CN113012827A - 一种抗水腐蚀氮化铀复合燃料芯块 - Google Patents

一种抗水腐蚀氮化铀复合燃料芯块 Download PDF

Info

Publication number
CN113012827A
CN113012827A CN202110210614.2A CN202110210614A CN113012827A CN 113012827 A CN113012827 A CN 113012827A CN 202110210614 A CN202110210614 A CN 202110210614A CN 113012827 A CN113012827 A CN 113012827A
Authority
CN
China
Prior art keywords
uranium nitride
corrosion
fuel
pellet
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110210614.2A
Other languages
English (en)
Inventor
卢俊强
陈向阳
谢汉芳
陈芙梁
周云清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Nuclear Engineering Research and Design Institute Co Ltd
Original Assignee
Shanghai Nuclear Engineering Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Nuclear Engineering Research and Design Institute Co Ltd filed Critical Shanghai Nuclear Engineering Research and Design Institute Co Ltd
Priority to CN202110210614.2A priority Critical patent/CN113012827A/zh
Publication of CN113012827A publication Critical patent/CN113012827A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/60Metallic fuel; Intermetallic dispersions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及核燃料芯块技术领域,具体地说是一种抗水腐蚀氮化铀复合燃料芯块,其特征在于:包括起保护作用的耐腐蚀金属体、分散在耐腐蚀金属体内的氮化铀颗粒。本发明与现有技术相比具有如下优势:1、通过耐腐蚀金属体将易与高温水、水蒸气发生反应的氮化铀燃料分隔开,提高了芯块暴露于高温冷却水或水蒸气时维持完整性的能力;2、芯块尺寸与现有燃料芯块一致,可装入现有反应堆燃料棒中,易于使用;3、适用于现役轻水反应堆,相比现役UO2燃料芯块或单相氮化铀燃料芯块具有较高的安全性,有利于消除PCI问题。

Description

一种抗水腐蚀氮化铀复合燃料芯块
技术领域
本发明涉及核燃料芯块技术领域,具体地说是一种抗水腐蚀氮化铀复合燃料芯块。
背景技术
轻水反应堆是核电站的主要堆型,目前所有的商业轻水堆都使用了UO2芯块或添加了Pu的U、Pu混合氧化物芯块作为燃料。
轻水反应堆的核燃料元件容易出现PCI问题,PCI是指水冷反应堆中使用的燃料芯块与包壳的相互作用。PCI是燃料棒破损的潜在因素之一,任其发展可导致包壳破损,因此PCI问题直接涉及到燃料元件在堆内使用的安全性。
UO2具有高熔点、高化学及辐照稳定性等优点。然而,UO2的热导率较低,在800℃时仅为约3.5W·m-1·K-1。因此,UO2燃料芯块的热量导出能力差,在反应堆运行时芯块的中心温度很高,在燃料芯块中会储存大量的热量。在事故工况下,在燃料芯块中储存的热量及裂变产物的衰变热会使锆合金包壳的温度迅速升高,继而使锆合金迅速与水蒸气发生氧化放热反应而产生大量热量和氢气,加速堆芯的熔毁并可能引发氢气爆炸。因此,提高燃料芯块的热导率,加强其热量导出能力是提升核燃料安全性的重要手段之一。
而氮化铀(UN)燃料,其中的铀金属密度达13.5gU/cm3,高于UO2的9.7gU/cm3,热导率也有20W·m-1·K-1左右。然而,氮化铀燃料相比UO2燃料也还有化学活性高、不耐高温水腐蚀的缺点。因此,解决氮化铀燃料在轻水堆中的腐蚀氧化是实现替代现有UO2燃料所必须解决的最重要问题。
发明内容
本发明的目的在于克服现有技术的不足,为轻水反应堆提供一种具有高热导率、高铀密度、且具有较强抗水腐蚀、抗蒸汽氧化性能的氮化铀燃料,降低现有氮化铀燃料在轻水堆中应用时的安全风险,替代现有的UO2燃料,提高反应堆安全性和经济性。
为实现上述目的,设计一种抗水腐蚀氮化铀复合燃料芯块,其特征在于:包括起保护作用的耐腐蚀金属体、分散在耐腐蚀金属体内的氮化铀颗粒。
进一步的,任意氮化铀颗粒均被耐腐蚀金属体包覆隔离。
进一步的,所述耐腐蚀金属体占芯块体积的10~30%,所述氮化铀颗粒占芯块体积的50~90%。
进一步的,所述氮化铀颗粒的粒径为50μm~1000μm。
进一步的,所述耐腐蚀金属体采用Be、Cr、Zr或Nb金属或上述金属的合金。
本发明与现有技术相比具有如下优势:
1、通过耐腐蚀金属体将易与高温水、水蒸气发生反应的氮化铀燃料分隔开,提高了芯块暴露于高温冷却水或水蒸气时维持完整性的能力;
2、芯块尺寸与现有燃料芯块一致,可装入现有反应堆燃料棒中,易于使用;
3、适用于现役轻水反应堆,相比现役UO2燃料芯块或单相氮化铀燃料芯块具有较高的安全性,有利于消除PCI问题。
附图说明
图1为本发明在一个实施例中的横截面示意图。图中氮化铀颗粒与耐腐蚀金属体的比例不代表实际的成分配比。
具体实施方式
现结合附图对本发明作进一步地说明。
实施例1
本例中氮化铀复合燃料芯块为外径8.192mm、高9.83mm的短圆柱形,具体为采用Zr合金的耐腐蚀金属体2,其占芯块体积的10%,其内分散有占芯块体积的90%、平均粒径为600μm和100μm的两种氮化铀颗粒1。参见图1,可见耐腐蚀金属体2呈现类似蜂窝状结构。
实施例2
本例中氮化铀复合燃料芯块为外径8.192mm、高9.83mm的短圆柱形,具体为采用占芯块体积30%的AlCr合金的耐腐蚀金属体2,其内分散有占芯块体积70%的平均粒径为200μm的氮化铀颗粒1。
实施例3
本例中氮化铀复合燃料芯块为外径8.192mm、高9.83mm的短圆柱形,具体为采用占芯块体积40%的Nb合金的耐腐蚀金属体2,其内分散有占芯块体积60%的平均粒径为200μm的氮化铀颗粒1。
实施例4
本例中氮化铀复合燃料芯块为外径8.192mm、高9.83mm的短圆柱形,具体为采用占芯块体积20%的Be-Al合金的耐腐蚀金属体2,其内分散有占芯块体积80%的平均粒径分别为1000μm、300μm、90μm的三种氮化铀颗粒1。
本发明与现有轻水堆使用的UO2燃料芯块相比,热导率大幅提升,可以用于解决现有UO2燃料芯块由于热导率低而导致的中心温度高、温度梯度大、储能大的缺点;而与直接由粉末烧结的单相氮化铀燃料芯块相比,本发明中易被高温冷却水腐蚀氧化的氮化铀被耐腐蚀的金属层分隔成了小块颗粒,即使金属层由部分缺陷或破损受冷却水腐蚀的区域也不易扩散至整个芯块,因此在燃料包壳破损后,本发明中的氮化铀复合芯块具有很强的维持完整性的能力,可大幅减少放射性裂变产物转移至一回路冷却水;
通过选用具有不同力学性能的金属材料作为金属层及调整金属层含量,实现在较大范围内调节本发明芯块的强度、蠕变等力学性质,有利于消除核燃料元件的PCI问题,提高燃料元件整体的安全性。

Claims (6)

1.一种抗水腐蚀氮化铀复合燃料芯块,其特征在于:包括起保护作用的耐腐蚀金属体(2)、分散在耐腐蚀金属体(2)内的氮化铀颗粒(1)。
2.如权利1所述的一种抗水腐蚀氮化铀复合燃料芯块,其特征在于:任意氮化铀颗粒(1)均被耐腐蚀金属体(2)包覆隔离。
3.如权利1所述的一种抗水腐蚀氮化铀复合燃料芯块,其特征在于:所述耐腐蚀金属体(2)占芯块体积的10~30%,所述氮化铀颗粒(1)占芯块体积的50~90%。
4.如权利1所述的一种抗水腐蚀氮化铀复合燃料芯块,其特征在于:所述氮化铀颗粒(1)的粒径为50μm~1000μm。
5.如权利1所述的一种抗水腐蚀氮化铀复合燃料芯块,其特征在于:所述耐腐蚀金属体(2)采用Be、Cr、Zr或Nb金属或上述金属的合金。
6.如权利1所述的一种抗水腐蚀氮化铀复合燃料芯块,其特征在于:所述耐腐蚀金属体(2)采用圆柱形。
CN202110210614.2A 2021-02-25 2021-02-25 一种抗水腐蚀氮化铀复合燃料芯块 Pending CN113012827A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110210614.2A CN113012827A (zh) 2021-02-25 2021-02-25 一种抗水腐蚀氮化铀复合燃料芯块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110210614.2A CN113012827A (zh) 2021-02-25 2021-02-25 一种抗水腐蚀氮化铀复合燃料芯块

Publications (1)

Publication Number Publication Date
CN113012827A true CN113012827A (zh) 2021-06-22

Family

ID=76386200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110210614.2A Pending CN113012827A (zh) 2021-02-25 2021-02-25 一种抗水腐蚀氮化铀复合燃料芯块

Country Status (1)

Country Link
CN (1) CN113012827A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130356A1 (zh) * 2022-01-07 2023-07-13 岭澳核电有限公司 高铀密度atf核燃料芯块及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466568A (zh) * 2013-09-09 2013-12-25 中国原子能科学研究院 氮化铀燃料粉末和芯块的制备方法
KR20160051113A (ko) * 2014-10-31 2016-05-11 한국원자력연구원 핵연료 복합재료 소결체 및 이의 제조방법
US20170040069A1 (en) * 2011-08-04 2017-02-09 Francesco Venneri Dispersion Ceramic Micro-encapsulated (DCM) Nuclear Fuel and Related Methods
CN107093468A (zh) * 2017-05-27 2017-08-25 中国工程物理研究院材料研究所 一种ZrC惰性基弥散芯块核燃料及其制法和用途
CN108335760A (zh) * 2018-02-01 2018-07-27 中国工程物理研究院材料研究所 一种高铀装载量弥散燃料芯块的制备方法
US20200168351A1 (en) * 2017-05-12 2020-05-28 Westinghouse Electric Sweden Ab A nuclear fuel pellet, a fuel rod, and a fuel assembly
US20200234833A1 (en) * 2017-02-21 2020-07-23 Westinghouse Electric Sweden Ab A sintered nuclear fuel pellet, a fuel rod, a fuel assembly, and a method of manufacturing a sintered nuclear fuel pellet
CN111933310A (zh) * 2020-06-09 2020-11-13 上海核工程研究设计院有限公司 一种高热导的二氧化铀单晶复合燃料芯块及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170040069A1 (en) * 2011-08-04 2017-02-09 Francesco Venneri Dispersion Ceramic Micro-encapsulated (DCM) Nuclear Fuel and Related Methods
CN103466568A (zh) * 2013-09-09 2013-12-25 中国原子能科学研究院 氮化铀燃料粉末和芯块的制备方法
KR20160051113A (ko) * 2014-10-31 2016-05-11 한국원자력연구원 핵연료 복합재료 소결체 및 이의 제조방법
US20200234833A1 (en) * 2017-02-21 2020-07-23 Westinghouse Electric Sweden Ab A sintered nuclear fuel pellet, a fuel rod, a fuel assembly, and a method of manufacturing a sintered nuclear fuel pellet
US20200168351A1 (en) * 2017-05-12 2020-05-28 Westinghouse Electric Sweden Ab A nuclear fuel pellet, a fuel rod, and a fuel assembly
CN107093468A (zh) * 2017-05-27 2017-08-25 中国工程物理研究院材料研究所 一种ZrC惰性基弥散芯块核燃料及其制法和用途
CN108335760A (zh) * 2018-02-01 2018-07-27 中国工程物理研究院材料研究所 一种高铀装载量弥散燃料芯块的制备方法
CN111933310A (zh) * 2020-06-09 2020-11-13 上海核工程研究设计院有限公司 一种高热导的二氧化铀单晶复合燃料芯块及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
卢俊强 等: "Zr-Sn-Nb-Fe-Mo合金在高温高压水中的腐蚀行为", 腐蚀与防护, vol. 41, no. 9, pages 32 - 38 *
涂腾;李文杰;李伟;高士鑫;陈平;: "UN燃料性能数值分析", 核动力工程, no. 06, pages 185 - 188 *
程全 等: "氮化铀燃料元件性能分析程序初步开发", 中国科技信息, no. 14, pages 94 - 95 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130356A1 (zh) * 2022-01-07 2023-07-13 岭澳核电有限公司 高铀密度atf核燃料芯块及其制备方法

Similar Documents

Publication Publication Date Title
US10032528B2 (en) Fully ceramic micro-encapsulated (FCM) fuel for CANDUs and other reactors
US9014324B2 (en) Coolant with dispersed neutron poison micro-particles, used in SCWR emergency core cooling system
CN209496626U (zh) 堆芯结构及熔盐球床堆
Gosset Absorber materials for Generation IV reactors
Youinou et al. Enhanced accident tolerant fuels for LWRs-a preliminary systems analysis
CN113012827A (zh) 一种抗水腐蚀氮化铀复合燃料芯块
Hayes et al. Advances in metallic fuels for high burnup and actinide transmutation
Simnad Nuclear reactor materials and fuels
CN112992390A (zh) 一种高安全性的硅化铀复合燃料芯块
Sundaram et al. Nuclear fuels and development of nuclear fuel elements
Kim et al. Use of carbon-coated particle fuels in PWR assemblies
CN112366010A (zh) 一种fcm燃料应用于百万千瓦压水堆的首循环装载方法
Mishra et al. Fabrication of Nuclear Fuel Elements
Moan Zirconium in the nuclear industry: thirteenth international symposium
Peiman et al. Thermal aspects of conventional and alternative nuclear fuels
Pickman Design of fuel elements
Rudling et al. Impact of manufacturing changes on Zr alloy in-pile performance
Anderson Broad aspects of absorber materials selection for reactor control
Bart et al. Zirconium alloys for fuel element structures
Simnad Highlights of 50 years of nuclear fuel development
Wullaert et al. AN EVALUATION OF UC--PuC FOR SODIUM-COOLED FAST REACTORS.
Thompson Nuclear energy research initiative: Thorium fuel cycle projects
Werner NEW DEVELOPMENT TENDENCIES IN THE RANGE OF REACTOR FUEL ELEMENTS
Rous et al. Evaluation of Zirconium 1.5 W/o Niobium Cladding for Use in Boiling Water Reactor Environments
Pfeil IMPROVEMENTS IN OR RELATING TO ALLOYS OF URANIUM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 29 Hong Cao Road, Xuhui District, Shanghai

Applicant after: Shanghai Nuclear Engineering Research and Design Institute Co.,Ltd.

Address before: No. 29 Hong Cao Road, Xuhui District, Shanghai

Applicant before: SHANGHAI NUCLEAR ENGINEERING RESEARCH & DESIGN INSTITUTE Co.,Ltd.

CB02 Change of applicant information