CN112978676B - 一种固态氢源反应器的热量控制方法 - Google Patents

一种固态氢源反应器的热量控制方法 Download PDF

Info

Publication number
CN112978676B
CN112978676B CN202110227848.8A CN202110227848A CN112978676B CN 112978676 B CN112978676 B CN 112978676B CN 202110227848 A CN202110227848 A CN 202110227848A CN 112978676 B CN112978676 B CN 112978676B
Authority
CN
China
Prior art keywords
storage tank
heat
hydrogen
solid
heat conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110227848.8A
Other languages
English (en)
Other versions
CN112978676A (zh
Inventor
吴震
付铁峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydrogen Source Wind New Power Technology Suzhou Co ltd
Original Assignee
Hydrogen Source Wind New Power Technology Suzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrogen Source Wind New Power Technology Suzhou Co ltd filed Critical Hydrogen Source Wind New Power Technology Suzhou Co ltd
Priority to CN202110227848.8A priority Critical patent/CN112978676B/zh
Publication of CN112978676A publication Critical patent/CN112978676A/zh
Application granted granted Critical
Publication of CN112978676B publication Critical patent/CN112978676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0036Intermetallic compounds; Metal alloys; Treatment thereof only containing iron and titanium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本发明涉及一种固态氢源反应器的热量控制方法,通过设置导热介质储罐,利用温度检测装置检测固态储氢罐和相变储热罐的温度来调控导热介质储罐的阀门开启与关闭,实现了吸氢时高温介质不进入固态储氢罐内,脱氢时低温介质不进入储热罐,在固态储氢罐和储热罐内设置温度检测装置,在实现了固态氢源反应器吸氢放出热量回收的同时,能自动控制氢源反应器内热量,最大限度提高了热量利用程度。

Description

一种固态氢源反应器的热量控制方法
技术领域
本发明涉及氢动力领域,特别涉及一种固态氢源反应器的热量控制方法。
背景技术
化石燃料的大量使用不仅加剧了传统能源的消耗,而且对环境造成了严重污染。氢能储量丰富,燃烧热值高,燃烧后的产物对环境造成的污染极其微弱。但是目前氢气实现大规模应用的制约因素主要在于储氢技术不成熟,难以快速、安全、高效地进行氢气储运。现阶段的储氢方式主要有高压气体储氢、低温液体储氢和固体储氢三种。固体储氢特别是金属储氢材料储氢由于具有储能密度大、体积小、便于携带、生成的化合物安全稳定的特点被视为最有应用前景的储氢材料之一。金属储氢材料储氢在吸氢过程中需要放出热量,在放氢过程中需要吸收热量,对储氢反应器进行热管理是提高金属储氢材料储氢效率的一个重要因素。
CN108426169B公开了一种基于热量自平衡型固态氢源反应器的氢动力系统,相变材料能够将吸氢反应释放的热量以潜热的形式储存起来,在放氢反应中释放,这样吸氢过程的热量用于放氢过程,节省了加热冷却装置,降低了成本,提高了能量的利用率,同时还可以提高吸放氢反应的速率。该由于固态氢源反应器内储氢材料粒径较大,难免存在空隙,造成反应器内温度存在局部差异性,难以发生高效吸氢、放氢反应,同时由于该系统能源控制效率较低,难以实现能量的充分回收利用。
US20120201719A1公开了一种用于储放氢和/或热量的罐,其中,设置了储热元件,所述储热元件包含嵌入在相变材料中的隔离物。可以在罐内起到储热、放热的作用。然而,该过程是难以实现自动控制的,这是一个自然变化的过程,比如加氢放热过程中,当相变材料温度变高后,其会影响加氢效果,且加强完毕后,如果相变材料温度还处于高温状态,又会加快释氢,这是人们不想看到的。同时,由于其缺少人为能源控制,该过程是自发过程,难以实现能量高效利用。
由此可见,固态储氢反应器通常都存在换热效率较低及难以自动化控制的问题,在实际产业应用中存在限制。
发明内容
为了克服上述现有技术的不足,本发明提供了一种固态氢源反应器的热量控制方法,所述固态氢源反应器包括固态储氢罐1、储热罐2,所述固态储氢罐1和储热罐2内设置连通的导热管路,所述导热管路上设置双向泵4及双向阀51,所述双向阀51两侧分别设置储氢温度检测装置52和储热温度检测装置53,所述储氢温度检测装置52和储热温度检测装置53分别设置在固态储氢罐1、储热罐2内,所述双向阀51为关闭状态;
所述热量控制方法包括放氢过程和/或加氢过程:
所述放氢过程中,所述双向泵(4)带动所述导热管路内的导热介质向所述储氢罐内的导热管路内输送,所述双向阀(51)关闭;当所述储热罐温度检测装置(53)温度高于所述储氢温度检测装置52温度5~20℃时,将所述双向阀(51)打开;
所述加氢过程中,所述双向泵(4)带动所述导热管路内的导热介质向所述储热罐内的导热管路输送,所述双向阀(51)关闭;当所述储氢罐温度检测装置(52)温度高于所述储热罐温度检测装置(53)温度时,将所述双向阀(51)打开;
进一步地,所述导热管路包括导热连通管5,所述固态储氢罐1内设置储氢罐导热管12,所述储热罐2内设置储热罐导热管22,所述储氢罐导热管12一端与所述储热罐导热管22一端通过导热连通管5连通,所述储氢罐导热管12另一端连接储氢罐传输管11,所述储氢罐传输管11连通所述双向泵4,所述储热罐导热管22另一端设置储热罐传输管21,所述储热罐传输管21连接所述双向泵4;
进一步地,所述金属储氢材料为AB5型的镧镍系、AB型钛铁系、AB2型锆系氢化物、A2B型镁基氢化物、A2B型钙基氢化物中的一种或多种;
进一步地,所述固态储氢罐1内设置金属储氢材料15及导热粒子16;
进一步地,所述储热罐2内设置相变材料25;
进一步地,所述储氢罐导热管12上设置三通阀13,所述三通阀13连接储氢罐导热介质储罐14;
进一步地,所述储热罐导热管22上设置储热罐三通阀23,所述储热罐三通阀23连接储热罐导热介质储罐24;
进一步地,放氢过程中,所述双向阀51为关闭状态时,所述三通阀13开启连通所述储氢罐导热介质储罐14;
进一步地,加氢过程中,所述双向阀51为关闭状态时,所述储热罐三通阀23开启连通所述储热罐导热介质储罐24;
进一步地,所述固态储氢罐1和所述储热罐2外侧均设置所述保温层3;
进一步地,所述导热粒子16为膨胀石墨、碳纳米管、石墨烯、氧化石墨烯中的一种或多种;
进一步地,所述固态储氢罐1上设置加氢口和出氢口;
进一步地,所述储氢罐导热管12和储热罐导热管22为盘管、蛇形管、异形折管中的一种或多种;
进一步地,所述储氢罐导热管12和储热罐导热管22上设置翅片;
进一步地,所述固态氢源反应器还设置有加热装置,所述加热装置设置在所述固态储氢罐1和/或储热罐2内;
进一步地,所述加热装置用于加热相变材料和/或导热介质;
与现有技术相比,本发明的有益效果是:
(1)通过设置导热介质储罐,利用温度检测装置检测固态储氢罐和相变储热罐的温度来调控导热介质储罐的阀门开启与关闭,实现了吸氢时高温介质不进入固态储氢罐内,脱氢时低温介质不进入储热罐,进一步地提高了换热效率,及加氢和放氢的稳定性;
(2)在固态储氢罐和相变储热罐内设置温度检测装置,在实现了固态氢源反应器吸氢放出热量回收的同时,能自动控制氢源反应器内热量,最大限度提高了热量利用程度;
(3)将导热粒子与金属储氢材料混合后可以将导热粒子填充在金属储氢材料粒子之间,并未降低单位体积内金属储氢材料的质量,同时由于导热粒子导热性能高,实现了金属储氢材料间隙的快速导热,降低了金属储氢材料的温度梯度,使得放氢反应更稳定;
(4)设置导热粒子、导热管等通过温度检测装置进行温度监控,实现了固态氢源反应器的小型化,可以将该固态氢源反应器设置在无人机、植保机以及便携式车载上使用;
(5)设置了导热介质储罐,实现了优质热源的充分利用,降低了加热装置的能耗,使得储热罐进一步小型化。
附图说明
图1为一种固态氢源反应器示意图;
图2为一种固态氢源反应器的热量控制方法示意图。
具体实施方式
下面通过实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”,“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。
实施例1
以下结合附图,对本发明进一步说明:
请参阅图1-图2,
一种固态氢源反应器的热量控制方法,所述固态氢源反应器包括固态储氢罐1、储热罐2,所述固态储氢罐1和储热罐2内设置连通的导热管路,所述导热管路上设置双向泵4及双向阀51,所述双向阀51两侧分别设置储氢温度检测装置52和储热温度检测装置53,所述储氢温度检测装置52和储热温度检测装置53分别设置在固态储氢罐1、储热罐2内,金属储氢材料选用镧镍系氢化物,在35摄氏度下与氢气发生氢化反应,相变材料选用石蜡(相变温度约30℃);所述双向阀51为关闭状态;
所述热量控制方法包括放氢过程和/或加氢过程:
所述放氢过程中,所述双向泵(4)带动所述导热管路内的导热介质向所述储氢罐内的导热管路内输送,此时所述双向阀(51)关闭;当所述储热罐温度检测装置(53)温度A与所述储氢温度检测装置52温度F满足A >(F+5)时,将所述双向阀(51)打开;
所述加氢过程中,所述双向泵(4)带动所述导热管路内的导热介质向所述储热罐内的导热管路输送,此时所述双向阀(51)关闭;当所述储氢罐温度检测装置(52)温度C高于所述储热罐温度检测装置(53)温度D时,将所述双向阀(51)打开。
实施例2
在实施例1的基础上,金属储氢材料设置为镁基配位氢化物等需在150 ℃以上中高温下与氢气发生氢化/脱氢反应时,相变材料选择无机水合盐,所述储热罐温度检测装置(53)温度A与所述储氢温度检测装置52温度F满足A >(F+10)时,将所述双向阀(51)打开;否则关闭双向阀(51)。
实施例3
在实施例1的基础上,金属储氢材料设置为纯镁基或钙基氢化物350~500 ℃高温下与氢气发生氢化/脱氢反应,相变材料可选择相变温度在350 ℃以上、相变潜热在300kJ/kg以上的盐与复合盐、金属与合金等类型的相变材料,所述储热罐温度检测装置(53)温度A与所述储氢温度检测装置52温度F满足A >(F+30)时,将所述双向阀(51)打开;否则关闭双向阀(51)。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各科研领域测试数据的分析处理,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的实施例。

Claims (10)

1.一种固态氢源反应器的热量控制方法,所述固态氢源反应器包括固态储氢罐(1)、储热罐(2),所述固态储氢罐(1)和储热罐(2)内设置连通的导热管路,所述导热管路上设置双向泵(4)及双向阀(51),所述双向阀(51)两侧分别设置储氢温度检测装置(52)和/或储热温度检测装置(53),所述储氢温度检测装置(52)设置在固态储氢罐(1),所述储热温度检测装置(53)设置在储热罐(2)内,所述固态储氢罐(1)内设置有金属储氢材料(15),所述储热罐(2)内设置相变材料(25);
其特征在于:所述热量控制方法包括放氢过程和/或加氢过程,
所述放氢过程中,所述双向泵(4)带动所述导热管路内的导热介质向所述储氢罐内的导热管路内输送,所述双向阀(51)关闭;当储热罐温度检测装置(53)温度A与所述储氢温度检测装置(52)温度F满足A>(F+5)时,将所述双向阀(51)打开;
所述加氢过程中,所述双向泵(4)带动所述导热管路内的导热介质向所述储热罐内的导热管路输送,所述双向阀(51)关闭;当所述储氢罐温度检测装置(52)温度C高于所述储热罐温度检测装置(53)温度D时,将所述双向阀(51)打开。
2.如权利要求1所述的一种固态氢源反应器的热量控制方法,其特征在于,所述导热管路包括导热连通管(5),所述固态储氢罐(1)内设置储氢罐导热管(12),所述储热罐(2)内设置储热罐导热管(22),所述储氢罐导热管(12)一端与所述储热罐导热管(22)一端通过导热连通管(5)连通,所述储氢罐导热管(12)另一端连接储氢罐传输管(11),所述储氢罐传输管(11)连通所述双向泵(4),所述储热罐导热管(22)另一端设置储热罐传输管(21),所述储热罐传输管(21)连接所述双向泵(4)。
3.如权利要求1所述的一种固态氢源反应器的热量控制方法,其特征在于,所述金属储氢材料为AB5型的镧镍系、AB型钛铁系、AB2型锆系氢化物、A2B型镁基氢化物、A2B型钙基氢化物中的一种或多种。
4.如权利要求1所述的一种固态氢源反应器的热量控制方法,其特征在于,所述固态储氢罐(1)内还设置有导热粒子(16)。
5.如权利要求2所述的一种固态氢源反应器的热量控制方法,其特征在于,所述储氢罐导热管(12)上设置三通阀(13),所述三通阀(13)连接储氢罐导热介质储罐(14)。
6.如权利要求2所述的一种固态氢源反应器的热量控制方法,其特征在于,所述储热罐导热管(22)上设置储热罐三通阀(23),所述储热罐三通阀(23)连接储热罐导热介质储罐(24)。
7.如权利要求1所述的一种固态氢源反应器的热量控制方法,其特征在于,所述固态氢源反应器还设置有加热装置,所述加热装置设置在所述固态储氢罐(1)和/或储热罐(2)内。
8.如权利要求5所述的一种固态氢源反应器的热量控制方法,其特征在于,放氢过程中,所述双向阀(51)为关闭状态时,所述三通阀(13)开启连通所述储氢罐导热介质储罐(14)。
9.如权利要求6所述的一种固态氢源反应器的热量控制方法,其特征在于,加氢过程中,所述双向阀(51)为关闭状态时,所述储热罐三通阀(23)开启连通所述储热罐导热介质储罐(24)。
10.如权利要求7所述的一种固态氢源反应器的热量控制方法,其特征在于,所述加热装置加热相变材料和/或导热介质。
CN202110227848.8A 2021-03-01 2021-03-01 一种固态氢源反应器的热量控制方法 Active CN112978676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110227848.8A CN112978676B (zh) 2021-03-01 2021-03-01 一种固态氢源反应器的热量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110227848.8A CN112978676B (zh) 2021-03-01 2021-03-01 一种固态氢源反应器的热量控制方法

Publications (2)

Publication Number Publication Date
CN112978676A CN112978676A (zh) 2021-06-18
CN112978676B true CN112978676B (zh) 2023-05-12

Family

ID=76351754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110227848.8A Active CN112978676B (zh) 2021-03-01 2021-03-01 一种固态氢源反应器的热量控制方法

Country Status (1)

Country Link
CN (1) CN112978676B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074245A (zh) * 1991-11-28 1993-07-14 三菱麻铁里亚尔株式会社 金属材料的热处理方法及其装置
CN106595082A (zh) * 2016-11-28 2017-04-26 北京有色金属研究总院 一种太阳能光热发电用金属氢化物储热装置
CN112303490A (zh) * 2020-10-23 2021-02-02 山东科技大学 一种自热式金属氢化物储氢系统及充放氢方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401208B (zh) * 2010-10-26 2013-07-11 Iner Aec Executive Yuan 動態儲氫的裝置及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074245A (zh) * 1991-11-28 1993-07-14 三菱麻铁里亚尔株式会社 金属材料的热处理方法及其装置
CN106595082A (zh) * 2016-11-28 2017-04-26 北京有色金属研究总院 一种太阳能光热发电用金属氢化物储热装置
CN112303490A (zh) * 2020-10-23 2021-02-02 山东科技大学 一种自热式金属氢化物储氢系统及充放氢方法

Also Published As

Publication number Publication date
CN112978676A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
Nguyen et al. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems
Afzal et al. Heat transfer techniques in metal hydride hydrogen storage: A review
AU2018369153A1 (en) Hydrated magnesium hydride energy system
CN110118160B (zh) 太阳能超临界二氧化碳布雷顿循环系统
CN110849012B (zh) 一种二氧化碳热电储能装置及其控制方法
ElBahloul et al. Recent advances in multistage sorption thermal energy storage systems
CN112919406B (zh) 一种固态氢源反应器
CN112414192B (zh) 一种变热源梯级相变储能调控装置
CN112978676B (zh) 一种固态氢源反应器的热量控制方法
CN108644880B (zh) 一种基于螺旋板式反应器的太阳能供暖系统及其工作方法
CN107289803B (zh) 一种用于水合盐化学储能的反应器
CN113072038B (zh) 一种固态氢源反应器
CN110260535B (zh) 一种太阳能连续烘焙系统及方法
US20110024075A1 (en) System and method for regenerating heat energy
CN113776372B (zh) 一种基于正仲氢转化的常温蓄冷装置、蓄冷方法及取冷方法
CN114350325B (zh) 一种基于玻璃晶体且主动可控的压卡材料固态相变储热和放热方法、装置及应用
CN112880213B (zh) 一种太阳能化学蓄热除湿系统及工作方法
Malleswararao et al. Experimental studies on LaNi4. 25Al0. 75 alloy for hydrogen and thermal energy storage applications
CN210829414U (zh) 一种基于相变储热的电力储能装置
CN220957921U (zh) 一种夹套换热式储放氢装置
CN220857691U (zh) 一种热力电池系统
CN216011898U (zh) 一种正仲氢转化型蓄冷设备
CN114383457B (zh) 一种工业废热梯度利用系统以及利用方法
CN221171790U (zh) 一种具有两级相变储热单元的镁基固态吸放氢系统
CN114198169B (zh) 一种利用干冰升华的储能系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant