CN113021886B - A 3D printing nozzle structure that realizes the supercooling of continuous fiber self-reinforced composites - Google Patents
A 3D printing nozzle structure that realizes the supercooling of continuous fiber self-reinforced composites Download PDFInfo
- Publication number
- CN113021886B CN113021886B CN202110253699.2A CN202110253699A CN113021886B CN 113021886 B CN113021886 B CN 113021886B CN 202110253699 A CN202110253699 A CN 202110253699A CN 113021886 B CN113021886 B CN 113021886B
- Authority
- CN
- China
- Prior art keywords
- phase
- matrix phase
- liquefier
- temperature
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 58
- 238000010146 3D printing Methods 0.000 title claims abstract description 22
- 239000002131 composite material Substances 0.000 title claims description 8
- 238000004781 supercooling Methods 0.000 title abstract description 10
- 239000011159 matrix material Substances 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 31
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 31
- 239000011208 reinforced composite material Substances 0.000 claims abstract description 26
- 238000002844 melting Methods 0.000 claims abstract description 22
- 230000008018 melting Effects 0.000 claims abstract description 22
- 238000001816 cooling Methods 0.000 claims abstract description 13
- -1 Polyethylene Polymers 0.000 claims description 14
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 14
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 14
- 238000007639 printing Methods 0.000 claims description 13
- 239000002861 polymer material Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 229920001169 thermoplastic Polymers 0.000 claims description 7
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 6
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 6
- 229920002530 polyetherether ketone Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 3
- 239000002585 base Substances 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 3
- 239000004626 polylactic acid Substances 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims 8
- 229920000139 polyethylene terephthalate Polymers 0.000 claims 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims 2
- 229920005601 base polymer Polymers 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 239000004416 thermosoftening plastic Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 229920000642 polymer Polymers 0.000 abstract description 5
- 238000000465 moulding Methods 0.000 abstract description 2
- 230000002787 reinforcement Effects 0.000 description 20
- 238000007731 hot pressing Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 9
- 230000003685 thermal hair damage Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000003733 fiber-reinforced composite Substances 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 238000009730 filament winding Methods 0.000 description 2
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010094 polymer processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
一种实现连续纤维自增强复合材料过冷成形的3D打印喷头结构,包括液化器,液化器下端连接有喷头,基体相由液化器上端进入,经过液化器加热成为熔融态,进入喷头,从液化器到喷头的过程中降温到基体相的熔点以下且未结晶,形成过冷熔体;喷头侧面设有纤维孔,增强相通过纤维孔进入基体相的过冷熔体中,增强相包裹基体相从喷头挤出冷却后固化成形;本发明利用了聚合物过冷度,在3D打印降温过程通过纤维孔引入增强相,自增强复合材料加工温度窗口宽,增强体纤维热无损伤,具有制品尺寸大形状复杂,成型周期短,成本低,生产效率高等优点。
A 3D printing nozzle structure for realizing the supercooling of continuous fiber self-reinforced composite materials, including a liquefier, a nozzle is connected to the lower end of the liquefier, a matrix phase enters from the upper end of the liquefier, and is heated to a molten state by the liquefier, enters the nozzle, and is liquefied. During the process from the nozzle to the nozzle, the temperature is lowered to below the melting point of the matrix phase and does not crystallize, forming a supercooled melt; the side of the nozzle is provided with fiber holes, and the reinforcing phase enters the supercooled melt of the matrix phase through the fiber holes, and the reinforcing phase wraps the matrix phase. It is extruded and cooled from the nozzle and then solidified and formed; the invention utilizes the supercooling degree of the polymer, and introduces the reinforcing phase through the fiber hole during the 3D printing cooling process. The large shape is complex, the molding cycle is short, the cost is low, and the production efficiency is high.
Description
技术领域technical field
本发明涉及连续纤维增强复合材料3D打印技术领域,具体涉及一种实现连续纤维自增强复合材料过冷成形的3D打印喷头结构。The invention relates to the technical field of 3D printing of continuous fiber reinforced composite materials, in particular to a 3D printing nozzle structure for realizing supercooled forming of continuous fiber self-reinforced composite materials.
背景技术Background technique
连续纤维自增强复合材料(单聚合物复合材料)是基体和增强相为同一种或同族聚合物的复合材料,因基体与增强体之间具有较好的界面粘接性和易于回收再利用的特点,与传统纤维增强复合材料相比,纤维自增强复合材料的优势在于把两种化学成分相同,物理性质不同的材料复合在一起,不需要添加改性纤维,可得到优良的界面结合强度,产品密度小,回收利用率高。The continuous fiber self-reinforced composite material (single polymer composite material) is a composite material in which the matrix and the reinforcing phase are the same polymer or the same family of polymers. Compared with traditional fiber reinforced composite materials, the advantage of fiber self-reinforced composite materials is that two materials with the same chemical composition and different physical properties are compounded together without adding modified fibers, and excellent interface bonding strength can be obtained. The product has low density and high recycling rate.
连续纤维自增强复合材料成型方法包括纤维热压法、薄膜嵌入热压法、夹层热压法、纤维缠绕热压法等方法。对于纤维热压法和纤维缠绕热压法中,在成型过程中将热压温度升高到纤维熔点以上使得纤维表层融化内部保持取向,融化部分随后固化成基体相,这种方法的弊端在于加工窗口太窄,且在加工过程中对温度的控制极其严格,选择合适的热压温度,若热压温度过低,表面纤维熔融不充分,不能形成较完整的基体相;热压温度过高,纤维熔化较多,纤维含量减少,最终导致力学性能增强效果不明显;且往往加工温度范围控制在1~2度。而另一类夹层热压法和薄膜嵌入热压法需要基体相和增强相有足够大的熔点差异,才能达到基体相融化而增强相不融化的效果,由于纤维自增强复合材料的基体和增强体属于同一种聚合物材料,熔融温度相差较小,熔点差异通常也在5度以内,在常规聚合物加工熔融温度条件下,在基体中的增强体往往也会产生热损伤,从而降低增强相的力学性能使得增强相无法起到增强作用。The continuous fiber self-reinforced composite material forming methods include fiber hot pressing method, film embedding hot pressing method, sandwich hot pressing method, filament winding hot pressing method and so on. For the fiber hot pressing method and the filament winding hot pressing method, the hot pressing temperature is raised above the melting point of the fiber during the forming process, so that the surface layer of the fiber is melted and the interior is kept oriented, and the melted part is then solidified into the matrix phase. The disadvantage of this method is the processing The window is too narrow, and the temperature control during the processing is extremely strict. Select the appropriate hot-pressing temperature. If the hot-pressing temperature is too low, the surface fibers will not be fully melted, and a relatively complete matrix phase cannot be formed; The fiber melts more and the fiber content decreases, which ultimately leads to an insignificant enhancement of mechanical properties; and the processing temperature range is often controlled at 1 to 2 degrees. The other type of sandwich hot pressing method and film embedding hot pressing method requires a sufficiently large melting point difference between the matrix phase and the reinforcement phase to achieve the effect of melting the matrix phase but not the reinforcement phase. The body belongs to the same polymer material, the difference in melting temperature is small, and the difference in melting point is usually within 5 degrees. Under the conditions of conventional polymer processing melting temperature, the reinforcement in the matrix often also produces thermal damage, thereby reducing the reinforcement phase. The mechanical properties make the reinforcing phase unable to play a reinforcing role.
以上成形方法都存在加工温度窗口较窄和增强相热损伤的弊端,且采用热压的方式存在制品尺寸小形状简单,成型周期长,成本高,生产效率低等缺陷,因此增大纤维自增强复合材料加工温度窗口是发展自增强复合材料的核心问题,也是自增强复合材料的研究难点。The above forming methods all have the disadvantages of a narrow processing temperature window and thermal damage to the reinforcing phase, and the hot pressing method has the defects of small size and simple shape, long forming cycle, high cost and low production efficiency, so increase the fiber self-reinforcing. The processing temperature window of composite materials is the core issue in the development of self-reinforced composite materials, and it is also a difficult research point for self-reinforced composite materials.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的缺点,本发明的目的在于提供了一种实现连续纤维自增强复合材料过冷成形的3D打印喷头结构,自增强复合材料加工温度窗口宽,增强体纤维热无损伤,具有制品尺寸大形状复杂,成型周期短,成本低,生产效率高等优点。In order to overcome the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a 3D printing nozzle structure that realizes the supercooling of continuous fiber self-reinforced composite materials. It has the advantages of large product size and complex shape, short molding cycle, low cost and high production efficiency.
为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种实现连续纤维自增强复合材料过冷成形的3D打印喷头结构,包括液化器2,液化器2下端连接有喷头4,基体相1由液化器2上端进入,经过液化器2加热成为熔融态,进入喷头4,从液化器2到喷头4的过程中降温到基体相1的熔点以下且未结晶,形成过冷熔体;A 3D printing nozzle structure for realizing the supercooling of continuous fiber self-reinforced composite materials, comprising a
喷头4侧面设有纤维孔5,增强相3通过纤维孔5进入基体相1的过冷熔体中,增强相3包裹基体相1从喷头4挤出冷却后固化成形。The side of the nozzle 4 is provided with fiber holes 5, through which the reinforcing
所述的增强相3为连续长纤维,基体相1为树脂,增强相3和基体相1具有同一化学结构,熔点有差异;固化成形的自增强复合材料为物理形态不同的热塑性高分子材料。The reinforcing
所述的热塑性高分子材料包括聚乙烯(PE)基、聚丙烯(PP)基、聚乳酸(PLA)基、尼龙(PA)基、聚甲基丙烯酸甲酯(PMMA)基、聚对苯二甲酸乙醇酯(PET)基、聚对苯二甲酸丁二醇酯(PBT)基、聚萘二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)基的高分子材料。The thermoplastic polymer material includes polyethylene (PE) base, polypropylene (PP) base, polylactic acid (PLA) base, nylon (PA) base, polymethyl methacrylate (PMMA) base, poly(terephthalic acid) Ethyl formate (PET) base, polybutylene terephthalate (PBT) base, polyethylene naphthalate (PEN), polyether ether ketone (PEEK), polyphenylene sulfide (PPS) base of polymer materials.
所述的纤维孔5到喷头4顶部的距离L影响增强相3引入基体相1中的温度,在相同打印温度和降温速度下,L越小,增强相3引入基体相1的温度越高,保证纤维孔5处温度不高于增强相3熔点;L越大,增强相3引入基体相1的温度越低,保证增强相3包裹基体相1挤出喷头之前不固化。The distance L from the fiber hole 5 to the top of the nozzle 4 affects the temperature at which the
所述的纤维孔5的直径D为0.8mm-1.5mm。The diameter D of the fiber hole 5 is 0.8mm-1.5mm.
利用一种实现连续纤维自增强复合材料过冷成形的3D打印喷头结构的方法,包括下列步骤:Utilize a method to realize the 3D printing nozzle structure of continuous fiber self-reinforced composite material supercooling, including the following steps:
1)使用计算机辅助设计软件建立增强复合材料制件三维模型;1) Use computer-aided design software to establish a three-dimensional model of reinforced composite parts;
2)根据3D打印过程中实际降温速率确定纤维孔5的位置;2) Determine the position of the fiber hole 5 according to the actual cooling rate during the 3D printing process;
3)选增强相3、基体相1材料,打印过程中增强相3从纤维孔5处引入,与过冷态基体相1浸渍,从喷头4处挤出固化成形;3) Select the
4)确定打印温度区间。4) Determine the printing temperature range.
相较于现有的技术本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
(1)本发明相较于传统制造自增强复合材料技术,无需模具,能快速高效制造特定、复杂形状的自增强复合材料制件,利用3D打印优势,改变扫描间距、分层厚度等实现力学性能可控。(1) Compared with the traditional technology of manufacturing self-reinforced composite materials, the present invention can quickly and efficiently manufacture self-reinforced composite material parts with specific and complex shapes without the need for molds, and utilizes the advantages of 3D printing to change the scanning distance, layer thickness, etc. to achieve mechanical Performance is controllable.
(2)本发明利用聚合物过冷度,在3D打印降温过程通过纤维孔5引入增强相3,既保证引入的温度低于增强相3熔点,不会对纤维造成热损伤,同时显著增大纤维自增强复合材料的加工温度区间,解决自增强复合材料的核心问题和研究难点。(2) The present invention utilizes the polymer supercooling degree to introduce the reinforcing
(3)本发明控制纤维孔5的位置影响增强相3引入基体相1的温度,进而影响自增强复合材料的力学性能;同时控制降温速率影响自增强复合材料基体相1的结晶温度和结晶度;纤维孔5的位置与降温速率同时影响自增强复合材料加工温度窗口。(3) The present invention controls the position of the fiber hole 5 to influence the temperature at which the
附图说明Description of drawings
图1是本发明一种实现连续纤维自增强复合材料过冷成形的3D打印喷头结构的示意图。FIG. 1 is a schematic diagram of the structure of a 3D printing nozzle for realizing the supercooling of continuous fiber self-reinforced composite materials according to the present invention.
具体实施方式Detailed ways
以下结合附图和实施例对本发明作详细说明。The present invention will be described in detail below with reference to the accompanying drawings and embodiments.
参照图1,一种实现连续纤维自增强复合材料过冷成形的3D打印喷头结构,包括液化器2,液化器2下端连接有喷头4,基体相1由液化器2上端进入,经过液化器2加热成为熔融态,进入喷头4,从液化器2到喷头4的过程中降温到基体相1的熔点以下且未结晶,形成过冷熔体;Referring to FIG. 1, a 3D printing nozzle structure for realizing continuous fiber self-reinforced composite material undercooling includes a
喷头4侧面设有纤维孔5,增强相3通过纤维孔5进入基体相1的过冷熔体中,增强相3包裹基体相1从喷头4挤出冷却后固化成形。The side of the nozzle 4 is provided with fiber holes 5, through which the reinforcing
所述的增强相3为连续长纤维,基体相1为树脂,增强相3和基体相1具有同一化学结构,熔点有差异;固化成形的自增强复合材料为物理形态不同的热塑性高分子材料。The reinforcing
所述的热塑性高分子材料包括聚乙烯(PE)基、聚丙烯(PP)基、聚乳酸(PLA)基、尼龙(PA)基、聚甲基丙烯酸甲酯(PMMA)基、聚对苯二甲酸乙醇酯(PET)基、聚对苯二甲酸丁二醇酯(PBT)基、聚萘二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)基的高分子材料。The thermoplastic polymer material includes polyethylene (PE) base, polypropylene (PP) base, polylactic acid (PLA) base, nylon (PA) base, polymethyl methacrylate (PMMA) base, poly(terephthalic acid) Ethyl formate (PET) base, polybutylene terephthalate (PBT) base, polyethylene naphthalate (PEN), polyether ether ketone (PEEK), polyphenylene sulfide (PPS) base of polymer materials.
所述的纤维孔5到喷头4顶部的距离L影响增强相3引入基体相1中的温度,由于热塑性高分子材料的过冷度与降温速度相关,降温速度越快,温度加工窗口越大,在相同打印温度和降温速度下,L越小,增强相3引入基体相1的温度越高,保证纤维孔5处温度不高于增强相3熔点;L越大,增强相3引入基体相1的温度越低,应保证增强相3包裹基体相1挤出喷头4之前不固化。The distance L from the fiber hole 5 to the top of the nozzle 4 affects the temperature at which the reinforcing
所述的纤维孔5的直径D为0.8mm-1.5mm。The diameter D of the fiber hole 5 is 0.8mm-1.5mm.
利用一种实现连续纤维自增强复合材料过冷成形的3D打印喷头结构的方法,包括下列步骤:Utilize a method to realize the 3D printing nozzle structure of continuous fiber self-reinforced composite material supercooling, including the following steps:
1)根据自增强复合材料制件的要求,使用计算机辅助设计软件CAD的SolidWorks建立180×10×2的增强复合材料制件三维模型,导出为stl格式文件;1) According to the requirements of self-reinforced composite material parts, use SolidWorks of the computer-aided design software CAD to establish a 180×10×2 3D model of reinforced composite material parts, and export them as stl format files;
2)根据3D打印过程中实际降温速率确定纤维孔5的位置,本实施例中纤维孔5到喷头4顶部的距离L为5mm,纤维孔5的直径D为1mm;2) Determine the position of the fiber hole 5 according to the actual cooling rate in the 3D printing process. In this embodiment, the distance L from the fiber hole 5 to the top of the nozzle 4 is 5 mm, and the diameter D of the fiber hole 5 is 1 mm;
3)选择聚苯硫醚PPS纤维为增强相3,聚苯硫醚PPS树脂为基体相1,PPS基体熔点为282度,增强体PPS纤维熔点为284度,打印温度设定285度,打印过程中增强相3从纤维孔5处引入,与过冷态PPS基体相1浸渍,从喷头4处挤出固化成形;3) Select polyphenylene sulfide PPS fiber as the
4)确定打印温度区间:根据实际3D打印过程降温速率,测得PPS基体相1开始结晶温度为192度,增强相3引入基体相1的温度区间在192度-282度,打印温度升高,基体相1开始结晶温度越高,打印温度可升高至310度左右,因此在打印温度区间在282-310度,打印温度远高于增强相3熔点,且增强相3引入基体相1的温度远低于基体相1熔点。4) Determine the printing temperature range: According to the cooling rate of the actual 3D printing process, it is measured that the initial crystallization temperature of the
本发明在基体相1离开液化器2降温过程的喷头4中打出纤维孔5,将增强相3在远低于基体相1熔点的温度下引入熔融态基体相1;利用聚合物过冷度,将加工温度窗口拓宽至几十度,同时在不对增强相3造成的热损伤的条件下获得高流动性基体相1,有利于增强相3与基体相1的浸渍;另一方面利用3D打印制造工艺的优势,能够快速无模具制造特定复杂形状零件制造;缩短以往自增强复合材料制备周期,降低成本;同时解决3D打印增强相3与基体相1界面问题。本发明综合利用自增强复合材料界面和完全可回收优势及3D打印优势,实现纤维增强复合材料快速制造和绿色回收。In the present invention, fiber holes 5 are punched in the nozzle 4 in the cooling process of the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110253699.2A CN113021886B (en) | 2021-03-09 | 2021-03-09 | A 3D printing nozzle structure that realizes the supercooling of continuous fiber self-reinforced composites |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110253699.2A CN113021886B (en) | 2021-03-09 | 2021-03-09 | A 3D printing nozzle structure that realizes the supercooling of continuous fiber self-reinforced composites |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113021886A CN113021886A (en) | 2021-06-25 |
CN113021886B true CN113021886B (en) | 2022-05-06 |
Family
ID=76467122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110253699.2A Active CN113021886B (en) | 2021-03-09 | 2021-03-09 | A 3D printing nozzle structure that realizes the supercooling of continuous fiber self-reinforced composites |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113021886B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115447141B (en) * | 2022-09-08 | 2024-12-13 | 四川大学 | Recycling methods for continuous fiber reinforced thermoplastic 3D printed composites |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107244067A (en) * | 2017-02-28 | 2017-10-13 | 无锡太尔时代科技有限公司 | A kind of shower nozzle of 3D printer |
CN110520275A (en) * | 2017-04-13 | 2019-11-29 | 昕诺飞控股有限公司 | Method for 3D printing 3D article |
CN110920063A (en) * | 2019-12-31 | 2020-03-27 | 西安交通大学 | A method of 3D printing continuous fiber self-reinforced composite materials |
-
2021
- 2021-03-09 CN CN202110253699.2A patent/CN113021886B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107244067A (en) * | 2017-02-28 | 2017-10-13 | 无锡太尔时代科技有限公司 | A kind of shower nozzle of 3D printer |
CN110520275A (en) * | 2017-04-13 | 2019-11-29 | 昕诺飞控股有限公司 | Method for 3D printing 3D article |
CN110920063A (en) * | 2019-12-31 | 2020-03-27 | 西安交通大学 | A method of 3D printing continuous fiber self-reinforced composite materials |
Also Published As
Publication number | Publication date |
---|---|
CN113021886A (en) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102529016B (en) | A kind of single polymer composite product injection molding forming method and equipment | |
CN106553357A (en) | Hollow multi-cavity abnormal shape surface composite material complex structural member integral forming technique | |
KR102208618B1 (en) | Filament resin molded body | |
CN105619841A (en) | Forming method for thermoplastic composite material | |
CN107187078A (en) | A kind of quick die press technology for forming of carbon fiber prepreg | |
CN106751379A (en) | Product prepared by a kind of fused glass pellet technique and preparation method thereof | |
EP3042753B1 (en) | Production method for fiber-reinforced components | |
CN106671411A (en) | Rapid forming method capable of compounding chopped fibers and thermoplastic resin | |
CN113021886B (en) | A 3D printing nozzle structure that realizes the supercooling of continuous fiber self-reinforced composites | |
CN108102120A (en) | Preparation method of continuous carbon fiber reinforced thermoplastic filament for FDM 3D printing | |
CN101508176A (en) | Composite material pulling and extruding molding method by heating baking-path to solidify | |
CN111907055A (en) | Multiple thermoplastic shape memory polymer 4D printing method | |
CN106827587A (en) | The forming method of application and its wing of the HSM techniques in wing shaping | |
CN110920063A (en) | A method of 3D printing continuous fiber self-reinforced composite materials | |
CN111531870A (en) | Additive manufacturing method of high-performance fiber-reinforced thermoplastic resin-based composite material | |
CN202507459U (en) | Injection molding equipment for single-polymer composite material product | |
EP2789445B1 (en) | Method and apparatus for producing a fiber-reinforced plastics casting | |
JP5598931B2 (en) | Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method | |
CN110900962A (en) | Injection mould for producing injection moulded parts and method for producing injection moulded parts | |
CN109291461A (en) | A kind of additive manufacturing method of interlayer fine rod reinforced continuous fiber reinforced composite material | |
CN113929484B (en) | Preparation method of thin-wall special-shaped composite material component | |
US11325281B2 (en) | Rapid manufacturing of tailored preforms | |
CN112372931A (en) | Injection molding process machining method of large composite material reinforced thin-wall support structure | |
CN106217909A (en) | A kind of composite with mark action and preparation method thereof | |
CN103410308A (en) | Plastic formwork of LFT material strip fabric reinforcing core layer and producing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231128 Address after: 518000 301-a10, building 3, Huahan science and Technology Industrial Park, No. 19, LanJin 4th Road, Heping community, Pingshan street, Pingshan District, Shenzhen, Guangdong Patentee after: Shenzhen Yunjiang Zhizao Technology Co.,Ltd. Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28 Patentee before: XI'AN JIAOTONG University |