CN112968643A - Based on self-adaptation extension H∞Filtering brushless direct current motor parameter identification method - Google Patents

Based on self-adaptation extension H∞Filtering brushless direct current motor parameter identification method Download PDF

Info

Publication number
CN112968643A
CN112968643A CN202110140453.4A CN202110140453A CN112968643A CN 112968643 A CN112968643 A CN 112968643A CN 202110140453 A CN202110140453 A CN 202110140453A CN 112968643 A CN112968643 A CN 112968643A
Authority
CN
China
Prior art keywords
time
covariance matrix
matrix
motor
iteration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110140453.4A
Other languages
Chinese (zh)
Other versions
CN112968643B (en
Inventor
丁洁
陈丽娟
林金星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202110140453.4A priority Critical patent/CN112968643B/en
Publication of CN112968643A publication Critical patent/CN112968643A/en
Application granted granted Critical
Publication of CN112968643B publication Critical patent/CN112968643B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The invention discloses a method based on self-adaptive expansion HThe parameter identification method of the brushless direct current motor of the filter algorithm comprises the following steps: (1) describing the internal dynamic characteristics of the brushless direct current motor by using a current equation under a static coordinate system, and establishing a motor dynamic model according to the internal dynamic characteristics; (2) parameters needing to be identified, such as inductance of the motor, are expanded to be in a state, and a continuous state space expression is discretized; (3) the simulation motor adopts a double closed-loop control mode, and phase current and phase voltage are obtained from a current detection unit and a voltage detection unit; (4) establishing Krein spaceHCombining the performance constant and the measured noise covariance matrix to form a new measured noise covariance matrix, and iteratively estimating a state estimation error covariance matrix and the new noise covariance matrix by utilizing an expectation maximization idea; (5) by combining the obtained phase current and phase voltage, using the extension HThe filtering algorithm estimates motor parameters such as back electromotive force. The method improves the motor parameter estimation precision.

Description

Based on self-adaptation extension H∞Filtering brushless direct current motor parameter identification method
Technical Field
The invention relates to a motor parameter identification method, in particular to a method based on self-adaptive expansion HProvided is a method for identifying parameters of a brushless direct current motor with filtering.
Background
The brushless direct current motor is widely applied to the fields of robots, medical equipment and the like due to the advantages of long service life, simplicity in control, high operation efficiency and the like. The brushless direct current motor is a nonlinear multivariable controlled object, and motor parameters need to be accurately detected in order to achieve the optimal performance. At present, the traditional method is to acquire the rotor position information through a position sensor, but the cost and the volume of the system are increased. The key of most realizing sensorless control and torque control is to obtain accurate and real-time back electromotive force of the motor, generally, the back electromotive force of the motor is considered to be ideal trapezoidal wave, but the control precision is low; or calculating the back emf value in the control scheme by looking up the table, but increasing the amount of calculation.
When the motor back emf is taken as the state variable, the estimation can be done with a state observer or filter. The problem is that the state estimation method relies on accurate motor parameters. For a brushless direct current motor, the current change is large in the commutation process, and the deviation of inductance and resistance parameters has great influence on back electromotive force estimation.
Common identification methods include kalman filtering, least square method, sliding mode identification, model reference adaptive algorithm, and the like. For a linear system with accurate model and Gaussian distribution-compliant noise, Kalman filtering can obtain an optimal solution, and a derivative algorithm of the optimal solution is widely applied to motor parameter identification. However, due to the influence of unknown parameters, an accurate motor model is not easy to obtain; while unknown noise is present. When the model or noise of the system is not accurate, spread HThe filtering algorithm has better robustness, but in the estimation process, the covariance matrix of the process noise and the measurement noise is usually artificially set to be a constant, and the change of the covariance matrix with the time is not considered. In addition, in this method, a limited upper bound of model uncertainty needs to be set manually, the setting process is complicated, and if the parameter selection is not suitableThe estimated performance of the system is affected.
Disclosure of Invention
The purpose of the invention is as follows: aiming at the problems, the invention provides a method based on adaptive expansion HThe method for identifying the parameters of the filtered brushless direct current motor can quickly identify the parameters of the motor on line in real time, accurately estimate the parameters in a motor system, including winding back electromotive force, stator resistance, stator inductance and the like, and ensure the convergence of the algorithm while improving the accuracy of the algorithm.
The technical scheme is as follows: the technical scheme adopted by the invention is based on self-adaptive expansion HThe method for identifying the parameters of the filtered brushless direct current motor comprises the following steps:
step 1, providing a state space model of the brushless direct current motor according to a current equation of a static coordinate system.
Wherein, the current equation of the stationary coordinate system in the step 1 is:
Figure BDA0002927209540000021
wherein iα,iβIs the stator current in the α β coordinate system, eα,eβIs the winding back electromotive force, u, in the α β coordinate systemα,uβIs the stator voltage in the α β coordinate system, R is the stator resistance, and L is the stator inductance.
Step 2, expanding the stator inductance and the stator resistance of the brushless direct current motor into a state space model, and discretizing a state space equation; the discretized state space equation is obtained as:
xk=Fk-1xk-1+wk-1
yk=Hxk+vk
Figure BDA0002927209540000022
Figure BDA0002927209540000023
wherein x is [ x ]0 T,L,R]T,x0=[iα,iβ,eα,eβ]T,iα,iβIs the stator current in the α β coordinate system, eα,eβIs the winding back electromotive force in the α β coordinate system, R is the stator resistance, L is the stator inductance, w and v are the system noise and the measurement noise, respectively, Ts is the sampling time, and k represents the kth time.
And 3, collecting phase current and phase voltage of the brushless direct current motor. The phase current and the phase voltage are obtained from a current detection unit and a voltage detection unit.
Step 4, providing H under the Krein spaceFiltering algorithm with minimum variance (Q (theta, theta)i) Approximate log-likelihood function (L)θ(xk,z1∶k) According to an expectation maximization algorithm, estimating to obtain an error covariance matrix and a noise covariance matrix; step 4 comprises the following processes:
(1) design HCost function J of filtering2And satisfies the following conditions:
Figure BDA0002927209540000024
in the formula, J2As a cost function, xkIs a state variable at the time point k,
Figure BDA0002927209540000025
is an estimate of the state variable at time k, ykIs an observation vector; x ═ x0 T,L,R]T,x0=[iα,iβ,eα,eβ]TWherein iα,iβIs the stator current in the α β coordinate system, eα,eβIs the winding back electromotive force in the alpha beta coordinate system, R is the stator resistance, L is the stator inductance, H is the system viewMeasuring a matrix; n is the measurement time, SkFor custom weight matrices, the same dimensional unit matrix, P, is chosen herekIs an error noise covariance matrix, QkIs a process noise covariance matrix, RkMeasuring a noise covariance matrix, wherein gamma is a performance boundary, and I is a 6-dimensional unit matrix;
the state expression in the Krein space is:
xk=Fk-1xk-1+wk-1
zk=Cxk+ek
in the formula, Fk-1The system state transition matrix at time k-1,
Figure BDA0002927209540000031
wk~N(wk|0,Qk),ek~N(ek|0,Wk) (ii) a Wherein wk-1Is the system noise at the time k-1,
Figure BDA0002927209540000032
vkis the measurement noise at the k-th time,
Figure BDA0002927209540000033
qk is a process noise covariance matrix;
Figure BDA0002927209540000034
Figure BDA0002927209540000035
Rkmeasuring a noise covariance matrix, wherein gamma is a performance boundary, and I is a unit matrix;
(2) given the log-likelihood function of the complete data: l isθ(xk,z1∶k)=arg max log pθ(xk,z1∶k) And using the minimum variance Q (theta )i) And (3) approximately calculating a log-likelihood function according to the following calculation formula:
Figure BDA0002927209540000036
wherein
Figure BDA0002927209540000037
θiDenotes the estimated value of θ at the i-th iteration, pθ(xk,z1∶k) Denotes xkAnd z1∶kIn conjunction with the probability density function,
Figure BDA00029272095400000316
denotes xkA posterior probability density function of (a);
the joint probability density function is calculated as:
Figure BDA0002927209540000038
wherein the content of the first and second substances,
Figure BDA0002927209540000039
and Pk|k-1Are respectively an extension HA priori estimated state and error covariance matrix at time k of filtering, z1∶kThe measured value at the moment of 1: k, and c is a constant;
(3) finding theta according to the maximum expectation algorithmiSo that Q (theta )i) The intensity of the light beam is maximized,
Figure BDA00029272095400000310
finally obtaining the estimation formula of the covariance of the state variables and the covariance of the noise:
Figure BDA00029272095400000311
wherein the content of the first and second substances,
Figure BDA00029272095400000312
for an a-priori estimation of the time instant k,
Figure BDA00029272095400000313
the prior estimate error covariance matrix for the i +1 th iteration at time k,
Figure BDA00029272095400000314
for the a posteriori estimate and error covariance for the (i + 1) th iteration at time k,
Figure BDA00029272095400000315
the noise covariance matrix for the i +1 th iteration at time k.
Step 5, according to the phase voltage, the phase current and the error covariance matrix and the noise covariance matrix obtained by estimation, utilizing the expansion HThe filtering algorithm estimates the internal dynamic characteristic parameters of the brushless DC motor.
Extension H used in step 5The filtering algorithm estimates the internal dynamic characteristic parameters of the brushless direct current motor, the estimation process is iterative cycle, a cycle variable i is taken from 0 to M-1, and M is iteration times:
Figure BDA0002927209540000041
Figure BDA0002927209540000042
Figure BDA0002927209540000043
Figure BDA0002927209540000044
in the formula (I), the compound is shown in the specification,
Figure BDA0002927209540000045
and Pk|k-1Are respectively an extension HPrior estimation state and error coordination of k time of filteringVariance matrix, Wk=diag(Rk2I),RkA measured noise covariance matrix at the moment k, gamma is a performance boundary, and I is a unit matrix;
Figure BDA0002927209540000046
the prior estimate error covariance matrix for the ith iteration at time k,
Figure BDA0002927209540000047
a noise covariance matrix of the ith iteration at the time k; y iskIs an observation vector;
Figure BDA0002927209540000048
h is a system observation matrix, and I is a 6-dimensional unit matrix;
wherein
Figure BDA0002927209540000049
And Pk|k-1The calculation formula of (A) is as follows:
Figure BDA00029272095400000410
Figure BDA00029272095400000411
in the formula, Fk-1Is the system state transition matrix at time k-1, Pk-1The covariance matrix of the error at the moment of k-1, and Q is a process noise covariance matrix; f (-) is the expanded system state transition matrix,
Figure BDA00029272095400000412
for a posteriori estimation of the time k-1, uk-1Is the system input at time k-1; wherein u ═ uα,uβ]T,uα,uβIs the stator voltage in the α β coordinate system;
after each iteration is completed, updating
Figure BDA00029272095400000413
Figure BDA00029272095400000414
Figure BDA00029272095400000415
Wherein the content of the first and second substances,
Figure BDA00029272095400000416
the prior estimate error covariance matrix for the i +1 th iteration at time k,
Figure BDA00029272095400000417
for the a posteriori estimate and error covariance of the (i + 1) th iteration at time k,
Figure BDA00029272095400000418
a noise covariance matrix of i +1 th iteration at the time k;
the final iteration to the Mth time outputs are:
Figure BDA00029272095400000419
wherein the content of the first and second substances,
Figure BDA00029272095400000420
respectively the a posteriori estimate at time k and the error covariance matrix,
Figure BDA00029272095400000421
for the estimation error covariance matrix at time k,
Figure BDA00029272095400000422
the noise covariance matrix estimated for time k,
Figure BDA00029272095400000423
is the state variable of the mth iteration at time k.
Has the advantages that: compared with the prior art, the invention has the following advantages: the method comprises the steps of firstly establishing a state space expression according to a current equation of a static coordinate system, then establishing H in a Krein space by taking inductance and other parameters needing to be identified as an augmentation vector and a discrete state modelAnd the filtering algorithm is used for forming a new covariance matrix by the noise covariance matrix and the performance boundary, and realizing the real-time estimation of the new covariance matrix based on the idea of expectation maximization. The invention combines expectation maximization and expansion H according to the observed value of the current momentThe filtering algorithm realizes the online estimation of the error and noise covariance matrix, improves the accuracy of the algorithm and ensures the convergence of the algorithm.
Drawings
FIG. 1 is a diagram of the adaptive extension H-based method of the present inventionA flow chart of a filtered brushless direct current motor parameter identification method;
FIG. 2 is a block diagram of a control circuit for dual closed-loop control of a brushless DC motor;
FIG. 3 is a comparison graph of the result of back electromotive force estimation and the true value using the method of the present invention and the EKF algorithm in the simulation of the brushless DC motor by the dual closed-loop control method;
FIG. 4 is a comparison graph of inductance estimation results and actual values obtained by the method and the EKF algorithm of the present invention in a simulation of a brushless DC motor in a dual closed-loop control manner;
fig. 5 is a comparison graph of the resistance estimation result and the true value by the method and the EKF algorithm of the present invention in the simulation of the brushless dc motor by the double closed-loop control method.
Detailed Description
The technical solution of the present invention is further described below with reference to the accompanying drawings and examples.
The invention relates to a method based on self-adaptive expansion HReferring to fig. 1, a flow chart of the method for identifying the parameters of the filtered brushless direct current motor is shown, a dynamic estimation model of the brushless direct current motor under a static coordinate system is established, and the self-adaptive extension H ∞ is adopted according to the dynamic estimation model of the motorThe filtering method estimates parameters of the motor. The method specifically comprises the following steps:
step 1, describing the internal dynamic characteristics of the motor by using a current equation under an alpha beta static reference coordinate system as a continuous state space expression of the motor.
The current equation in the α β stationary reference frame is as follows:
Figure BDA0002927209540000051
wherein iα,iβIs the stator current in the α β coordinate system, eα,eβIs the winding back electromotive force, u, in the α β coordinate systemα,uβIs the stator voltage in the α β coordinate system, R is the stator resistance, and L is the stator inductance. Assuming that the derivative of the back emf is 0, the state space expression is now:
Figure BDA0002927209540000052
y0=H0x0
wherein x is0=[iα,iβ,eα,eβ]TIs a system state vector, y ═ iα,iβ]TFor system output, u ═ uα,uβ]TIs the system input.
Figure BDA0002927209540000053
Step 2, the stator inductance L and the stator resistance R are expanded into a system state vector to obtain a continuous six-order state space model:
xk=fk-1(xk-1,uk-1)+wk-1
yk=Hxk+vk
wherein x is=[x0 T,L,R]T
Figure BDA0002927209540000061
Figure BDA0002927209540000062
Discretizing the continuous spatial expression yields:
xk=Fk-1xk-1+wk-1
yk=Hxk+vk
Figure BDA0002927209540000063
wherein, wkAnd vkIs the system noise and the measurement noise, and Ts is the sampling time.
And 3, adopting a surface-mounted permanent magnet brushless direct current motor as the experimental motor of the permanent magnet synchronous direct current motor in the simulation system, adopting a two-by-two 120-degree conduction mode for control, and using a double closed-loop control mode, wherein the difference between the given value of the motor rotating speed and the actual rotating speed value calculated by the Hall signal is used as the input of the input speed controller as shown in figure 2. The difference between the output of the speed controller and the current feedback quantity acquired by the current detection unit is the input of the current controller. And the PWM control signal generator can interpret the current position of the motor rotor according to the Hall sensor and then is connected to a power tube to be opened so as to finish the speed regulation of the motor. Meanwhile, the phase current and the phase voltage are obtained by obtaining them from the current detection unit and the voltage detection unit.
Step 4, giving HFiltering the cost function and converting it into H in Krein spaceAnd (3) filtering algorithm:
Figure BDA0002927209540000064
rearranging the above formula to obtain
Figure BDA0002927209540000071
Where J is the cost function, N is the measurement time, SkFor custom weight matrices, the same dimensional unit matrix, P, is chosen herekIs an error noise covariance matrix, QkIs a process noise covariance matrix, RkTo measure the noise covariance matrix, gamma is the performance boundary, IkIs an identity matrix of dimension k.
Order to
Figure BDA0002927209540000072
Figure BDA0002927209540000073
Then the state expression in the Krein space can be obtained:
xk=Fk-1xk-1+wk-1
zk=Cxk+ek
wherein, wk~N(wk|0,Qk),ek~N(ek|0,Wk)。
To achieve real-time estimation of an inaccurate noise covariance matrix, the log-likelihood function is approximated with a minimum variance according to an expectation-maximization algorithm:
Figure BDA0002927209540000074
wherein
Figure BDA0002927209540000075
θiRepresenting the estimated value of theta at the ith iteration,
Figure BDA0002927209540000076
to relate to xkThe mathematical expectation of (2).
Figure BDA0002927209540000077
Denotes xkA posterior probability density function of.
Giving a joint probability density function:
Figure BDA0002927209540000078
wherein the content of the first and second substances,
Figure BDA0002927209540000079
and Pk|k-1Are respectively an extension HA priori estimated state and error covariance matrix at time k of filtering, z1∶kThe measured value at time 1: k, c represents a constant with respect to θ.
Finding theta according to the maximum expectation algorithmiSo that Q (theta )i) The intensity of the light beam is maximized,
Figure BDA00029272095400000710
finally, the estimation formula of the error variable covariance and the noise covariance is obtained:
Figure BDA00029272095400000711
Figure BDA00029272095400000712
wherein the content of the first and second substances,
Figure BDA00029272095400000713
for an a-priori estimation of the time instant k,
Figure BDA00029272095400000714
the prior estimate error covariance matrix for the i +1 th iteration at time k,
Figure BDA00029272095400000715
for the a posteriori estimate and error covariance for the (i + 1) th iteration at time k,
Figure BDA00029272095400000716
the noise covariance matrix for the i +1 th iteration at time k.
Step 5, according to the measured phase voltage, phase current and the noise covariance matrix obtained by estimation, utilizing the expansion HThe filtering algorithm estimates parameters such as back electromotive force. The estimation process is as follows:
Figure BDA0002927209540000081
Figure BDA0002927209540000082
initial values of the iterations:
Figure BDA0002927209540000083
fori is 0: m-1, M is the number of iterations,
Figure BDA0002927209540000084
Figure BDA0002927209540000085
Figure BDA0002927209540000086
after each step of the iterative process is completed, updating
Figure BDA0002927209540000087
Figure BDA0002927209540000088
Figure BDA0002927209540000089
The final output is:
Figure BDA00029272095400000810
setting the sampling period Ts=2×10-6,N=4,γ2Each initial value is x 500=[0,0,0,0,0.01,0.5]T,P0=diag[1,1,1,1,1,1]T,Q0=diag(10-6,10-6,10-4,10-4,0,0),R=diag(3×10-3,3×10-3). Respectively using an extended Kalman filter algorithm and an adaptive extension H through the obtained phase current and phase voltageAnd the filtering algorithm is used for estimating the back electromotive force of the motor and identifying the motor parameters at the same time. As can be seen from FIG. 3, the adaptive extension HThe filtering algorithm is obviously superior to an extended Kalman filtering algorithm (EKF algorithm), the precision of the estimated winding back electromotive force is higher than that of the extended Kalman filtering algorithm, and FIG. 4 shows that the adaptive extension H is realizedThe stator inductance of the filter estimation is more accurate than the inductance value of the Kalman filter estimation, the stabilization time is shorter, the convergence speed is faster, and as can be seen from FIG. 5, the adaptive expansion H is usedCompared with the extended Kalman filtering method, the precision of the stator resistance estimation by the filtering algorithm is greatly improved, and the convergence speed is higher. From this, adaptive extension HThe filtering algorithm is greatly improved in the aspects of accuracy, stability, robustness and the like.

Claims (6)

1. One is based on adaptive spreading H. . The method for identifying the parameters of the filtered brushless direct current motor is characterized by comprising the following steps of:
step 1, providing a state space model of the brushless direct current motor according to a current equation of a static coordinate system;
step 2, expanding the stator inductance and the stator resistance of the brushless direct current motor into a state space model, and discretizing a state space equation;
step 3, collecting phase current and phase voltage of the brushless direct current motor;
step 4, adopting H in Krein spaceFiltering algorithm using minimum variance Q (theta )i) Approximate log-likelihood function Lθ(xk,z1;k) Estimating to obtain an error covariance matrix and a noise covariance matrix according to an expectation maximization algorithm;
step 5, according to the phase voltage, the phase current and the error covariance matrix and the noise covariance matrix obtained by estimation, utilizing the expansion HThe filtering algorithm estimates the internal dynamic characteristic parameters of the brushless DC motor.
2. The adaptive extension-based H of claim 1The method for identifying the parameters of the filtered brushless direct current motor is characterized in that a current equation of a static coordinate system in the step 1 is as follows:
Figure FDA0002927209530000011
wherein iα,iβIs the stator current in the α β coordinate system, eα,eβIs the winding back electromotive force, u, in the α β coordinate systemα,uβIs the stator voltage in the α β coordinate system, R is the stator resistance, and L is the stator inductance.
3. The adaptive extension-based H of claim 1The method for identifying the parameters of the filtered brushless DC motor is characterized in that the discretization in the step 2The state space equation is:
xk=Fk-1xk-1+wk-1
yk=Hxk+vk
Figure FDA0002927209530000012
Figure FDA0002927209530000013
wherein x is [ x ]0 T,L,R]T,x0=[iα,iβ,eα,eβ]TWherein iα,iβIs the stator current in the α β coordinate system, eα,eβIs the winding back electromotive force in the α β coordinate system, R is the stator resistance, L is the stator inductance, w and v are the system noise and the measurement noise, respectively, Ts is the sampling time, and k represents the kth time.
4. The adaptive extension-based H of claim 1The method for identifying the parameters of the filtered brushless direct current motor is characterized by comprising the following steps: and (4) acquiring the phase current and the phase voltage of the brushless direct current motor in the step (3), wherein the phase current and the phase voltage are acquired from the current detection unit and the voltage detection unit.
5. The adaptive extension-based H of claim 1The method for identifying the parameters of the filtered brushless direct current motor is characterized in that the step 4 comprises the following processes:
(1) design HCost function J of filtering2And satisfies the following conditions:
Figure FDA0002927209530000021
in the formula, J2Is a generationValence function, xk
Figure FDA0002927209530000022
Respectively, the state variable at time k and its estimated value, ykIs an observation vector; x ═ x0 T,L,R]T,x0=[iα,iβ,eα,eβ]TWherein iα,iβIs the stator current in the α β coordinate system, eα,eβIs the winding back electromotive force in the alpha beta coordinate system, R is the stator resistance, L is the stator inductance, H is the system observation matrix; n is the measurement time, SkFor custom weight matrices, the same dimensional unit matrix, P, is chosen herekIs an error noise covariance matrix, QkIs a process noise covariance matrix, RkMeasuring a noise covariance matrix, wherein gamma is a performance boundary, and I is a 6-dimensional unit matrix;
the state expression in the Krein space is:
xk=Fk-1xk-1+wk-1
zk=Cxk+ek
in the formula, Fk-1The system state transition matrix at time k-1,
Figure FDA0002927209530000023
wk~N(wk|0,Qk),ek~N(ek|0,Wk);wk-1is the system noise at the time k-1,
Figure FDA0002927209530000024
vkis the measurement noise at the k-th time,
Figure FDA0002927209530000025
Qkis a process noise covariance matrix;
Figure FDA0002927209530000026
Figure FDA0002927209530000027
Rkmeasuring a noise covariance matrix, wherein gamma is a performance boundary, and I is a unit matrix;
(2) given the log-likelihood function of the complete data: l isθ(xk,z1∶k)=arg max log pθ(xk,z1:k) And using the minimum variance Q (theta )i) And (3) approximately calculating a log-likelihood function according to the following calculation formula:
Figure FDA0002927209530000028
wherein
Figure FDA0002927209530000029
θiDenotes the estimated value of θ at the i-th iteration, pθ(xk,z1:k) Denotes xkAnd z1:kIn conjunction with the probability density function,
Figure FDA00029272095300000212
denotes xkA posterior probability density function of (a);
the joint probability density function is calculated as:
Figure FDA00029272095300000210
wherein the content of the first and second substances,
Figure FDA00029272095300000211
and Pk|k-1Are respectively an extension HA priori estimated state and error covariance matrix at time k of filtering, z1:k is 1: c is a constant value;
(3) finding theta according to the maximum expectation algorithmiSo that the Q (theta,θi) The intensity of the light beam is maximized,
Figure FDA0002927209530000031
finally obtaining the estimation formula of the covariance of the state variables and the covariance of the noise:
Figure FDA0002927209530000032
Figure FDA0002927209530000033
wherein the content of the first and second substances,
Figure FDA0002927209530000034
for an a-priori estimation of the time instant k,
Figure FDA0002927209530000035
the prior estimate error covariance matrix for the i +1 th iteration at time k,
Figure FDA0002927209530000036
for the a posteriori estimate and error covariance for the (i + 1) th iteration at time k,
Figure FDA0002927209530000037
the noise covariance matrix for the i +1 th iteration at time k.
6. The adaptive extension-based H of claim 1The method for identifying the parameters of the filtered brushless direct current motor is characterized by comprising the following steps: extension H used in step 5The filtering algorithm estimates the internal dynamic characteristic parameters of the brushless direct current motor, the estimation process is iterative cycle, a cycle variable i is taken from 0 to M-1, and M is iteration times:
Figure FDA0002927209530000038
Figure FDA0002927209530000039
Figure FDA00029272095300000310
Figure FDA00029272095300000311
in the formula (I), the compound is shown in the specification,
Figure FDA00029272095300000312
and Pk|k-1Are respectively an extension HA priori estimated state and error covariance matrix at time k of filtering, Wk=diag(Rk2I),RkA measured noise covariance matrix at the moment k, gamma is a performance boundary, and I is a unit matrix;
Figure FDA00029272095300000313
the prior estimate error covariance matrix for the ith iteration at time k,
Figure FDA00029272095300000314
a noise covariance matrix of the ith iteration at the time k; y iskIs an observation vector;
Figure FDA00029272095300000315
h is a system observation matrix, and I is a 6-dimensional unit matrix;
wherein
Figure FDA00029272095300000316
And Pk|k-1The calculation formula of (A) is as follows:
Figure FDA00029272095300000317
Figure FDA00029272095300000318
in the formula, Fk-1Is the system state transition matrix at time k-1, Pk-1The covariance matrix of the error at the moment of k-1, and Q is a process noise covariance matrix; f (-) is the expanded system state transition matrix,
Figure FDA00029272095300000319
for a posteriori estimation of the time k-1, uk-1Is the system input at time k-1; wherein u ═ uα,uβ]T,uα,uβIs the stator voltage in the α β coordinate system;
after each iteration is completed, updating
Figure FDA00029272095300000320
Figure FDA00029272095300000321
Figure FDA00029272095300000322
Wherein the content of the first and second substances,
Figure FDA00029272095300000323
the prior estimate error covariance matrix for the i +1 th iteration at time k,
Figure FDA00029272095300000324
for the a posteriori estimate and error covariance of the (i + 1) th iteration at time k,
Figure FDA0002927209530000041
a noise covariance matrix of i +1 th iteration at the time k;
the final iteration to the Mth time outputs are:
Figure FDA0002927209530000042
wherein the content of the first and second substances,
Figure FDA0002927209530000043
Pk|krespectively the a posteriori estimate at time k and the error covariance matrix,
Figure FDA0002927209530000044
for the estimation error covariance matrix at time k,
Figure FDA0002927209530000045
the noise covariance matrix estimated for time k,
Figure FDA0002927209530000046
is the state variable of the mth iteration at time k.
CN202110140453.4A 2021-02-01 2021-02-01 Based on self-adaptation extension H ∞ Filtering brushless direct current motor parameter identification method Active CN112968643B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110140453.4A CN112968643B (en) 2021-02-01 2021-02-01 Based on self-adaptation extension H ∞ Filtering brushless direct current motor parameter identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110140453.4A CN112968643B (en) 2021-02-01 2021-02-01 Based on self-adaptation extension H ∞ Filtering brushless direct current motor parameter identification method

Publications (2)

Publication Number Publication Date
CN112968643A true CN112968643A (en) 2021-06-15
CN112968643B CN112968643B (en) 2022-08-26

Family

ID=76273210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110140453.4A Active CN112968643B (en) 2021-02-01 2021-02-01 Based on self-adaptation extension H ∞ Filtering brushless direct current motor parameter identification method

Country Status (1)

Country Link
CN (1) CN112968643B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090030645A1 (en) * 2007-07-26 2009-01-29 Baumuller Nurnberg Gmbh System for estimation of position and speed in a permanent magnet rotor of an electrical motor
US20110031909A1 (en) * 2009-08-06 2011-02-10 Kabushiki Kaisha Toshiba Motor drive apparatus and motor drive method
CN106487297A (en) * 2016-11-24 2017-03-08 北京邮电大学 A kind of PMSM parameter identification method based on covariance matching Unscented kalman filtering algorithm
CN108134549A (en) * 2017-12-25 2018-06-08 西安理工大学 A kind of method for improving permanent magnet synchronous motor speed estimate stability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090030645A1 (en) * 2007-07-26 2009-01-29 Baumuller Nurnberg Gmbh System for estimation of position and speed in a permanent magnet rotor of an electrical motor
US20110031909A1 (en) * 2009-08-06 2011-02-10 Kabushiki Kaisha Toshiba Motor drive apparatus and motor drive method
CN106487297A (en) * 2016-11-24 2017-03-08 北京邮电大学 A kind of PMSM parameter identification method based on covariance matching Unscented kalman filtering algorithm
CN108134549A (en) * 2017-12-25 2018-06-08 西安理工大学 A kind of method for improving permanent magnet synchronous motor speed estimate stability

Also Published As

Publication number Publication date
CN112968643B (en) 2022-08-26

Similar Documents

Publication Publication Date Title
Cupertino et al. Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects
CN107432715B (en) Dust collector, motor and control method and control device of motor
JP6485810B2 (en) Method and system for controlling rotor angular speed of induction motor
CN116488514B (en) Sensorless control method and system for permanent magnet synchronous motor based on reduced order EKF
CN109946978B (en) Servo system fractional order model identification method considering delay link
CN111313787B (en) Current sensor error rapid online self-correction motor driving system and control method
CN111987961A (en) Position-sensorless direct torque control method for permanent magnet synchronous motor
Jarzebowicz et al. Improving control dynamics of PMSM drive by estimating zero-delay current value
CN112968643B (en) Based on self-adaptation extension H ∞ Filtering brushless direct current motor parameter identification method
CN111092580A (en) Improved MRAS control method based on limited memory least square method
Yin et al. A speed estimation method for induction motors based on strong tracking extended Kalman filter
CN113794419A (en) Deadbeat current prediction robust control method based on incremental motor model
CN113037161A (en) Model reference self-adaptive permanent magnet synchronous motor position-sensorless vector control method based on super-distortion sliding mode algorithm
Sayouti et al. Sensor less low speed control with ANN MRAS for direct torque controlled induction motor drive
Ahmad et al. A simplified flux linkage characteristics model of switched reluctance machine
CN111064406A (en) Improved model reference self-adaptive control system based on limited memory least square method
CN114844396B (en) IPMSM (intelligent power management System) MTPA (maximum Transmission Power Amplifier) control method without position sensor
CN114722528A (en) Induction motor sensorless vector control method based on adaptive extended Kalman filtering
Hamann et al. Development of a hybrid system for automatic identification of brushed direct current motors
CN110661466A (en) Adaptive observer based on quasi-proportional resonance and permanent magnet synchronous motor position estimation method
Wang et al. Sensorless wide speed range position estimation method for permanent magnet synchronous machines
JP2021197752A (en) Torque estimation device and torque estimation method
CN111669093B (en) Motor parameter estimation method based on adaptive extended Kalman filtering
CN108155841B (en) Sensorless speed estimation method for induction motor
Buchta et al. Dead-time compensation strategies based on kalman filter algorithm for pmsm drives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant