂体系的溶解度参数按照以下公式进行计算:
Figure BDA0002968120910000062
其中,Φi,δi是体积分数和溶剂i的溶解度参数,所有溶剂的体积分数之和∑Φi为1。具体参数见表5。
表5.溶剂的极性和δ值
Figure BDA0002968120910000063
EtAc:乙酸乙酯;DCM:二氯甲烷
1.4质量保证和控制
为了保证定性分析和定量分析的准确性,我们采用以下标准:(1)塑料样品中目标物质与标准物质在液相色谱上的保留时间差在0.1min以内;(2)信噪比大于10的化合物可以进行定量分析,信噪比大于3的化合物可以进行定性分析。(3)实验中使用的瓶子是玻璃容器,以避免样品被污染;(4)BDE-209在所有溶剂中的溶解度均满足实验要求。
2实验结果
2.1溶解度参数法的验证
用异辛烷、正己烷、正辛烷、甲苯、苯、乙酸乙酯(EtAc)、丙酮、异丙醇、环己烷和二氯甲烷(DCM)十种溶剂对PE、PP和PET制成的CRMs/CRM候选物中的BDE-209进行萃取,采用常温超声的方法。结果表明,BDE-209的萃取效率与溶解度参数之间存在相关性,除EtAc和丙酮的结果外,BDE-209的回收率及其行对应的溶解度参数之间可拟合为一个二次函数曲线(见图1)。
根据图1的结果,PP、PE和PET曲线的最高点与相应塑料的溶解度参数计算值(δPE=18.42(J/cm3)1/2,δPP=16.98(J/cm3)1/2,δPET=20.53(J/cm3)1/2)接近。这三个值是由Fi(现有技术)计算得到的,该数据与我们的萃取结果最为一致。当溶剂的溶解度参数与聚合物的溶解度参数接近时,可以获得较好的回收率,这可以解释为塑料在对应溶剂中的溶解程度最好,导致塑料中大部分添加剂BDE-209可以释放并溶解到溶剂中,从而获得较高的回收率。当溶剂与塑料之间的Δδ大于3.5(如异辛烷、正己烷、辛烷、环己烷等溶剂和PET塑料)时,BDE-209的回收率很低(<5.0%)。因此,“溶解度参数法”作为选择塑料添加剂萃取溶剂的方法是有效可行的。
在所有数据中,有5个点偏离拟合曲线(图1中的数据点),EtAc和丙酮是它们相对应的溶剂。根据计算得到的PE(δ=18.42(J/cm3)1/2)的溶解度参数可知,甲苯和EtAc的溶解度参数均与PE塑料的溶解度参数差别不大(Δδ<0.3(J/cm3)1/2),但EtAc的回收率(24.25%)却不如甲苯(87.37%)。同样,丙酮与PE或DCM与PE之间的溶解度参数之差均小于2.0,DCM的回收率(67.28%)要优于丙酮(15.71%),这可能与丙酮的极性有关。对于PP塑料(δ=16.98(J/cm3)1/2),EtAc的萃取效率(43.2%)也低于甲苯(100.04%),但PP塑料与这两种溶剂的溶解度参数相差均小于2.0。丙酮与PP的溶解度参数相差大于3,可能是其回收率低(8.12%)的原因。PET拟合曲线的异常点是EtAc的回收率,EtAc的萃取能力特别好。PET塑料中有羰基极性基团,PP和PE中却没有,巧合的是,EtAc和丙酮中也存在羰基,用EtAc和丙酮萃取三种塑料中的BDE-209时,PET的萃取回收率明显高于PP和PE,这可能与“似溶似溶”机理有关。
在所研究的10种溶剂中,丙酮的极性最强,不利于BDE-209的溶解(logKow=11.24,ChemSiper预测值)。PP和PET中BDE-209含量相近(约86.5-150.0μg/g),以丙酮为萃取剂时,PP(8.12%)的萃取率远低于PET(98.39%),这很可能是因为PET与丙酮的溶解度参数相差很小(Δδ<0.3(J/cm3)1/2),PET在丙酮中的溶解程度更大。因此,溶剂溶解度参数对萃取回收率的影响要比极性参数更为明显。
综上结果表明,BDE-209的溶剂萃取效率与溶剂的溶解度参数和结构有关。溶剂和塑料的|Δδ|与萃取效率呈显著负相关(图1)。此外,相同的官能团也有助于塑料在溶剂中的溶解。在所有被使用溶剂中,甲苯对PE的萃取能力最强,用甲苯萃取的BDE-209浓度为873.73μg/g(RSD:2.10%);正己烷是提取PP塑料中BDE-209的最佳溶剂;PET在丙酮中的萃取回收率很好。因此,将“溶解度参数法”应用于塑料添加剂萃取溶剂的选择中是有一定研究意义的。2.2溶解度参数法应用的影响因素
乙酸乙酯(EtAc)是所选十种溶剂中超声萃取结果很特殊的一种溶剂,因为其溶解度参数与聚乙烯PE塑料的基本相同,从理论上讲,它非常适合于从PE塑料中提取BDE-209,但结果恰恰相反。因此,我们提出了有两种可能的假设:(1)PE塑料不溶于EtAc或溶解能力比较低,溶解度参数法不适用于预测聚合物在EtAc等一些溶剂中的溶解程度;(2)EtAc对PE塑料的溶解能力和甲苯一样,有很强的溶解能力,然而,目标分子(BDE-209)却没有转移到溶剂(EtAc)中。通过EtAc对PET塑料和PP塑料的萃取结果我们可以得出,EtAc对BDE-209的溶解能力并不是导致PP塑料回收率差的原因,通过现有技术报道得到,多溴二苯醚等有机污染物是疏水性的,很容易吸附在微塑料表面,我们的塑料样品d50<500μm,已到微塑料的范围,因此,我们认为EtAc萃取回收效率可能与目标物吸附在塑料颗粒表面有很大的关系。
为了证明EtAc是否符合溶解度参数法的判断规则,我们选择对PE塑料中BDE-209萃取效率较低的异丙醇、丙酮和EtAc三种溶剂进行实验。萃取方法选择超声(40℃)和ASE(70℃,1600psi),以评价加热和加压对萃取回收率的影响程度。
结果表明,ASE条件下EtAc的萃取效率得到显著提高,萃取后BDE-209的最高浓度可达1076.80μg/g。此外,丙酮和异丙醇的萃取浓度分别为433.30±16.70μg/g和268.14±17.66μg/g,高于使用超声萃取法(20℃和40℃)的结果,但该浓度值仍处于低浓度水平。具体结果如图2所示。
通过比较USE和ASE的萃取结果,验证了EtAc对PE塑料中BDE-209回收率低的原因。PE塑料中的BDE-209在加热和加压下更有利于向EtAc转移,说明EtAc对PE塑料的溶解能力是在预期中的(Δδ<0.2(J/cm3)1/2),EtAc是符合溶解度参数法的。而BDE-209在塑料溶解后易吸附在塑料表面,这可能是导致20℃时回收率低的主要原因。无论加热加压与否,异丙醇和丙酮对聚乙烯塑料的溶解能力都较差,这也说明了溶解度参数法的实用性。因此,利用溶解度参数选择塑料添加剂的萃取溶剂时,需要考虑合适的实验条件,为了获得较好的BDE-209回收率,应选择与塑料溶解度参数差异较小的溶剂,必要时也要优化萃取强度。
在聚合物成膜和处理的应用中,混合溶剂体系发挥了重要作用,混合溶剂中各组分的比例会影响其最终溶液的溶解度参数。在上文中,乙酸乙酯(EtAc)已被证明在ASE条件下对PE塑料中的BDE-209有更好的回收效率,因此,选择EtAc与正己烷配制一系列混合溶液:100%EtAc,100%正己烷,正己烷:EtAc(v∶v=25∶75),正己烷:EtAc(v∶v=50∶50),正己烷:EtAc(v∶v=75∶25)。制备的系列溶液用于萃取聚乙烯塑料中的BDE-209。选择ASE和室温超声两种萃取方法,研究在不同条件下含有EtAc的混合溶剂对萃取效率的影响。
结果表明,在常温超声萃取条件下,BDE-209的萃取浓度随EtAc含量的增加而降低,而用ASE法萃取PE中的BDE-209时,EtAc的存在提高了混合溶剂的萃取效率,混合体系的萃取能力与100%EtAc相近。具体结果如图3所示。
在室温超声环境下,混合溶剂的溶解度参数与BDE-209的萃取浓度之间似乎并没有规律的关系。当温度和压力改变时,溶解度参数与萃取效率之间呈现出了明显的相关性。因此,在选择混合溶剂的组成时,也应同时考虑纯溶剂的萃取能力和萃取条件。
2.3.溶解度参数法的实际应用
为了验证溶解度参数法的适用性,我们选择了国内市场上销售的15种塑料制品进行萃取实验,包括塑料饮用水瓶、塑料手套、酸奶盒、塑料玩具等,这些产品的材料为PP、PE、PET、PS和PVC。有关详细信息见表2。使用摩尔引力常数Fi计算PVC和PS的溶解度参数,其结果分别为19.69(J/cm3)1/2和19.55(J/cm3)1/2。因此,选择低、中、高三种不同溶解度参数的溶剂对塑料中的BFRs进行萃取:选择正己烷、甲苯和丙酮作为PP和PE塑料的萃取溶剂;选择正己烷、丙酮和乙腈(ACN)作为PET的萃取溶剂;选择甲苯、DCM和ACN作为PS和PVC塑料的萃取溶剂。
虽然未在所有样品中检测到BDE-209,但在这些塑料中发现了四溴二苯醚(BDE-47)、十溴二苯乙烷(DBDPE)和对苯二甲酸二(2-乙基己基)酯(DEHTP),因此我们也将其选为目标物(详见图4(a))。实验结果证明,这些添加剂的萃取浓度与溶剂和塑料的溶解度参数差之间存在相关性,符合二次函数关系。当Δδ接近零时,萃取效率更高(见图4(c)),这与溶解度参数法的判断规则一致。
显然,溶解度参数法是可以用于实际塑料制品中添加剂萃取溶剂的选择。实验中发现,PS极易溶于甲苯和DCM,而且其萃取液在后续过程中难以实现较好的净化。混合溶剂体系实验表明,溶剂溶解度参数的变化是会影响塑料的溶解状态,因此可以选择溶解度参数较高的甲醇(δ=29.7(J/cm3)1/2)作为沉淀剂来净化PS萃取溶液。经过实验发现,在PS萃取溶液中加入等体积的甲醇,可以得到较好的沉淀效果。
在聚合物广泛生产和应用的时代,塑料制品中添加剂的准确测定是值得引起重视的。本申请以溶解度参数为指标,为提取塑料中的有机污染物提供了一条有价值的途径。本申请使用标准物质CRM/CRM候选物(其添加剂为BDE-209,且浓度值已知)对溶解度参数法进行了细化研究,同时也评估了温度/压力升高和混合溶剂体系对该方法的影响。通过对PP、PE、PS、PVC、PET等实际塑料样品的萃取分析,验证了溶解度参数法的可行性。结果表明,该方法也适用于BDE-47、DBDPE和DEHTP等添加剂。此外,本申请所分析的塑料都是以微塑料尺寸为基础的,这说明该方法在也可用于解决微塑料中有机污染物的分析难题。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种塑料中添加剂的萃取方法,其特征在于,包括如下步骤:
超声萃取:称量一定量的塑料于干净的玻璃试管中;加入5mL的萃取溶剂,超声30min,萃取之后以3000rpm进行离心分离10min,使塑料颗粒和萃取液初步分层,将上清液移出,重复三次,将所有萃取溶液氮吹至近干,再用甲苯复溶,稀释过滤后进样分析检测;
ASE萃取:称量适量的塑料和硅藻土,混匀并放入ASE萃取池中,萃取温度为70℃,加热5min,静置时间10min,循环次数为3次,清洗净化100s,压力在1600psi左右;使用旋转蒸发仪将萃取溶液蒸发至1-2mL,全部转移至浓缩管后氮吹至近干状态,用甲苯复溶;稀释后过0.2μm的有机滤膜并作为最终待测样品进行仪器分析;
检测方法:液相色谱为HPLC;色谱柱为4.6×250mm,5μm的C18;自动进样,进样量为10μL;流动相组成为体积比42%∶50%∶8%的乙腈∶甲醇∶水,等浓度洗脱;流速为1.0mL·min-1;紫外检测器的检测波长为226nm。
2.根据权利要求1所述的一种塑料中添加剂的萃取方法,其特征在于,塑料的溶解度参数可以通过基团贡献法计算得到,计算公式如下:
δ=ρ·∑Fi/M (1)
其中,Fi是分子中各基团的摩尔引力常数,ρ是聚合物的密度,M是聚合物链节的摩尔质量。
3.根据权利要求1或2所述的一种塑料中添加剂的萃取方法,其特征在于,塑料样品中目标物质与标准物质在液相色谱上的保留时间差在0.1min以内。
4.根据权利要求1或2所述的一种塑料中添加剂的萃取方法,其特征在于,信噪比大于10的化合物用于进行定量分析,信噪比大于3的化合物用于进行定性分析。
5.根据权利要求1或2所述的一种塑料中添加剂的萃取方法,其特征在于,机滤膜的空隙为0.2μm。
6.根据权利要求1或2所述的一种塑料中添加剂的萃取方法,其特征在于,实验中使用的容器均为玻璃容器,以避免样品被污染。
7.根据权利要求1或2所述的一种塑料中添加剂的萃取方法,其特征在于,BDE-209在所有溶剂中的溶解度均满足实验要求。
8.根据权利要求1或2所述的一种塑料中添加剂的萃取方法,其特征在于,甲苯、正己烷和丙酮分别是对PE、PP和PET塑料萃取效率较高的溶剂。
9.根据权利要求1或2所述的一种塑料中添加剂的萃取方法,其特征在于,萃取的对象为粒径d50<500μm的聚乙烯(PE)、聚丙烯(PP)和聚对苯二甲酸乙二酯(PET)中的溴化阻燃剂十溴二苯醚。
10.根据权利要求1-9之一所述的一种塑料中添加剂的萃取方法,其特征在于,混合溶剂体系的溶解度参数按照以下公式进行计算:
Figure FDA0002968120900000021
其中,Φi,δi是体积分数和溶剂i的溶解度参数,所有溶剂的体积分数之和∑Φi为1。
CN202110255436.5A 2021-03-09 2021-03-09 一种塑料中添加剂的萃取方法 Active CN113030319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110255436.5A CN113030319B (zh) 2021-03-09 2021-03-09 一种塑料中添加剂的萃取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110255436.5A CN113030319B (zh) 2021-03-09 2021-03-09 一种塑料中添加剂的萃取方法

Publications (2)

Publication Number Publication Date
CN113030319A true CN113030319A (zh) 2021-06-25
CN113030319B CN113030319B (zh) 2024-04-16

Family

ID=76467324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110255436.5A Active CN113030319B (zh) 2021-03-09 2021-03-09 一种塑料中添加剂的萃取方法

Country Status (1)

Country Link
CN (1) CN113030319B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933261A (zh) * 2021-11-15 2022-01-14 中国计量科学研究院 基于溶解度参数计算的沉积物中微塑料的检测方法
CN114034529A (zh) * 2021-11-11 2022-02-11 广东睿鹏材料科学有限公司 一种含有痕量荧光基团的防伪材料的检测前处理方法
CN114441691A (zh) * 2022-04-12 2022-05-06 广州国标检验检测有限公司 一种眼用制剂容器中塑料添加剂的检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581705A (zh) * 2009-05-11 2009-11-18 同济大学 废弃家电塑料部件中溴代阻燃剂的分析测定方法
CN101592643A (zh) * 2009-06-22 2009-12-02 中国广州分析测试中心 一种电子电气设备样品中多溴联苯醚检测的快速样品前处理方法
CN101865890A (zh) * 2010-06-04 2010-10-20 华南理工大学 液相色谱测定塑料中十溴二苯醚含量的方法
CN105974039A (zh) * 2016-06-17 2016-09-28 苍南县宝丰印业有限公司 一种富集和检测食品包装用塑料制品中邻苯二甲酸酯的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581705A (zh) * 2009-05-11 2009-11-18 同济大学 废弃家电塑料部件中溴代阻燃剂的分析测定方法
CN101592643A (zh) * 2009-06-22 2009-12-02 中国广州分析测试中心 一种电子电气设备样品中多溴联苯醚检测的快速样品前处理方法
CN101865890A (zh) * 2010-06-04 2010-10-20 华南理工大学 液相色谱测定塑料中十溴二苯醚含量的方法
CN105974039A (zh) * 2016-06-17 2016-09-28 苍南县宝丰印业有限公司 一种富集和检测食品包装用塑料制品中邻苯二甲酸酯的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
R. ZELENY 等: "Evaluation of the state-of-the-art measurement capabilities for selected PBDEs and decaBB in plastic by the international intercomparison CCQM-P114", 《ANAL BIOANAL CHEM》 *
周效全 等: "物质溶解度参数的计算方法", 《石油钻采工艺》 *
李佐卿 等: "电子电气产品中多溴联苯和多溴二苯醚的高效液相色谱/串联质谱法测定", 《分析科学学报》 *
贾永娟 等: "高效液相色谱法检测丙烯腈2丁二烯2苯乙烯塑料中多溴联苯醚", 《分析试验室》 *
黄英 等: "加速溶剂萃取-高效液相色谱/紫外检测电子电气塑料中十溴联苯醚", 《分析试验室》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034529A (zh) * 2021-11-11 2022-02-11 广东睿鹏材料科学有限公司 一种含有痕量荧光基团的防伪材料的检测前处理方法
CN113933261A (zh) * 2021-11-15 2022-01-14 中国计量科学研究院 基于溶解度参数计算的沉积物中微塑料的检测方法
CN114441691A (zh) * 2022-04-12 2022-05-06 广州国标检验检测有限公司 一种眼用制剂容器中塑料添加剂的检测方法
CN114441691B (zh) * 2022-04-12 2022-08-23 广州国标检验检测有限公司 一种眼用制剂容器中塑料添加剂的检测方法

Also Published As

Publication number Publication date
CN113030319B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN113030319A (zh) 一种塑料中添加剂的萃取方法
Ma et al. The study of core–shell molecularly imprinted polymers of 17β-estradiol on the surface of silica nanoparticles
Yin et al. Dummy molecularly imprinted polymers on silica particles for selective solid-phase extraction of tetrabromobisphenol A from water samples
Li et al. Separation and purification of chlorogenic acid by molecularly imprinted polymer monolithic stationary phase
Wu et al. A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples
Xu et al. Room-temperature synthesis of flower-shaped covalent organic frameworks for solid-phase extraction of quinolone antibiotics
Yan et al. Rapid and selective screening of melamine in bovine milk using molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography-ultraviolet detection
He et al. Novel cyromazine imprinted polymer applied to the solid-phase extraction of melamine from feed and milk samples
Yan et al. Dummy molecularly imprinted solid-phase extraction for selective determination of five phthalate esters in plastic bottled functional beverages
CN103822818B (zh) 一种适用于偶氮染料检测的样品预处理方法
Vega-Herrera et al. Polymers of micro (nano) plastic in household tap water of the Barcelona Metropolitan Area
CN104341552A (zh) 一种氟喹诺酮类替代模板分子印迹聚合物及其应用
Lian et al. Selective detection of chloramphenicol based on molecularly imprinted solid-phase extraction in seawater from Jiaozhou Bay, China
Wang et al. The application of pseudo template molecularly imprinted polymer to the solid‐phase extraction of cyromazine and its metabolic melamine from egg and milk
Gao et al. Functionalized melamine sponge based on β-cyclodextrin-graphene oxide as solid-phase extraction material for rapidly pre-enrichment of malachite green in seafood
Ji et al. Preparation of hydrophilic molecularly imprinted polymers via bulk polymerization combined with hydrolysis of ester groups for selective recognition of iridoid glycosides
Li et al. Synthesis and evaluation of a magnetic molecularly imprinted polymer sorbent for determination of trace trichlorfon residue in vegetables by capillary electrophoresis
Yang et al. Synthesis of a novel molecularly imprinted organic–inorganic hybrid polymer for the selective isolation and determination of fluoroquinolones in tilapia
CN104513286A (zh) 一种分离纯化非达米星的方法
Chen et al. Simultaneous enrichment of bisphenols and polyfluoroalkyl substances by cyclodextrin-fluorinated covalent organic frameworks membrane in food packaging samples
Chen et al. Polystyrene/poly (dibenzo-18-crown-6) composite nanofibers for the selective adsorption of plasma catecholamines
Li et al. Selective cationic covalent organic framework for high throughput rapid extraction of novel polyfluoroalkyl substances
Xie et al. Calix [4] arene-based covalent organic frameworks with host-guest recognition for selective adsorption of six per-and polyfluoroalkyl substances in food followed by UHPLC-MS/MS detection
Xu et al. Molecularly imprinted conjugated microporous polymer composite as solid phase extraction adsorbent for the extraction of phenolic endocrine disrupting chemicals in beverages
CN114755327A (zh) 一种高分子材料中n,n’-乙撑双硬脂酰胺的定量分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant