CN113012949A - 一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法 - Google Patents

一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法 Download PDF

Info

Publication number
CN113012949A
CN113012949A CN202110227640.6A CN202110227640A CN113012949A CN 113012949 A CN113012949 A CN 113012949A CN 202110227640 A CN202110227640 A CN 202110227640A CN 113012949 A CN113012949 A CN 113012949A
Authority
CN
China
Prior art keywords
mwcnts
gonrs
solution
ldh
gonrsco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110227640.6A
Other languages
English (en)
Other versions
CN113012949B (zh
Inventor
赫文秀
兰大为
韩晓星
邱恒睿
马倩
张永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Science and Technology
Original Assignee
Inner Mongolia University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Science and Technology filed Critical Inner Mongolia University of Science and Technology
Priority to CN202110227640.6A priority Critical patent/CN113012949B/zh
Publication of CN113012949A publication Critical patent/CN113012949A/zh
Application granted granted Critical
Publication of CN113012949B publication Critical patent/CN113012949B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高比电容的MWCNTs‑GONRsCo‑N i LDH电极的制备方法,包括:1)将粉末状MWCNTs‑GONRs分散在去离子水和乙二醇的混合溶液中,超声分散使溶液均匀,得到MWCNTs‑GONRs溶液;2)取Co(NO3)2·6H2O、Ni(NO3)2·6H2O和尿素加入步骤1)溶液中并持续搅拌至溶液均匀。3)将步骤2)混合溶液和干净泡沫镍转移至微波反应器,于180‑200℃反应,反应结束取出泡沫镍,用去离子水冲洗,干燥即得。本发明获得了一种尽可能少发生团聚现象的Co‑Ni LDH,为电荷存储提供更多的活性位点,增大材料的有效接触面积,更有利于提高电化学性能。

Description

一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法
技术领域
本发明涉及纳米材料领域,尤其涉及一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法。
背景技术
能源是21世纪最重要的问题之一,化石燃料资源的快速枯竭和环境污染问题的增加,迫使人们寻求新兴的储能设备。超级电容器因其出色的循环稳定性、充放电速度快和高比电容等优点引起人们的关注。超电容器的性能取决于电极材料的特性。碳材料用于双电层电容器,金属氧化物或氢氧化物用于赝电容电容器。因此,想要设计出优秀的超级电容器需要选择合适的电极材料。
相比于碳基材料及一些MnO2,NiO等金属氧化物,Co-Ni LDH是一类新型的具有明显赝电容特性的电池型材料。它具有丰富的氧化态和高度可逆的反应能力,出色的比电容,对于超级电容器具有广阔的前景。但是,电子的慢速传输和电活性位点受限导致反应动力学缓慢,使得Co-Ni LDH难以达到它的理论比电容值。为解决这个问题,研究者们将Co-NiLDH与导电基底进行复合,如:Co-Ni LDH与氮掺杂的石墨烯复合,纳米片的尺寸减小,团聚程度大大降低。相较与原始的Co-Ni LDH样品,复合物的显示出良好的电化学性能。电化学性能的提升源于复合样品具有更好的导电性、暴露在电解质中更多的活性位点及迅速的电化学反应动力学过程。Co-Ni LDH与CNTs复合,电化学性能也有所提升,因为CNTs骨架形成了导电和自撑网络,改善了电子和离子的传输,减少了纳米片的团聚。
但是石墨烯一般呈现出薄片状,在范德华力的相互作用下发生严重的团聚和再堆叠现象,导致比表面积和电导率大幅下降。碳纳米管是一维结构,受到微孔和内阻的双重影响,在实际应用中难以达到它的根本属性。
发明内容
本发明的目的是提供一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,获得一种尽可能少发生团聚现象的Co-Ni LDH,为电荷存储提供更多的活性位点,增大材料的有效接触面积,更有利于提高电化学性能。
为解决上述技术问题,本发明采用如下技术方案:
本发明一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,包括如下步骤:
1)将粉末状MWCNTs-GONRs分散在去离子水和乙二醇的混合溶液中,超声分散使溶液均匀,得到MWCNTs-GONRs溶液;
2)取Co(NO3)2·6H2O、Ni(NO3)2·6H2O和尿素加入步骤1)溶液中并持续搅拌至溶液均匀。
3)将步骤2)混合溶液和干净泡沫镍转移至微波反应器,于180-200℃反应,反应结束取出泡沫镍,用去离子水冲洗,干燥得到MWCNTs-GONRs@Co-Ni LDH电极。
进一步的,所述步骤1)中得到的是1mg/ml的MWCNTs-GONRs溶液。
进一步的,所述步骤3)中反应温度为190℃,反应时间为10-20min,优选15min。
进一步的,步骤1)所述的MWCNTs-GONRs是通过氧化切割多壁碳纳米管获得的以碳纳米管为骨架,外壁展开为石墨烯纳米带的复合物。
进一步的,步骤1)采用的分散MWCNTs-GONRs的方法为超声处理,超声时间为0-30min,超声功率为200-600W,优选540w。
进一步的,步骤1)控制的PH值为7.1-7.3,优选7.2。
进一步的,步骤2)所述的干净泡沫镍应使用稀盐酸、无水乙醇、去离子水分别多次超声处理获得。
进一步的,所述MWCNTs-GONRs的制备过程如下:量取98%浓硫酸和85%磷酸混合于100mL烧杯中搅拌15min,其中和磷酸的体积比为8-9:0.7-1.5,随后加入MWCNTs,待形成均一性质溶液后缓慢加入KMnO4,持续搅拌,结束后50-70℃水浴反应釜中反应,待反应结束后将溶液倒入含双氧水的去离子水中,并移至0℃水浴反应釜中持续搅拌以完全终止反应,之后通过离心,冷冻干燥获得MWCNTs-GONRs。
与现有技术相比,本发明的有益技术效果:
本发明通过使用MWCNTs-GONRs代替单一的碳材料,同时MWCNTs-GONRs@Co-Ni LDH生长的呈现出纳米片阵列结构,能够有效的增加活性物质于电解质接触的活性位点,缩短电解质离子的扩散路径,进一步提高了电极的电化学性能。
本发明以多壁碳纳米管为碳源,通过氧化切割获MWCNTs-GONRs,得随后通过微波反应将其与Co-Ni LDH一起负载于泡沫镍之上。与一般制作电极材料不同的是,本发明在微波条件下将活性物质直接负载于泡沫镍之上而不需要经过压片制备电极的过程,制备方法操作简单,反应条件温和,适合批量生产。
本方法采用自支撑材料体系,比传统的涂浆法制备电极材料。利用微波法,在不同的时间下将MWCNTs-GONRs(多壁碳纳米管-石墨烯纳米带)和Co-Ni LDH负载于泡沫镍之上获得电极。该MWCNTs-GONRs/Co-Ni LDH生长为纳米片状结构,但随反应时间的不同,形貌也有所改变。多层孔结构的MWCNTs-GONRs与Co-Ni LDH所产生得协同作用,能有效的增加电极的比电容和改善其循环性能。
附图说明
下面结合附图说明对本发明作进一步说明。
图1是本发明实施案例1制备的MWCNTs-GONRs@Co-Ni LDH的XRD谱图。
图2是本发明实施案例1制备的MWCNTs-GONRs@Co-Ni LDH的SEM谱图。
图3是本发明实施案例1制备的MWCNTs-GONRs@Co-Ni LDH的Raman图。
图4是本发明实施案例1制备的MWCNTs-GONRs@Co-Ni LDH的XPS谱图。
图5是本发明实施案例1制备的MWCNTs-GONRs@Co-Ni LDH和Co-NiLDH在1A/g的电流密度充放电曲线。
图6是本发明实施案例1制备的MWCNTs-GONRs@Co-Ni LDH在10A/g电流密度下6000次充放电循环曲线。
具体实施方式
实施例1:
量取72mL浓硫酸(Wt 98%)和8mL磷酸(Wt 85%)混合于100mL烧杯中搅拌15min,随后加入300mg MWCNTs,待形成均一性质溶液后缓慢加入1.2g KMnO4,持续搅拌1h。结束后将烧杯移至65℃水浴反应釜中反应2h。待反应结束后将溶液倒入400mL含12mL双氧水的去离子水中,并移至0℃水浴反应釜中持续搅拌2h以完全终止反应。之后通过离心,冷冻干燥获得MWCNTs-GONRs。称取20mg MWCNTs-GONRs、去离子水和乙二醇(30%Vol)混合溶液,经超声处理使其完全分散,将291mg Co(NO3)2·6H2O、290.8mg Ni(NO3)2·6H2O和240.2mg尿素加入均匀混合溶液中,继续搅拌45min。与此同时,剪取泡沫镍并使用稀盐酸、无水乙醇、去离子水分别多次超声处理以获得干净泡沫镍,烘干之后备用。接着将溶液转移至微波反应器中,并将泡沫镍没于溶液中,于190℃下反应10min。经冲洗,干燥后获得MWCNTs-GONRs@Co-Ni LDH电极。
电化学性能测试采用标准的三电极体系,研究电极为上述制备的电极片,铂片电极(15mm×15mm)和汞/氧化汞(Hg/HgO)分别作为辅助电极和参比电极。电解液为6mol L-1的KOH溶液,测试前电极需平衡24h。
为了验证复合材料样品的成分,进行XRD的测试,如图1所示在XRD的结果中有可以清晰的看出MWCNTs-GONRs在25.4(002)结晶度较高,通过氧化切割得到石墨烯纳米带(001)晶面的特征衍射峰2θ=11.1。此外,在图1还可以看到α-CoNi LDH 12.52。(003),25.19。(006),33.12。(101)和58.98。(110)衍射峰。本文的衍射角发生较小的偏移,由布拉格方程可知,这是由于Co-Ni LDH中少量的缺陷,增大晶格间距,使得衍射峰发生向左偏移的现象。
如图2a是MWCNTs-GOGRs负载泡沫镍上,可以看出带状结构的石墨烯纳米带和管状结构的碳纳米相互交联。图2b显示了典型的Co-Ni LDH纳米片,这些纳米片堆叠在一起,这种严重的集聚可能会限制电化学性能。图2c,d是MWCNTs-GONRs/Co-Ni LDH在不同放大倍数SEM,呈现纳米片的形貌,垂直均匀的分布在泡沫镍上,这种结构有利于增大比表面积,增大与电解液的接触面进一步的增大比电容。
为了进一步确认碳材料的存在,对样品进行拉曼表征,如图3所示,样品MWCNTs-GONRs/Co-Ni LDH有三个明显的特征峰分别是G峰,D峰和LDH分别在1901.3,1347.7和525.5.这些峰的形状和位移与碳基材料的结构有关。完美有序热解石墨结构中的ID/IG比为零,D和G谱带相关的峰以下的表面积来计算涂层的ID/IG=1.07,说明碳材料由于LDH的插入,表明更多的结构缺陷存在于活性材料。
为了探索MWCNTs-GONRs/Co-Ni LDH样品的化学组成及元素价态,对其进行XPS测试,并进行相应的拟合分析,如图4所示,样品中有C,N,Co和Ni元素。如图4a给出的是C1s的XPS图像,主要分为284.2eV,285.2eV,287.7eV,三个峰依次对应着C-C键,C=C键和C=N键。O 1s的高分辨XPS图在2c中观察到,键能依次在530.8eV和532.8eV别对应着M-O和-OH键.图2b为Co 2p的拟合峰,根据文献报道,在780.5eV,782.4eV,796.2eV和797.6eV主要为Co的+3和+2的氧化态。图5d给出了Ni 2p的拟合峰,在855.1和872.6是Ni2+的氧化态,856.4和873.9Ni3+的氧化态。
图5a MWCNTs-GONRs/Co-Ni LDH电极表现出最大的放电时间,拥有较大的比电容相较于Co-Ni LDH电极。根据放电时间,测得在1A g-1的电流密度下,MWCNTs-GONRs/Co-NiLDH和Co-Ni LDH的比电容为2060F g-1和1328F g-1。图5b,c分别是反应时间为10,15,和20min对应的CV和GCD曲线,图5a为反应时间为15min,CV有明显的氧化还原峰,具有赝电容行为,而且面积最大且有较长的充放电时间,拥有大的比电容。图5d是MWCNTs-GONRs加入10,20和30mg,加入10mg由于含量较少,20mg MWCNTs-GONRs和Co-Ni LDH形成均匀的纳米片结构提供了电极-电解质界面,用于积累静电电荷,并通过增强电解质接触和缩短扩散路径来促进离子的传输。然而MWCNTs-GONRs(即30mg)后,比电容由该所下降,这是由于过量的MWCNTs-GONRs的堆积导致所产生的孔和活性电化学位点的阻塞或完全占据,所以限制其电化学性能。
如图6所示,MWCNTs-GONRs/Co-Ni LDH电极表现出持久的循环性能,在6000次循环后的电容保持率高达73%。
实施例2:
量取72mL浓硫酸(Wt 98%)和8mL磷酸(Wt 85%)混合于100mL烧杯中搅拌15min,随后加入300mg MWCNTs,待形成均一性质溶液后缓慢加入1.2g KMnO4,持续搅拌1h。结束后将烧杯移至65℃水浴反应釜中反应2h。待反应结束后将溶液倒入400mL含12mL双氧水的去离子水中,并移至0℃水浴反应釜中持续搅拌2h以完全终止反应。之后通过离心,冷冻干燥获得MWCNTs-GONRs。称取20mg MWCNTs-GONRs、去离子水和乙二醇(30%Vol)混合溶液,经超声处理使其完全分散,将291mg Co(NO3)2·6H2O、290.8mg Ni(NO3)2·6H2O和240.2mg尿素加入均匀混合溶液中,继续搅拌45min。与此同时,剪取泡沫镍并使用稀盐酸,无水乙醇,去离子水分别多次超声处理以获得干净泡沫镍,烘干之后备用。接着将溶液转移至微波反应器中,并将泡沫镍没于溶液中,于190℃下反应15min。经冲洗,干燥后获得MWCNTs-GONRs@Co-Ni LDH电极。
电化学性能测试采用标准的三电极体系,研究电极为上述制备的电极片,铂片电极(15mm×15mm)和汞/氧化汞(Hg/HgO)分别作为辅助电极和参比电极。电解液为6mol L-1的KOH溶液,测试前电极需平衡24h。
实施例3:
量取72mL浓硫酸(Wt 98%)和8mL磷酸(Wt 85%)混合于100mL烧杯中搅拌15min,随后加入300mg MWCNTs,待形成均一性质溶液后缓慢加入1.2g KMnO4,持续搅拌1h。结束后将烧杯移至65℃水浴反应釜中反应2h。待反应结束后将溶液倒入400mL含12mL双氧水的去离子水中,并移至0℃水浴反应釜中持续搅拌2h以完全终止反应。之后通过离心,冷冻干燥获得MWCNTs-GONRs。称取20mg MWCNTs-GONRs、去离子水和乙二醇(30%Vol)混合溶液,经超声处理使其完全分散,将291mg Co(NO3)2·6H2O、290.8mg Ni(NO3)2·6H2O和240.2mg尿素加入均匀混合溶液中,继续搅拌45min。与此同时,剪取泡沫镍并使用稀盐酸,无水乙醇,去离子水分别多次超声处理以获得干净泡沫镍,烘干之后备用。接着将溶液转移至微波反应器中,并将泡沫镍没于溶液中,于190℃下反应20min。经冲洗,干燥后获得MWCNTs-GONRs@Co-Ni LDH电极。
电化学性能测试采用标准的三电极体系,研究电极为上述制备的电极片,铂片电极(15mm×15mm)和汞/氧化汞(Hg/HgO)分别作为辅助电极和参比电极。电解液为6mol L-1的KOH溶液,测试前电极需平衡24h。
本方法采用自支撑材料体系,比传统的涂浆法制备电极材料。利用微波法,在不同的时间下将MWCNTs-GONRs(多壁碳纳米管-石墨烯纳米带)和Co-Ni LDH负载于泡沫镍之上获得电极。该MWCNTs-GONRs/Co-Ni LDH生长为纳米片状结构,但随反应时间的不同,形貌也有所改变。多层孔结构的MWCNTs-GONRs与Co-Ni LDH所产生得协同作用,能有效的增加电极的比电容和改善其循环性能。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

1.一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,其特征在于,包括如下步骤:
1)将粉末状MWCNTs-GONRs分散在去离子水和乙二醇的混合溶液中,超声分散使溶液均匀,得到MWCNTs-GONRs溶液;
2)取Co(NO3)2·6H2O、Ni(NO3)2·6H2O和尿素加入步骤1)溶液中并持续搅拌至溶液均匀。
3)将步骤2)混合溶液和干净泡沫镍转移至微波反应器,于180-200℃反应,反应结束取出泡沫镍,用去离子水冲洗,干燥得到MWCNTs-GONRs@Co-Ni LDH电极。
2.根据权利要求1所述的高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,其特征在于,所述步骤1)中得到的是1mg/ml的MWCNTs-GONRs溶液。
3.根据权利要求1所述的高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,其特征在于,所述步骤3)中反应温度为190℃,反应时间为10-20min。
4.根据权利要求1所述的高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,其特征在于,步骤1)所述的MWCNTs-GONRs是通过氧化切割多壁碳纳米管获得的以碳纳米管为骨架,外壁展开为石墨烯纳米带的复合物。
5.根据权利要求1所述的高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,其特征在于,步骤1)采用的分散MWCNTs-GONRs的方法为超声处理,超声时间为0-30min,超声功率为200-600W。
6.根据权利要求1所述的高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,其特征在于,步骤1)控制的PH值为7.1-7.3。
7.根据权利要求1所述的高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,其特征在于,步骤2)所述的干净泡沫镍应使用稀盐酸、无水乙醇、去离子水分别多次超声处理获得。
8.根据权利要求1所述的高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法,其特征在于,所述MWCNTs-GONRs的制备过程如下:量取98%浓硫酸和85%磷酸混合于100mL烧杯中搅拌15min,其中和磷酸的体积比为8-9:0.7-1.5,随后加入MWCNTs,待形成均一性质溶液后缓慢加入KMnO4,持续搅拌,结束后50-70℃水浴反应釜中反应,待反应结束后将溶液倒入含双氧水的去离子水中,并移至0℃水浴反应釜中持续搅拌以完全终止反应,之后通过离心,冷冻干燥获得MWCNTs-GONRs。
CN202110227640.6A 2021-03-01 2021-03-01 一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法 Active CN113012949B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110227640.6A CN113012949B (zh) 2021-03-01 2021-03-01 一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110227640.6A CN113012949B (zh) 2021-03-01 2021-03-01 一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法

Publications (2)

Publication Number Publication Date
CN113012949A true CN113012949A (zh) 2021-06-22
CN113012949B CN113012949B (zh) 2022-10-11

Family

ID=76387220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110227640.6A Active CN113012949B (zh) 2021-03-01 2021-03-01 一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法

Country Status (1)

Country Link
CN (1) CN113012949B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690449A (zh) * 2021-08-17 2021-11-23 中国人民解放军军事科学院军事医学研究院 一种基于酶和介质双重固定生物电极的高性能无膜乳酸生物燃料电池
CN114717585A (zh) * 2022-03-07 2022-07-08 华南农业大学 一种双-过渡金属电极材料及其制备方法和在光伏电解水制氢中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109903997A (zh) * 2019-02-21 2019-06-18 江苏先创新能源有限公司 一种多孔层状复合电极材料及制备方法与应用
CN110563051A (zh) * 2019-08-26 2019-12-13 江苏大学 一种NiCoAl-LDH/N-GO复合材料的制备方法及其应用
CN112023946A (zh) * 2020-09-08 2020-12-04 河南师范大学 一种自支撑镍铁层状双氢氧化物硫化物电催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109903997A (zh) * 2019-02-21 2019-06-18 江苏先创新能源有限公司 一种多孔层状复合电极材料及制备方法与应用
CN110563051A (zh) * 2019-08-26 2019-12-13 江苏大学 一种NiCoAl-LDH/N-GO复合材料的制备方法及其应用
CN112023946A (zh) * 2020-09-08 2020-12-04 河南师范大学 一种自支撑镍铁层状双氢氧化物硫化物电催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邱恒睿: "碳材料复合镍钴氢氧化物电极用于超级电容器", 《万方平台》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690449A (zh) * 2021-08-17 2021-11-23 中国人民解放军军事科学院军事医学研究院 一种基于酶和介质双重固定生物电极的高性能无膜乳酸生物燃料电池
CN114717585A (zh) * 2022-03-07 2022-07-08 华南农业大学 一种双-过渡金属电极材料及其制备方法和在光伏电解水制氢中的应用
CN114717585B (zh) * 2022-03-07 2023-09-22 华南农业大学 一种双-过渡金属电极材料及其制备方法和在光伏电解水制氢中的应用

Also Published As

Publication number Publication date
CN113012949B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
Askari et al. Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material
Young et al. High energy density supercapacitors composed of nickel cobalt oxide nanosheets on nanoporous carbon nanoarchitectures
Zhao et al. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes
Jin et al. A high-rate, long life, and anti-self-discharge aqueous N-doped Ti3C2/Zn hybrid capacitor
Liu et al. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor
Jyoti et al. Recent advancement in three dimensional graphene-carbon nanotubes hybrid materials for energy storage and conversion applications
Xie et al. Electrochemical performance of carbon paper supercapacitor using sodium molybdate gel polymer electrolyte and nickel molybdate electrode
CN113012949B (zh) 一种高比电容的MWCNTs-GONRsCo-Ni LDH电极的制备方法
Jiang et al. Optimized NiCo 2 O 4/rGO hybrid nanostructures on carbon fiber as an electrode for asymmetric supercapacitors
Zhang et al. Low-tortuosity carbon electrode derived from Wood@ ZIF-67 for supercapacitor applications
Fu et al. One-step solid-state pyrolysis of bio-wastes to synthesize multi-hierarchical porous carbon for ultra-long life supercapacitors
Wei et al. Inherently porous Co3O4@ NiO core–shell hierarchical material for excellent electrochemical performance of supercapacitors
CN112736235B (zh) 生物质/碳纳米管诱导Fe3O4纳米复合材料及其作为锂离子电池负极材料的应用
Zhang et al. High electrochemical performance of Bi2WO6/carbon nano-onion composites as electrode materials for pseudocapacitors
Luo et al. Surface and interface engineering of CoNi layered double hydroxides for efficient methanol oxidation reaction
Wang et al. Simple controllable foam structure NiCo2S4 for high-performance hybrid supercapacitors
Chen et al. High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower
Wang et al. Heterogeneous activated carbon with graphitized shell and hydrophilic pores integrating high conductivity and pore affinity for excellent rate performance supercapacitors
Zhao et al. Nickel cobalt oxide nanowires‐modified hollow carbon tubular bundles for high‐performance sodium‐ion hybrid capacitors
Xu et al. One-pot synthesis of a CoS-AC electrode in a redox electrolyte for high-performance supercapacitors
Zhang et al. MnO 2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors
Xuan et al. A hollow tubular NiCo layacknered double hydroxide@ Ag nanowire structure for high-power-density flexible aqueous Ni//Zn battery
Sun et al. Facile electrodeposition of Ni3 (BO3) 2 nanospheres on Ti mesh for high-performance asymmetric supercapacitors
Zhang et al. Rational design of activated graphitic carbon spheres with optimized ion and electron transfer channels for zinc-ion hybrid capacitors
CN112397320B (zh) 一种应用于超级电容器的氮掺杂分级孔整体性碳材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant