CN113029324A - 一种基于超声波的快速病理组织处理方法及装置 - Google Patents
一种基于超声波的快速病理组织处理方法及装置 Download PDFInfo
- Publication number
- CN113029324A CN113029324A CN202110190805.7A CN202110190805A CN113029324A CN 113029324 A CN113029324 A CN 113029324A CN 202110190805 A CN202110190805 A CN 202110190805A CN 113029324 A CN113029324 A CN 113029324A
- Authority
- CN
- China
- Prior art keywords
- value
- treatment
- ultrasonic transducer
- vibration signal
- reagent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001575 pathological effect Effects 0.000 title claims abstract description 153
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000012512 characterization method Methods 0.000 claims abstract description 14
- 239000003153 chemical reaction reagent Substances 0.000 claims description 95
- 238000012545 processing Methods 0.000 claims description 59
- 239000003795 chemical substances by application Substances 0.000 claims description 36
- 239000010408 film Substances 0.000 claims description 30
- 239000007788 liquid Substances 0.000 claims description 19
- 230000001629 suppression Effects 0.000 claims description 19
- 238000005070 sampling Methods 0.000 claims description 18
- 238000002604 ultrasonography Methods 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 7
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 238000010408 sweeping Methods 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 26
- 210000001519 tissue Anatomy 0.000 description 135
- 230000008569 process Effects 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 210000002977 intracellular fluid Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/2813—Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H11/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
- G01H11/06—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
- G01H11/08—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Surgical Instruments (AREA)
Abstract
本申请公开了一种基于超声波的快速病理组织处理方法及装置,其中,该方法包括:获取压电薄膜传感器在预设周期内采集的振动信号。压电薄膜传感器设置于病理组织处理设备的处理缸,振动信号为压电薄膜传感器采集的处理缸的振动信号。基于振动信号,确定第一谐振频率点对应的第一振动信号。其中,第一谐振频率点为病理组织处理设备的超声换能器发出的超声波的谐振频率。根据第一振动信号,确定第一谐振频率点的振幅表征值。基于振幅表征值以及预设的最佳振幅表征值,确定超声换能器的占空比调整值。在振幅表征值以及预设的最佳振幅表征值不匹配的情况下,根据占空比调整值,控制超声换能器的输出功率。本申请通过上述方法提高了病理组织的处理效果。
Description
技术领域
本申请涉及病理组织处理技术领域,尤其涉及一种基于超声波的快速病理组织处理方法及装置。
背景技术
随着病理技术和快速诊疗技术的发展,快速的病理组织处理技术正在逐渐代替常规病理组织处理技术。通常快速的病理组织处理技术是使用混合型小分子试剂配合超声或微波环境下加速病理组织处理进程,快速制备病理切片。一般情况下,通过快速的组织处理技术,2-3小时即可出具病理报告,加快了病情诊断及治疗的效率。
现有的快速病理组织处理技术大多采用超声波技术,超声空化能够加快细胞内液和细胞外液的置换,有效加快分子运动,促进组织处理。但是快速病理组织处理设备工作过程中,超声空化对病理组织的作用效果通常会受到温度、液面高度、超声频率等因素的影响,造成病理组织处理程度不一、处理时间过长或者病理组织损坏等问题,即病理组织的处理效果不理想。
基于此,亟需提供一种能够提高病理组织处理效果的基于高频超声控制技术的快速病理组织处理技术方案。
发明内容
本申请实施例提供一种基于超声波的快速病理组织处理方法及装置,用于提高病理组织处理设备对病理组织的处理效果。
一方面,本申请实施例提供了一种基于超声波的快速病理组织处理方法,该方法包括:获取压电薄膜传感器在预设周期内采集的振动信号。压电薄膜传感器设置于病理组织处理设备的处理缸,振动信号为压电薄膜传感器采集的处理缸的振动信号。基于振动信号,确定第一谐振频率点对应的第一振动信号。其中,第一谐振频率点为病理组织处理设备的超声换能器发出的超声波的谐振频率。根据第一振动信号,确定第一谐振频率点的振幅表征值。基于振幅表征值以及预设的最佳振幅表征值,确定超声换能器的占空比调整值。在振幅表征值以及预设的最佳振幅表征值不匹配的情况下,根据占空比调整值,控制超声换能器的输出功率。
本申请实施例根据病理组织处理设备的处理缸的振动信号,进而对于超声换能器的输出功率进行调节,保证病理组织的处理效果,避免病理组织的处理时间过长或病理组织处理过程中被损伤,从而为后续分子诊断的提供了便利。
在本申请的一个实现方式中,对第一谐振频率点对应的第一振动信号进行采样,得到采样信号。其中,第一振动信号为在超声换能器发出的超声波为第一谐振频率点的频率值时对应的振动信号。根据采样信号,以及第一预设公式,确定第一谐振频率点的振幅表征值。第一预设公式为:
其中,X为振幅表征值,N为采样信号的个数,并且N=2i(i=1,2,3…),x(n)为第一振动信号的第n个采样信号,f为超声换能器的第一谐振频率点的频率值。
在本申请的一个实现方式中,基于第二预设公式、振幅表征值及预设的最佳振幅表征值,确定超声换能器的占空比调整值。
第二预设公式为:
其中,W表示占空比调整值,K表示比例放大系数,M表示当前占空比值,X表示振幅表征值,X0表示预设的最佳振幅表征值。
在本申请的一个实现方式中,获取设置于处理缸内的病理组织的样本信息。样本信息包括:单个病理组织所需最低试剂量,包埋盒的数量以及单个包埋盒体积。以及确定病理组织处理所需的目标温度、病理组织处理所需的处理试剂的膨胀系数。根据病理组织的样本信息以及目标温度和膨胀系数,确定在处理缸内处理试剂的最低液面高度。基于最低液面高度,控制流量控制装置向处理缸注入相应的处理试剂。
在本申请的一个实现方式中,根据处理试剂中超声波的传播速度及第一谐振频率点的频率值,确定处理试剂中超声波的最大波长。根据最低液面高度及处理试剂中超声波的最大波长,确定抑制驻波判别值。其中,抑制驻波判别值用于表示最低液面高度是否能够满足抑制驻波条件。在抑制驻波判别值为奇数的情况下,根据抑制驻波判别值确定第一中间值。并根据最大波长、处理缸的底面积以及第一中间值,确定处理试剂的加载量。其中,第一中间值为与抑制驻波判别值最接近的奇数值,且第一中间值大于抑制驻波判别值。在抑制驻波判别值为偶数的情况下,根据抑制驻波判别值确定第二中间值。并根据最大波长、处理缸的底面积以及第二中间值,确定处理试剂的加载量。其中,第二中间值为与抑制驻波判别值最接近的奇数值,且第二中间值大于抑制驻波判别值。基于处理试剂的加载量,控制流量控制装置,向处理缸添加相应的处理试剂。
本申请实施例对处理试剂的加载量的控制,抑制处理缸内超声场的产生,进而保证病理组织处理效果,避免病理组织处理程度不一的情况发生。
在本申请的一个实现方式中,在处理试剂添加至处理缸的情况下,获取设置于处理缸内的温度传感器采集的处理试剂的温度。判断处理试剂的温度是否与目标温度匹配。在处理试剂的温度与目标温度不匹配的情况下,控制加热设备加热处理试剂,以使处理试剂的温度与目标温度匹配。其中,加热设备采用比例积分微分PID控制加热处理试剂,以使处理试剂的温度与目标温度匹配的情况下保证温度恒定。
在本申请的一个实现方式中,控制超声换能器发出的超声波的输出频率小于第一预设阈值。以及控制超声换能器的输出功率大于第二预设阈值,以使处理试剂进行搅拌,以加快处理试剂在处理缸内部空间中的热交换。
本申请实施例通过处理缸内的控制,以及对处理试剂的搅拌,保证处理缸内温度场温度的恒定,保证处理试剂的处理效果,以及避免处理试剂在处理缸内温度不统一,造成多个病理组织的处理程度不一。
在本申请的一个实现方式中,获取超声换能器的电流数据以及超声换能器的电压数据。基于电流数据以及电压数据,判断超声换能器的电流与超声换能器的电压之间是否存在相位差。在超声换能器的电流与超声换能器的电压存在相位差的情况下,基于相位差调整超声换能器的输出频率,直至得到第二谐振频率点。其中,第二谐振频率点对应的电流与电压之间不存在相位差。
在本申请的一个实现方式中,根据第一谐振频率点对应的频率值,以及相应的预设区间范围,确定第一频率值以及第二频率值。其中,第一谐振频率点对应的频率值大于第一频率值且小于第二频率值。控制超声换能器发出的超声波的输出频率在第一频率值与第二频率值之间的取值范围内,按照预设规则变化,以实现扫频,以使处理试剂进行微搅拌,促进所述处理试剂浓度相对均匀。
另一方面,本申请实施例还提供了一种基于超声波的快速病理组织处理装置,该装置包括:
获取模块,用于获取压电薄膜传感器在预设周期内采集的振动信号。压电薄膜传感器设置于病理组织处理设备的处理缸,振动信号为压电薄膜传感器采集的处理缸的振动信号。第一确定模块,用于基于振动信号,确定第一谐振频率点对应的第一振动信号。其中,第一谐振频率点为病理组织处理设备的超声换能器发出的超声波的谐振频率。第二确定模块,用于根据第一振动信号,确定第一谐振频率点的振幅表征值。第三确定模块,用于基于振幅表征值以及预设的最佳振幅表征值,确定超声换能器的占空比调整值。控制模块,用于在振幅表征值以及预设的最佳振幅表征值不匹配的情况下,根据占空比调整值,控制超声换能器的输出功率。
本申请通过上述实施例,控制处理试剂的加载量,调节超声换能器的输出功率以及控制处理缸内处理试剂的温度,进而保证了病理组织的处理环境在空间位置上带来稳定且相同的处理效果。同时在稳定的病理组织处理环境内,提高了病理组织处理设备对病理组织的处理效果。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的病理组织处理设备的结构示意图;
图2为本申请实施例提供的一种基于超声波的快速病理组织处理方法的流程图;
图3为本申请实施例提供的一种基于超声波的快速病理组织处理方法的另一流程图;
图4为本申请实施例提供的一种基于超声波的快速病理组织处理方法的另一流程图;
图5为本申请实施例提供的一种基于超声波的快速病理组织处理方法的一种示意图;
图6为本申请实施例提供的一种基于超声波的快速病理组织处理方法的另一流程图;
图7为本申请实施例提供的一种基于超声波的快速病理组织处理方法的一种示意图;
图8为本申请实施例提供的一种基于超声波的快速病理组织处理方法的另一流程图;
图9为本申请实施例提供的一种基于超声波的快速病理组织处理方法的另一流程图;
图10为本申请实施例提供的一种基于超声波的快速病理组织处理方法的另一流程图;
图11为本申请实施例提供的一种基于超声波的快速病理组织处理装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前,快速组织处理技术正在广泛应用于病理行业,帮助病理诊断医生快速获知患者的病情信息,从而加快对患者治疗方案的实施,在一定程度上,防止了患者病情的继续恶化。
但是,快速病理组织处理设备在使用过程中,由于超声波驻波、温度等因素的影响,容易造成病理组织损伤或者对病理组织处理的不够充分,从而影响对病理组织的诊断结果。而且超声波声场容易在病理组织处理设备的处理缸内产生驻波,导致快速病理组织处理设备的处理缸内超声分布极不均匀,对病理组织处理效果的一致性产生严重影响。
针对上述问题,本申请实施例提供了一种基于超声波的快速病理组织处理方法及装置,用于提高对病理组织的处理效果和一致性。
本申请实施例提供的一种基于超声波的快速病理组织处理方法,应用于病理组织处理设备。图1为本申请实施例的病理组织处理设备的一种结构示意图,如图1所示,该病理组织设备可以包括:1为处理缸的密闭缸盖,2为处理缸,3为加热设备,4为超声换能器,5为温度传感器,6为流量控制装置,7为控制电路,其中包含有处理器、信号调理电路、频率/占空比调节电路、功率控制电路、输出变压电路、电流电压采样电路、流量控制电路、温度采集加热控制电路,8为压电薄膜传感器。
以下结合附图,详细说明本申请实施例提供的技术方案。需要说明的是,本申请实施例中,本申请实施例提供的一种基于超声波的快速病理组织处理方法的执行主体可以为病理组织处理设备中的处理器,在本申请实施例中不做具体限定。以下以病理组织处理设备中的处理器作为执行主体为例进行阐述。
图2为本申请实施例提供的一种基于超声波的快速病理组织处理方法的流程图,如图2所示,该方法可以包括S201-S205:
S201、获取压电薄膜传感器在预设周期内采集的振动信号。
在本申请实施例中,压电薄膜传感器设置于病理组织处理设备的处理缸,如图1所示。也就是说,病理组织处理设备的处理缸的外壁表面直接或间接地贴有压电薄膜传感器,该压电薄膜传感器可以采用聚偏二氟乙烯(polyvinylidene fluoride,PVDF)压电薄膜传感器。压电薄膜传感器的设置位置可以如图1中压电薄膜位置相同,也可以贴在其他位置,本申请对于压电薄膜传感器贴在处理缸外侧表面的位置不作限定。
需要说明的是,在病理组织处理设备进行处理病理组织过程中,压电薄膜传感器的位置不能随意改变。使用过程中,如果压电薄膜传感器的位置被改变可能一定程度上影响病理组织处理设备处理病理组织时的效果。
此外,在病理组织处理设备工作过程中,压电薄膜传感器按照预设周期采集处理缸的振动信号,该振动信号为压电薄膜传感器采集的处理缸的振动信号。
S202、基于振动信号,确定第一谐振频率点对应的第一振动信号。
其中,第一谐振频率点为病理组织处理设备的超声换能器发出的超声波的谐振频率。
在本申请的一些实施例中,超声换能器具备多个谐振频率,在多个谐振频率中可以确定第一谐振频率点、第二谐振频率点。在病理组织处理设备处理病理组织过程中,处理器可以根据第一谐振频率点的频率值,从获取的振动信号中确定第一谐振频率点对应的第一振动信号。也就是说,第一振动信号为在超声换能器发出的超声波为第一谐振频率点的频率值时对应的振动信号。例如,确定超声换能器发出第一谐振频率点的频率值对应的超声波的时间为T1-T2,则根据该时间T1-T2即可从振动信号确定第一振动信号。
病理组织处理设备中的信号调理电路可以对压电薄膜传感器采集的处理缸的第一振动信号进行信号调理,例如电荷放大、滤波等调理。
S203、根据第一振动信号,确定第一谐振频率点的振幅表征值。
具体地,如图3所示,根据第一振动信号确定第一谐振频率的振幅表征值,可以通过以下方法实现:
S301、对第一谐振频率点对应的第一振动信号进行采样,得到采样信号。
其中,第一振动信号为在超声换能器发出的超声波为第一谐振频率点的频率值时对应的振动信号。
由本领域技术人员可知,由于压电薄膜传感器采集的振动信号为模拟信号,而处理器并不能直接处理模拟信号,因此需要对第一振动信号进行处理,以得到处理器能够识别处理的数字信号。故,本申请的一些实施例中,需要先对第一谐振频率点对应的第一振动信号进行采样,得到采样信号。例如,对第一振动信号进行采样,得到第一振动信号对应的N个采样信号。
S302、根据采样信号,以及第一预设公式,确定第一谐振频率点的振幅表征值。
在本申请的一些实施例中,处理器根据采样信号,以及第一预设公式,确定第一谐振频率点的振幅表征值。
第一预设公式为:
其中,X为振幅表征值,N为采样信号的个数,并且N=2i(i=1,2,3…),x(n)为第一振动信号的第n个采样信号,f为超声换能器的第一谐振频率点的频率值。
在本申请实施例中,f为第一谐振频率点的频率值。本领域技术人员可知的是,在实际的操作过程中,f的值不仅可以是第一谐振频率点的频率值,也可以是其他频率点对应的频率值。例如,超声换能器的输出频率值B属于谐振频率,但是频率值B并不是第一谐振频率点的频率值C,第一预设公式计算时,可以用B作为f的值。
第一预设公式根据离散傅里叶变换公式进行推导得到的,推导过程如下:
其中,X(k)表示傅里叶变换后的数据,x(n)为第一振动信号的第n个采样信号,公式中x(n)可以为复信号,实际当中x(n)都是实信号,即虚部为0,此时公式可以展开为:
由于计算的是振幅表征值,对上述公式的值取绝对值,从而得到第一预设公式。
S204、基于振幅表征值以及预设的最佳振幅表征值,确定超声换能器的占空比调整值。
在本申请的一些实施例中,根据振幅表征值以及预设的最佳振幅表征值,可以通过第二预设公式,确定超声换能器的占空比调整值。处理器可以通过占空比调整值,调整超声换能器的占空比,进而调整超声换能器的输出功率。
计算占空比调整值是根据第二预设公式计算得到的,第二预设公式为:
其中,W表示占空比调整值,K表示比例放大系数,M表示当前占空比值,X表示所述振幅表征值,X0表示所述预设的最佳振幅表征值。
S205、在振幅表征值以及预设的最佳振幅表征值不匹配的情况下,根据占空比调整值,控制超声换能器的输出功率。
在本申请的一些实施例中,处理器中存储有预设的最佳振幅表征值,在根据第一预设公式计算得到振幅表征值后,首先确定振幅表征值与最佳振幅表征值是否匹配。在振幅表征值以及预设的最佳振幅表征值不匹配的情况下,处理器根据占空比调整值,调整超声换能器的占空比。
判断振幅表征值与最佳振幅表征值是否匹配的方式,可以根据以下方案进行。例如根据振幅表征值与最佳振幅表征值的差值的绝对值与一预设数值比较大小,在差值的绝对值小于预设数值时,振幅表征值与最佳振幅表征值匹配,否则振幅表征值与最佳振幅表征值不匹配。
需要说明的是,振幅表征值与最佳振幅表征值是否匹配也可以采用其他方式进行判断,本申请只举例给出一种判断方式并不代表本申请实施例只能采取上述一种判断方式。
此外,最佳振幅表征值是通过对上述病理组织处理设备进行若干次试验后,根据实验数据得到的处理病理组织效果最好的振幅表征值。需要说明的是,需要保持压电薄膜传感器的位置与确定最佳振幅表征值过程中的压电薄膜传感器的位置相同。
在振幅表征值与最佳振幅表征值不匹配的情况下,说明此时的超声波的功率不是当前时刻处理病理组织的最佳功率,需要对超声波的功率进行调整,以使得振幅表征值与最佳振幅表征值匹配,也就是说,提高病理组织的处理效果。
在通过上述压电薄膜传感器不断地获取振动信号的过程中,处理器可以不断地得到振幅表征值及相应的占空比调整值,从而超声换能器的输出功率持续被调整,直到振幅表征值与最佳振幅表征值相匹配的情况下,处理器停止对超声换能器的占空比调整,此时超声换能器的输出功率可以稳定输出。
通过上述方案,本申请通过压电薄膜传感器获取病理组织处理设备的处理缸的振动信号,处理器根据振动信号进行处理确定振幅表征值,并确定振幅表征值是否与处理病理组织的最佳振幅表征值匹配。,在不匹配的情况下,说明需要改变超声换能器的输出功率。通过对超声换能器输出功率的调整,可以避免在超声换能器输出功率较小时,导致病理组织处理的不完善或者病理组织处理时间过长,也可以避免超声换能器输出功率过大,造成病理组织损伤等问题。也就是说,对超声换能器的输出功率进行实时调节,以实现在保证病理组织完整性的基础上,尽可能的缩短病理组织的处理时间,提高病理组织处理效果。
本申请实施例中,病理组织处理设备使用过程中,超声换能器的谐振频率会受到液面高度、自身发热、缸内试剂温度变化等因素的影响,从而发生偏移,当谐振频率偏移到一定程度时,超声换能器可能发生停振现象,影响病理组织处理的稳定性。
基于此,为解决上述技术问题,本申请实施例还提供的一种基于超声波的快速病理组织处理方法,还可以包括以下步骤(如图4所示):
S401、获取超声换能器的电流数据以及超声换能器的电压数据。
在本申请实施例中,电流电压采样电路可以对超声换能器的电流及电压进行采样,得到相应的电流数据及电压数据。处理器可以获取电流电压采样电路采集的电流数据以及电压数据。
S402、基于电流数据以及电压数据,判断超声换能器的电流与超声换能器的电压是否存在相位差。
处理器可以对电流数据及电压数据进行处理,以判断超声换能器的电流与电压是否存在相位差。
需要说明的是,电流数据为用于描述超声换能器的电流的数据,电压数据为用于描述超声换能器的电压的数据。
S403、在超声换能器的电流与超声换能器的电压存在相位差的情况下,基于相位差调整超声换能器的输出频率,直至得到第二谐振频率点。
其中,第二谐振频率点对应的电流与电压之间不存在相位差。
在本申请的一些实施例中,超声换能器的电流与超声换能器的电压存在相位差,则说明谐振频率发生了偏移,需要调节超声换能器的输出频率,直至得到第二谐振频率点。
如图5所示,当超声换能器的输出频率偏移了第一谐振频率点f0为中心的谐振频率,此时,处理器判断超声换能器的电流与电压存在相位差,将超声换能器的输出频率在一定范围内进行调节,一直到超声换能器的输出频率调节至以第二谐振频率点f′0为中心的谐振频率。
此外,在判断超声换能器的电流与超声换能器的电压是否存在相位差时,处理器还可以确定电流与电压超前或滞后的情况,例如电流超前,在一定范围内增大超声换能器的输出频率。如果增大超声换能器的输出频率后,超声换能器的电流仍然超前,在一定范围内再次增大超声换能器的输出频率,直至得到第二谐振频率点,并且在得到第二谐振频率点的同时,超声换能器的电流与超声换能器的电压之间不存在相位差。相对地,电压超前的情况下,需要减少超声换能器的输出频率,直至超声换能器的电流与超声换能器的电压不存在相位差。
由于,在病理组织处理过程中,病理组织细胞内的水分不断渗出,将造成病理组织周围的处理试剂浓度降低,影响病理组织的处理效果。
针对上述问题,本申请实施例还提供的一种基于超声波的快速病理组织处理方法,如图6所示,还可以包括以下步骤:
S601、根据第一谐振频率点对应的频率值,以及相应的预设区间范围,确定第一频率值以及第二频率值。
其中,第一谐振频率点对应的频率值大于第一频率值且小于第二频率值;
在本申请的一些实施例中,如图5所示,超声换能器在第一谐振频率点f0工作的情况下,在预设区间范围内确定第一频率值f1以及第二频率值f2,其中第一频率值可以小于第一谐振频率点的频率值,第二频率值可以大于第一谐振频率点的频率值。
S602、控制所述超声换能器发出的超声波的输出频率在所述第一频率值与第二频率值之间的取值范围内,按照预设规则变化,以实现扫频,以使所述处理试剂进行微搅拌,促进所述处理试剂浓度相对均匀。
在本申请的一些实施例中,超声换能器的输出频率在预设区间范围内[f1,f2]以第一谐振频率点f0为中心进行扫频,预设规则可以是超声换能器的输出频率从第一频率值逐渐增大至第二频率值,再从第二频率值逐渐减小至第一频率值。同理可以得到超声换能器在第二谐振频率点f′0工作情况下,在预设区间范围内[f′1,f′2]进行扫频工作的原理。
通过S601-S602可以使超声波的波长在较小的范围内变化,对处理试剂进行微搅拌,使病理组织细胞膜外近距离的处理试剂保持相对恒定的浓度,稳定了细胞膜内外的渗透压、加速了分子运动。本申请实施例中,超声换能器具备多个不同的谐振频率以及可以执行扫频工作,可以保证处理缸内的超声波声场的均匀性,即使在处理缸内产生驻波的情况下,病理组织处理设备仍能够保证病理组织处理效果。
通过上述方案中超声换能器的多个谐振频率及扫频,对病理组织处理产生的具体效果,如图7所示,9为处理试剂的液面高度,处理试剂在超声波声场中产生了驻波,病理组织10在驻波波腹11和驻波波节12处,在超声换能器的多个谐振频率及扫频作用下,超声波对于病理组织处理差异性明显减少,降低了驻波对病理组织处理效果的影响。
本申请为更好地保证病理组织处理的效果,本申请实施例提供的基于超声波的快速病理组织处理方法还可以包括以下方法,如图8所示:
S801、获取设置于处理缸内的病理组织的样本信息以及确定病理组织处理所需的目标温度、病理组织处理所需的处理试剂的膨胀系数。
在本申请的一些实施例中,该样本信息包括单个病理组织所需最低试剂量,包埋盒的数量以及单个包埋盒体积。病理组织的样本数量与包埋盒的数量相对应。
S802、根据病理组织的样本信息以及目标温度和膨胀系数,确定在处理缸内所述处理试剂的最低液面高度。
在本申请的一些实施例中,根据病理组织的样本信息、所述包埋盒的状态信息、以及目标温度和膨胀系数,处理器可以确定处理试剂加热到目标温度时,处理缸内的处理试剂的最低液面高度。最低液面高度根据以下公式确定:
其中,Hi为最低液面高度,k为单个病理组织所需最低试剂量,Vb为单个包埋盒体积,x为样本数量也是包埋盒数量,β为处理试剂的膨胀系数,ΔT为室温到目标温度的温度变化量,S为处理缸的底面积。
S803、基于最低液面高度,控制流量控制装置向处理缸注入相应的处理试剂。
具体地,基于最低液面高度,控制流量控制装置向处理缸注入相应的处理试剂,如图9所示,可以通过以下方式实现:
S901、根据处理试剂中超声波的传播速度及第一谐振频率点的频率值,确定处理试剂中超声波的最大波长。
首先,可以先获取处理试剂的类别,并根据处理试剂的类别确定在处理试剂中超声波的传播速度。
然后,根据第一谐振频率点的频率值及处理试剂中超声波的传播速度,计算在处理试剂中超声波的最大波长,具体参见以下公式:
其中,λ0为在处理试剂中超声波的最大波长,c0为处理试剂中超声波的传播速度,f为第一谐振频率点的频率值。
S902、根据最低液面高度及处理试剂中超声波的最大波长,确定抑制驻波判别值。
其中,抑制驻波判别值用于表示最低液面高度是否能够满足抑制驻波条件。抑制驻波判别值是由以下抑制驻波判别式计算得到的数值,进行取整运算之后得到的:
S903、在抑制驻波判别值为奇数的情况下,根据抑制驻波判别值确定第一中间值;并根据最大波长、处理缸的底面积以及第一中间值,确定处理试剂的加载量。
其中,第一中间值为与所述抑制驻波判别值最接近的奇数值,且第一中间值大于抑制驻波判别值。
具体地,对抑制驻波判别值为奇数的情况下,确定第一中间值,该第一中间值为抑制驻波判别值最接近的奇数值。例如,抑制驻波判别值取整后的数值为3,则第一中间值为5。
根据第一中间值、处理缸底面积、最低页面高度、超声波波长,确定处理试剂的加载量,具体参见以下公式:
S904、在抑制驻波判别值为偶数的情况下,根据抑制驻波判别值确定第二中间值;并根据最大波长、处理缸的底面积以及第二中间值,确定处理试剂的加载量。
其中,第二中间值为与抑制驻波判别值最接近的奇数值,且第二中间值大于抑制驻波判别值。
具体地,对抑制驻波判别值为偶数的情况下,确定第二中间值,该第二中间值为抑制驻波判别值最接近的奇数值。例如,抑制驻波判别值取整后的数值6为,则第二中间值为7。
根据第二中间值、处理缸底面积、最低页面高度、超声波波长,确定处理试剂的加载量,具体参见以下公式:
S905、基于处理试剂的加载量,控制流量控制装置,向处理缸添加相应的处理试剂。
具体地,处理器根据计算得到的处理试剂加载量,控制流量控制装置向处理缸内添加相应加载量的处理试剂。
通过上述方案,可以有效的控制处理试剂的加载量,保证不同处理量的组织在同比例实际的环境下进行组织处理,同时控制处理试剂的液面高度规避处理试剂中超声场内驻波的产生,使得病理组织处理环境内的声强相对均匀。
本申请实施例中,为了给处理试剂提供适宜的温度场,本申请提供的基于超声波的快速病理组织处理方法还包括S1001-S1003,如图10所示:
S1001、在处理试剂添加至处理缸的情况下,获取设置于处理缸内的温度传感器采集的处理试剂的温度。
在本申请的一些实施例中,在处理缸添加了上述加载量的处理试剂的情况下,通过温度传感器获取处理缸内处理试剂的温度。
S1002、判断处理试剂的温度是否与目标温度匹配。
在本申请的一些实施例中,处理器预测有处理试剂的目标温度,根据温度传感器采集的处理试剂的温度,判断二者是否匹配。需要说明的是,处理试剂的温度在目标温度的一区间范围内,则判断二者匹配,此区间范围以目标温度为中间值,即处理试剂的温度与目标温度的温度值在一定范围内近似或相等。
S1003、在处理试剂的温度与目标温度不匹配的情况下,控制加热设备加热处理试剂,以使处理试剂的温度与目标温度匹配。
其中,所述加热设备采用比例积分微分PID控制加热所述处理试剂,以使所述处理试剂的温度与所述目标温度匹配的情况下保证温度恒定。
在本申请的一些实施例中,在处理试剂的温度与目标温度不匹配时,控制加热设备对处理试剂加热。加热设备采用比例积分微分PID控制加热所述处理试剂,以使所述处理试剂的温度与所述目标温度匹配的情况下保证温度恒定。设定的目标温度例如52摄氏度,可以避免处理试剂例如丙酮,达到沸点,造成试剂组分发生变化。
此外,处理缸有密闭缸盖,密闭缸盖可以保证在加热处理试剂过程中,温度升温至目标温度的时间更短,同时降低了处理试剂挥发程度,保证处理试剂浓度不会变化。
而且,为了处理试剂加热时,处理试剂的温度升温均匀,并缩减处理试剂的升温时长。本申请还采取了以下实施例:
控制超声换能器发出的超声波的输出频率小于第一预设阈值。以及控制超声换能器的输出功率大于第二预设阈值,以使处理试剂进行搅拌,以加快处理试剂在处理缸内部空间中的热交换。
在本申请的一些实施例中,处理器控制超声换能器的输出频率为低频并且输出功率调节额定输出功率的60%以上。此时,超声换能器可以使处理缸内的处理试剂产生剧烈的搅拌作用,从而加速了处理缸内部空间的处理试剂冷热区域的热交换,保证了处理试剂升温过程中温度的均匀性。
本申请通过病理组织处理设备进行病理组织处理,对于处理病理组织的处理试剂进行合理地添加,抑制驻波产生,提高病理组织处理效果。在病理组织处理过程中,根据处理缸的振幅,调整超声换能器的输出功率,保证病理组织不被损伤,提高病理组织处理的效率。并且,通过对处理试剂温度控制及处理试剂浓度均匀性调节,进一步地保证病理组织处理的程度统一。本申请实施例提供了均匀的超声场和温度场,使病理组织处理环境内没有能量极大点,保护了病理组织蛋白安全,避免抗原丢失,保护了抗原的完整和有效性,提高了病理组织处理效果。
基于同样的发明构思,本申请实施例还提供了一种与上述方法对应的装置。
图11为本申请实施例提供的一种基于超声波的快速病理组织处理装置1100的结构示意图,如图11所示,该装置1100包括:
获取模块1101,用于获取压电薄膜传感器在预设周期内采集的振动信号。压电薄膜传感器设置于病理组织处理设备的处理缸,振动信号为压电薄膜传感器采集的处理缸的振动信号。第一确定模块1102,用于基于振动信号,确定第一谐振频率点对应的第一振动信号。其中,第一谐振频率点为病理组织处理设备的超声换能器发出的超声波的谐振频率。第二确定模块1103,用于根据第一振动信号,确定第一谐振频率点的振幅表征值。第三确定模块1104,用于基于振幅表征值以及预设的最佳振幅表征值,确定超声换能器的占空比调整值。控制模块1105,用于在振幅表征值以及预设的最佳振幅表征值不匹配的情况下,根据占空比调整值,控制超声换能器的输出功率。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请实施例提供的装置与方法是一一对应的,因此,装置也具有与其对应的方法类似的有益技术效果,由于上面已经对方法的有益技术效果进行了详细说明,因此,这里不再赘述装置的有益技术效果。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (10)
1.一种基于超声波的快速病理组织处理方法,其特征在于,所述方法应用于病理组织处理设备,所述方法包括:
获取压电薄膜传感器在预设周期内采集的振动信号;所述压电薄膜传感器设置于所述病理组织处理设备的处理缸,所述振动信号为所述压电薄膜传感器采集的所述处理缸的所述振动信号;
基于所述振动信号,确定第一谐振频率点对应的第一振动信号;其中,所述第一谐振频率点为所述病理组织处理设备的超声换能器发出的超声波的谐振频率;
根据所述第一振动信号,确定所述第一谐振频率点的振幅表征值;
基于所述振幅表征值以及预设的最佳振幅表征值,确定所述超声换能器的占空比调整值;
在所述振幅表征值以及预设的最佳振幅表征值不匹配的情况下,根据所述占空比调整值,控制所述超声换能器的输出功率。
4.根据权利要求1所述方法,其特征在于,所述获取压电薄膜传感器在预设周期内采集的振动信号之前,所述方法还包括:
获取设置于所述处理缸内的病理组织的样本信息;
所述样本信息包括:单个病理组织所需最低试剂量,包埋盒的数量以及单个包埋盒体积;
以及确定所述病理组织处理所需的目标温度、病理组织处理所需的处理试剂的膨胀系数;
根据所述病理组织的样本信息以及所述目标温度和膨胀系数,确定在所述处理缸内所述处理试剂的最低液面高度;
基于所述最低液面高度,控制流量控制装置向所述处理缸注入相应的处理试剂。
5.根据权利要求4所述方法,其特征在于,所述基于所述最低液面高度,控制流量控制装置向所述处理缸注入相应的处理试剂,具体包括:
根据所述处理试剂中超声波的传播速度及所述第一谐振频率点的频率值,确定所述处理试剂中超声波的最大波长;
根据所述最低液面高度及所述处理试剂中超声波的最大波长,确定抑制驻波判别值;其中,所述抑制驻波判别值用于表示所述最低液面高度是否能够满足抑制驻波条件;
在所述抑制驻波判别值为奇数的情况下,根据所述抑制驻波判别值确定第一中间值;并根据所述最大波长、所述处理缸的底面积以及所述第一中间值,确定所述处理试剂的加载量;
其中,所述第一中间值为与所述抑制驻波判别值最接近的奇数值,且所述第一中间值大于所述抑制驻波判别值;
在所述抑制驻波判别值为偶数的情况下,根据所述抑制驻波判别值确定第二中间值;并根据所述最大波长、所述处理缸的底面积以及所述第二中间值,确定所述处理试剂的加载量;
其中,所述第二中间值为与所述抑制驻波判别值最接近的奇数值,且所述第二中间值大于所述抑制驻波判别值;
基于所述处理试剂的加载量,控制流量控制装置,向所述处理缸添加相应的处理试剂。
6.根据权利要求5所述的方法,其特征在于,所述方法还包括:
在所述处理试剂添加至所述处理缸的情况下,获取设置于所述处理缸内的温度传感器采集的所述处理试剂的温度;
判断所述处理试剂的温度是否与目标温度匹配;
在所述处理试剂的温度与所述目标温度不匹配的情况下,控制加热设备加热所述处理试剂,以使所述处理试剂的温度与所述目标温度匹配;
其中,所述加热设备采用比例积分微分PID控制加热所述处理试剂,以使所述处理试剂的温度与所述目标温度匹配的情况下保证温度恒定。
7.根据权利要求6所述方法,其特征在于,所述在所述处理试剂的温度与所述目标温度的不匹配情况下,控制加热设备加热所述处理试剂,以使所述处理试剂的温度与所述目标温度匹配,所述方法还包括:
控制所述超声换能器发出的超声波的输出频率小于第一预设阈值;以及
控制所述超声换能器的输出功率大于第二预设阈值,以使所述处理试剂进行搅拌,以加快所述处理试剂在所述处理缸内部空间中的热交换。
8.根据权利要求1所述方法,其特征在于,所述方法还包括:
获取所述超声换能器的电流数据以及所述超声换能器的电压数据;
基于所述电流数据以及所述电压数据,判断所述超声换能器的电流与所述超声换能器的电压之间是否存在相位差;
在所述超声换能器的电流与所述超声换能器的电压存在相位差的情况下,基于所述相位差调整所述超声换能器的输出频率,直至得到第二谐振频率点;其中,所述第二谐振频率点对应的电流与电压之间不存在相位差。
9.根据权利要求1所述方法,其特征在于,所述方法还包括:
根据第一谐振频率点对应的频率值,以及相应的预设区间范围,确定第一频率值以及第二频率值;其中,所述第一谐振频率点对应的频率值大于第一频率值且小于第二频率值;
控制所述超声换能器发出的超声波的输出频率在所述第一频率值与第二频率值之间的取值范围内,按照预设规则变化,以实现扫频,以使所述处理试剂进行微搅拌,促进所述处理试剂浓度相对均匀。
10.一种基于超声波的快速病理组织处理装置,其特征在于,所述装置包括:
获取模块,用于获取压电薄膜传感器在预设周期内采集的振动信号;所述压电薄膜传感器设置于所述病理组织处理设备的处理缸,所述振动信号为所述压电薄膜传感器采集的所述处理缸的所述振动信号;
第一确定模块,用于基于所述振动信号,确定第一谐振频率点对应的第一振动信号;其中,所述第一谐振频率点为所述病理组织处理设备的超声换能器发出的超声波的谐振频率;
第二确定模块,用于根据所述第一振动信号,确定所述第一谐振频率点的振幅表征值;
第三确定模块,用于基于所述振幅表征值以及预设的最佳振幅表征值,确定所述超声换能器的占空比调整值;
控制模块,用于在所述振幅表征值以及预设的最佳振幅表征值不匹配的情况下,根据所述占空比调整值,控制所述超声换能器的输出功率。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110190805.7A CN113029324B (zh) | 2021-02-20 | 2021-02-20 | 一种基于超声波的快速病理组织处理方法及装置 |
PCT/CN2021/137678 WO2022174661A1 (zh) | 2021-02-20 | 2021-12-14 | 一种基于超声波的快速病理组织处理方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110190805.7A CN113029324B (zh) | 2021-02-20 | 2021-02-20 | 一种基于超声波的快速病理组织处理方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113029324A true CN113029324A (zh) | 2021-06-25 |
CN113029324B CN113029324B (zh) | 2022-06-10 |
Family
ID=76461340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110190805.7A Active CN113029324B (zh) | 2021-02-20 | 2021-02-20 | 一种基于超声波的快速病理组织处理方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113029324B (zh) |
WO (1) | WO2022174661A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113633900A (zh) * | 2021-08-04 | 2021-11-12 | 四川泰猷科技有限公司 | 基于医用超声治疗装置的不同频段频率和功率调整方法 |
WO2022174661A1 (zh) * | 2021-02-20 | 2022-08-25 | 山东骏腾医疗科技有限公司 | 一种基于超声波的快速病理组织处理方法及装置 |
CN116381256A (zh) * | 2023-02-28 | 2023-07-04 | 迈克医疗电子有限公司 | 样本分析仪 |
CN117531239A (zh) * | 2024-01-10 | 2024-02-09 | 蓝炬生物技术(杭州)有限公司 | 一种生物活性物质提取控制方法与系统 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070167983A1 (en) * | 2003-10-01 | 2007-07-19 | Robert Vago | Method and device for subaqueous ultrasonic irradiation of living tissue |
US20100126275A1 (en) * | 2008-11-24 | 2010-05-27 | Greg Leyh | Self-calibrating ultrasound systems and methods |
CN202223769U (zh) * | 2011-10-09 | 2012-05-23 | 北京汇福康医疗技术有限公司 | 超声换能器的声场监控装置 |
CN103180057A (zh) * | 2011-05-03 | 2013-06-26 | 安德烈·亚历山大罗维奇·戈特洛夫 | 液体介质及液体介质内物质的超声空化处理方法 |
CN104764522A (zh) * | 2015-04-08 | 2015-07-08 | 重庆医科大学 | 一种超声功率测量方法及装置 |
CN106950832A (zh) * | 2017-03-08 | 2017-07-14 | 杭州电子科技大学 | 一种利用空化强度反馈的超声分散控制装置及方法 |
CN206891816U (zh) * | 2017-06-20 | 2018-01-16 | 山东骏腾医疗科技有限公司 | 一种综合性全自动快速组织处理系统 |
CN111381529A (zh) * | 2018-12-29 | 2020-07-07 | 重庆西山科技股份有限公司 | 频率控制电路、方法、装置及超声波换能器系统 |
CN111420308A (zh) * | 2020-04-16 | 2020-07-17 | 重庆邮电大学 | 一种基于频率自动跟踪的超声理疗仪及频率自动跟踪方法 |
CN111596549A (zh) * | 2020-06-18 | 2020-08-28 | 杭州国彪超声设备有限公司 | 一种用于硬脆材料超声加工的鲁棒自适应振幅控制方法 |
US20200324225A1 (en) * | 2017-05-04 | 2020-10-15 | Flodesign Sonics, Inc. | Acoustic transducer controller configuration |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1238715A1 (en) * | 2001-03-05 | 2002-09-11 | Prokic Miodrag | Multifrequency ultrasonic structural actuators |
US7018546B2 (en) * | 2003-03-06 | 2006-03-28 | Hitachi, Ltd. | Water treatment method and water treatment device |
DE102012215993A1 (de) * | 2012-09-10 | 2014-03-13 | Weber Ultrasonics Gmbh | Ultraschallsystem, Ultraschallgenerator und Verfahren zum Betreiben eines solchen |
CN113029324B (zh) * | 2021-02-20 | 2022-06-10 | 山东骏腾医疗科技有限公司 | 一种基于超声波的快速病理组织处理方法及装置 |
-
2021
- 2021-02-20 CN CN202110190805.7A patent/CN113029324B/zh active Active
- 2021-12-14 WO PCT/CN2021/137678 patent/WO2022174661A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070167983A1 (en) * | 2003-10-01 | 2007-07-19 | Robert Vago | Method and device for subaqueous ultrasonic irradiation of living tissue |
US20100126275A1 (en) * | 2008-11-24 | 2010-05-27 | Greg Leyh | Self-calibrating ultrasound systems and methods |
CN103180057A (zh) * | 2011-05-03 | 2013-06-26 | 安德烈·亚历山大罗维奇·戈特洛夫 | 液体介质及液体介质内物质的超声空化处理方法 |
CN202223769U (zh) * | 2011-10-09 | 2012-05-23 | 北京汇福康医疗技术有限公司 | 超声换能器的声场监控装置 |
CN104764522A (zh) * | 2015-04-08 | 2015-07-08 | 重庆医科大学 | 一种超声功率测量方法及装置 |
CN106950832A (zh) * | 2017-03-08 | 2017-07-14 | 杭州电子科技大学 | 一种利用空化强度反馈的超声分散控制装置及方法 |
US20200324225A1 (en) * | 2017-05-04 | 2020-10-15 | Flodesign Sonics, Inc. | Acoustic transducer controller configuration |
CN206891816U (zh) * | 2017-06-20 | 2018-01-16 | 山东骏腾医疗科技有限公司 | 一种综合性全自动快速组织处理系统 |
CN111381529A (zh) * | 2018-12-29 | 2020-07-07 | 重庆西山科技股份有限公司 | 频率控制电路、方法、装置及超声波换能器系统 |
CN111420308A (zh) * | 2020-04-16 | 2020-07-17 | 重庆邮电大学 | 一种基于频率自动跟踪的超声理疗仪及频率自动跟踪方法 |
CN111596549A (zh) * | 2020-06-18 | 2020-08-28 | 杭州国彪超声设备有限公司 | 一种用于硬脆材料超声加工的鲁棒自适应振幅控制方法 |
Non-Patent Citations (2)
Title |
---|
孙玉芬等: "《全自动快速组织处理系统在病理诊断中的应用》", 《中国医学装备大会暨2019医学装备展览会论文汇编》 * |
马立康等: "《超声空化现象影响因素的实验研究》", 《应用声学》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022174661A1 (zh) * | 2021-02-20 | 2022-08-25 | 山东骏腾医疗科技有限公司 | 一种基于超声波的快速病理组织处理方法及装置 |
CN113633900A (zh) * | 2021-08-04 | 2021-11-12 | 四川泰猷科技有限公司 | 基于医用超声治疗装置的不同频段频率和功率调整方法 |
CN113633900B (zh) * | 2021-08-04 | 2024-01-26 | 四川泰猷科技有限公司 | 基于医用超声治疗装置的不同频段频率和功率调整方法 |
CN116381256A (zh) * | 2023-02-28 | 2023-07-04 | 迈克医疗电子有限公司 | 样本分析仪 |
CN116381256B (zh) * | 2023-02-28 | 2024-05-14 | 迈克医疗电子有限公司 | 样本分析仪 |
CN117531239A (zh) * | 2024-01-10 | 2024-02-09 | 蓝炬生物技术(杭州)有限公司 | 一种生物活性物质提取控制方法与系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113029324B (zh) | 2022-06-10 |
WO2022174661A1 (zh) | 2022-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113029324B (zh) | 一种基于超声波的快速病理组织处理方法及装置 | |
Hodnett et al. | High-frequency acoustic emissions generated by a 20 kHz sonochemical horn processor detected using a novel broadband acoustic sensor: a preliminary study | |
US20130066240A1 (en) | Ultrasound transducer for selectively generating ultrasound waves and heat | |
Zhang et al. | FEM simulation and comparison of PMN-PT single crystals based phased array ultrasonic transducer by alternating current poling and direct current poling | |
Webb et al. | The effect of temperature and viscoelasticity on cavitation dynamics during ultrasonic ablation | |
Martini et al. | Bubble and crystal formation in lipid systems during high-intensity insonation | |
CN104887266B (zh) | 基于面阵的小区域三维被动空化成像及三维复合成像方法 | |
Saalbach et al. | Closed loop cavitation control–A step towards sonomechatronics | |
Baddour et al. | The fluid and elastic nature of nucleated cells: Implications from the cellular backscatter response | |
Guillermin et al. | Quantitative non-linear ultrasonic imaging of targets with significant acoustic impedance contrast—An experimental study | |
Lin et al. | Characteristics of modal sound radiation of finite cylindrical shells | |
KR101441179B1 (ko) | 초음파 배양 접시 및 그것을 이용한 초음파 모니터링 시스템 | |
Uchida et al. | Development of high ultrasonic power measurement technique by calorimetric method using water as heating elements for high ultrasonic power standard | |
CN106471152B (zh) | 膜厚控制装置、膜厚控制方法和成膜装置 | |
CN113040814A (zh) | 超声微泡空化设备的成像处理方法及成像处理系统 | |
EP2796208A1 (en) | Method for controlling an acoustic cell | |
CN110464350B (zh) | 微波显微成像方法、装置及系统 | |
KR20150008259A (ko) | 영상 처리 유닛, 초음파 영상 장치 및 영상 처리 방법 | |
CN109009107B (zh) | 一种乳腺成像方法及其系统、计算机可读存储介质 | |
Liu et al. | Theoretical and experimental study of the third-order nonlinearity parameter C/A for biological media | |
JP2017070488A (ja) | 被検体情報取得装置 | |
US10502717B2 (en) | Method and system for measuring a wideband loop sensitivity for an acoustic transducer | |
JP2006527081A (ja) | 粒子除去のための均一なキャビテーション | |
Okada et al. | Influence of tough hydrophone shapes with titanium front plate and hydrothermal PZT thick film on distribution of acoustic bubbles around focal point of HIFU transducer | |
Tani et al. | Quantitative evaluation of hemolysis in bovine red blood cells caused by acoustic cavitation under pulsed ultrasound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |