CN112968348B - 抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤 - Google Patents

抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤 Download PDF

Info

Publication number
CN112968348B
CN112968348B CN202110189734.9A CN202110189734A CN112968348B CN 112968348 B CN112968348 B CN 112968348B CN 202110189734 A CN202110189734 A CN 202110189734A CN 112968348 B CN112968348 B CN 112968348B
Authority
CN
China
Prior art keywords
refractive
solid
index
fiber
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110189734.9A
Other languages
English (en)
Other versions
CN112968348A (zh
Inventor
黄良金
陈潇
潘志勇
奚小明
范晨晨
安毅
吴函烁
李浩博
杨欢
闫志平
王小林
周朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202110189734.9A priority Critical patent/CN112968348B/zh
Publication of CN112968348A publication Critical patent/CN112968348A/zh
Application granted granted Critical
Publication of CN112968348B publication Critical patent/CN112968348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤,设计全固态光子带隙型微结构传能光纤作为高功率光纤激光的长距离传输光纤,传能光纤包括固态纤芯和微结构包层,微结构包层包覆在纤芯的外围,所述微结构包层包括围绕固态纤芯呈正六边形点阵排列的高折射率棒以及填充在高折射率棒间的固态基底,高折射率棒的中心折射率应大于固态基底的折射率,通过合理调整传能光纤结构参数设计,可在实现信号波长激光的高效率单模传输同时能够抑制长距离传输过程中的受激拉曼散射效应。

Description

抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤
技术领域
本发明属于高功率光纤激光技术领域,更具体地,涉及一种抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤。
背景技术
工作在近红外波段(~1μm)的高平均功率激光凭借其能量集中、变换灵活、热影响区小等优势,在工业加工、国防军事、生物医疗等领域得到了广泛应用。近年来,随着激光材料、泵浦耦合、光束合成等技术的发展,高平均功率激光在功率提升方面取得了长足进步。以工业用连续波高功率光纤激光为例,国外知名厂商如美国IPG光子技术公司早在2013年就推出了其单模万瓦工业级产品,国内知名厂商如锐科激光、邦德激光等所开发的万瓦级工业激光器模组也于近两年相继问世。
在工业加工应用中,以传能光纤作为媒介的能量传输手段由于其可柔性操作、传输效率高、环境适应性强等优势,成为各种类型高功率(固体、气体、液体、半导体、光纤等)激光优选的能量传输方式。为了满足大范围加工的应用场景,将高功率激光从光源处输送至到工作区的传能光纤优选长度通常不少于15m。然而,随着高功率激光技术发展至全新功率水平,由于极高的局部光功率密度和受限的传能光纤模场面积,千瓦或万瓦级高功率激光的长距离传输受到受激拉曼散射(SRS)的掣肘,导致其传能光纤长度被动地限制在几米甚至几十厘米。光纤本身的长度和模场面积直接决定了SRS的阈值功率,满足
Figure BDA0002944936870000011
其中Aeff为模场面积、gR(Ω)为拉曼增益系数、Leff为光纤长度。在高功率激光长距离传输过程中,受激拉曼散射(SRS)的出现一方面会诱发严重的激光器功率波动,另一方面会产生有可能损坏激光器本体的反射回光。因此,进一步开发具有高SRS阈值或高SRS抑制水平的新型传能光纤对于充分发挥高功率激光器效能很有必要。
目前,针对高功率长距离传能应用的传能光纤设计方案主要为大模场面积(LMA)光纤。虽然已经有诸多LMA光纤如多沟壑光纤、泄漏通道光纤、超低NA光纤、光子晶体光纤等设计方案相继提出,但是上述光纤在实际应用中多受限于抗弯性较差和难以保证有效单模运转等技术问题。除此之外,以光子晶体光纤为典型代表的微结构光纤由于结构中空气孔的存在,在应用过程中还存在熔接难度大、气孔塌陷等难题。工业级高功率激光激光器多采用全固态光纤化结构,因此为保证熔接的高效性和快捷性应尽可能采用全固态传能光纤。
综上所述,立足于LMA光纤设计方案所面临的瓶颈性问题,如何在提高SRS阈值的同时兼顾抗弯性和单模性能是目前传能光纤的设计导向。
发明内容
有鉴于此,有必要针对现有技术存在的问题,提供一种抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤。
为了实现上述技术目的,本发明的技术方案为:
抑制受激拉曼散射的方法,包括:
设计传能光纤作为高功率光纤激光的长距离传输光纤,所述传能光纤包括固态纤芯和微结构包层,微结构包层包覆在纤芯的外围,所述微结构包层包括围绕固态纤芯呈正六边形点阵排列的高折射率棒以及填充在高折射率棒间的固态基底,高折射率棒的中心折射率应大于固态基底的折射率;
传能光纤长距离传输高功率光纤激光时,微结构包层中的高折射率棒由于反谐振耦合而产生光子带隙效应,在传播常数一定的情况下,落在光子带隙外的波长呈现高损耗而无法稳定传输,落在光子带隙内的波长的光无法穿过微结构包层从而被限制在纤芯中稳定传输,通过设计传能光纤结构参数使其结构本身产生的光子带隙效应实现信号波长激光的高效率单模传输,同时抑制高功率光纤激光长距离传输过程中的受激拉曼散射(SRS)效应。
作为本发明的优选方案,所述固态纤芯为石英纤芯。固态基底为固态石英基底,对应1070nm波长的典型折射率值约为1.45。
作为本发明的优选方案,所述高折射率棒为锗(Ge)棒,也可为包含锗(Ge)元素、钛(Ti)元素等高折射率元素的掺杂棒。
作为本发明的优选方案,所述传能光纤在弯曲半径不小于20cm时,对应1060—1080nm的信号激光波长带的基模弯曲损耗满足BL<0.1dB/m。
作为本发明的优选方案,位于正六边形点阵中最内层的高折射率棒紧靠固态纤芯。正六边形点阵中的所有高折射率棒直径均为d,任意两根相邻高折射率棒中心的间距为Λ,固态纤芯直径为2Λ-d。
作为本发明的优选方案,呈正六边形点阵排列的高折射率棒层数应不少于3层,在此前提下高折射率棒的实际层数可根据所需光纤的包层尺寸自由选取。
作为本发明的优选方案,高折射率棒和固态基底之间存在折射率差Δ,满足Δ=(nhigh 2-nlow 2)/(2×nhigh 2),其中nhigh、nlow分别为高折射率棒中心折射率和固态基体折射率,折射率差Δ的取值范围通常在1%至3%之间。
进一步地通过合理调整传能光纤结构参数设计,所述传能光纤具有如下波长选择性透过性能:一方面可以对信号激光波长带(1060—1080nm)以低损耗状态稳定传输,另一方面在受激拉曼散射(SRS)斯托克斯波长带(1115—1130nm)表现为高损耗,从而更有效抑制高功率长距离传输过程中的SRS效应。具体地,所述传能光纤的SRS抑制效能通过合理调整高折射率棒直径d和折射率差Δ来实现,而与相邻高折射率棒中心间距Λ无关。优选的,当典型值折射率差Δ=2%时,d的取值范围为[4.65μm,4.9μm],所述传能光纤结构参数在此区间内均具有最理想的受激拉曼散射效应抑制性能。
优选的,相邻高折射率棒中心间距Λ取值范围为[8μm,13.5μm],能保证在1060nm—1080nm波段为绝对单模运转的光纤。
本发明提供一种高功率光纤激光器,包括激光产生单元,激光产生单元用于产生高功率光纤激光,所述激光产生单元的输出尾纤上熔接传能光纤作为其长距离传输光纤,所述传能光纤包括固态纤芯和微结构包层,微结构包层包覆在纤芯的外围,所述微结构包层包括围绕固态纤芯呈正六边形点阵排列的高折射率棒以及填充在高折射率棒间的固态基底,高折射率棒的中心折射率应大于固态基底的折射率。所述传能光纤用于高功率光纤激光的长距离传输并抑制高功率光纤激光长距离传输过程中的SRS效应同时实现信号波长激光的高效率单模传输;所述传能光纤其结构本身产生的光子带隙效应对信号激光波长带以低损耗状态稳定传输,而在受激拉曼散射斯托克斯波长带表现为高损耗。
与现有技术相比,本发明的有益效果至少包括:
1.本发明在合理设计的传能光纤结构参数下,可利用其结构本身产生的光子带隙效应对信号激光波长带(1060nm—1080nm)以低损耗状态稳定传输,而在受激拉曼散射(SRS)斯托克斯波长带(1115—1130nm)表现为高损耗,从而有效抑制高功率长距离传输过程中的SRS效应,无须借助弯曲、刻写倾斜光栅等其他技术手段就可具备天然的受激拉曼散射(SRS)抑制效果。
2.本发明无须依赖较大的模场面积,而是以高本征损耗的方式原理性地提升了受激拉曼散射(SRS)效应阈值。
3.本发明通过在纤芯外围周期环绕排列不少于三层的高折射率棒控制弯曲损耗,可在不小于20cm的弯曲半径下保证高功率激光在传输过程中低损耗绝对单模运转。
4.相较于空芯光纤、空气孔光子晶体光纤等其他类型复杂微结构光纤,本发明中的传能光纤,在使用过程中与激光器输出尾纤的熔接难度较低,且对熔接设备无特殊要求,有利于实际高功率激光传输应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是实施例1所提供的一种传能光纤截面结构示意图;
图2是实施例1所提供的一种传能光纤在无弯曲状态下的损耗带分布示意图;
图3是实施例1所提供的一种传能光纤信号带弯曲损耗计算结果示意图;
图4是实施例1所提供的一种传能光纤弯曲状态下信号带模场面积和功率填充因子计算结果示意图;
图5是实施例3所提供的一种高功率光纤激光器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
实施例1:
本实施例提供一种传能光纤,其截面结构示意图如图1所示。所述传能光纤包括固态纤芯1和微结构包层,微结构包层包覆在固态纤芯1的外围,所述微结构包层包括围绕固态纤芯1呈正六边形点阵排列的锗棒3以及填充在锗棒3间的固态基底2,锗棒3的中心折射率应大于固态基底2的折射率。其中固态纤芯1和固态基底2均为石英(Silica)材质。所述传能光纤在弯曲半径不小于20cm时,对应1060—1080nm的信号激光波长带的基模弯曲损耗满足BL<0.1dB/m。
位于正六边形点阵中最内层的锗棒3紧靠固态纤芯1,正六边形点阵中的所有锗棒3的直径均为d,任意两根相邻锗棒3中心的间距为Λ,固态纤芯1的直径为2Λ-d。具体地,本实施例所提供传能光纤的结构参数包括:锗棒直径d为4.85μm,相邻两高折射率棒中心间距Λ约为12.8μm,纤芯直径2Λ-d约为21.7μm,高折射率锗棒和固态石英基底之间存在折射率差Δ,满足Δ=(nhigh 2-nlow 2)/(2×nhigh 2)=2%,其中nhigh、nlow分别为高折射率锗棒中心折射率和固态石英基底折射率,nlow取值为典型石英材料折射率1.45。
在上述结构参数下,采用全矢量有限元法计算本实施例所提供的传能光纤在无弯曲状态下的损耗带分布,结果如图2所示。一方面,通过将受激拉曼散射(SRS)斯托克斯波长带(1115—1130nm)设计在2nd损耗带和3rd损耗带之间来实现该波长带的高损耗;另一方面,将信号激光波长带(1060—1080nm)设计在3rd损耗带区域内来实现低损耗传输。
本实施例所提供的传能光纤,根据其实际用途,除考虑波长相关损耗外,还要考虑信号带波长激光传输时的弯曲损耗。只有控制好传能光纤的波长相关损耗,才能使其具有SRS抑制的功能;只有控制好传能光纤在信号带的模式弯曲损耗,才能实现激光的高效率传输。
在本实施所提供光纤的结构参数下,所述光纤满足绝对单模运转,也就是只支持基模传输而不存在其它高阶模式。图3显示了本实施例所提供光纤分别在直光纤状态和20cm弯曲半径下的信号带弯曲损耗。结果表明,该光纤在20cm弯曲半径下仍能够保证可忽略的信号带基模弯曲损耗,具备高效率传输能力。
进一步地,如图4所示,弯曲半径为20cm时,本实施例所提供光纤在1070nm波长下可保证接近200μm2的模场面积和纤芯内大于0.92的基模功率填充因子,具备理想的弯曲性能。
实施例2
本实施例提供一种抑制受激拉曼散射的方法,设计传能光纤作为高功率光纤激光的长距离传输光纤,所述传能光纤其截面结构示意图如图1所示,包括固态纤芯和微结构包层,微结构包层包覆在纤芯的外围,所述微结构包层包括围绕固态纤芯呈正六边形点阵排列的锗棒以及填充在锗棒间的固态基底,锗棒的中心折射率应大于固态基底的折射率。所述固态纤芯为石英纤芯;所述固态基底为固态石英基底。所述传能光纤在弯曲半径不小于20cm时,对应1060—1080nm的信号激光波长带的基模弯曲损耗满足BL<0.1dB/m。
位于正六边形点阵中最内层的锗棒紧靠固态纤芯,正六边形点阵中的所有锗棒直径均为d,任意两根相邻锗棒中心的间距为Λ,固态纤芯直径为2Λ-d。锗棒和固态基底之间存在折射率差Δ,满足Δ=(nhigh 2-nlow 2)/(2×nhigh 2),其中nhigh、nlow分别为锗棒中心折射率和固态基体折射率,折射率差Δ的取值范围在1%至3%之间。
传能光纤长距离传输高功率光纤激光时,微结构包层中的锗棒由于反谐振耦合而产生光子带隙效应,在传播常数一定的情况下,落在光子带隙外的波长呈现高损耗而无法稳定传输,落在光子带隙内的波长的光无法穿过微结构包层从而被限制在纤芯中稳定传输,实现信号波长激光的高效率单模传输;同时传能光纤能够抑制高功率光纤激光长距离传输过程中的受激拉曼散射效应。
通过通过调整锗棒直径d和折射率差Δ,使得传能光纤对1060—1080nm的信号激光波长带以低损耗状态稳定传输,另一方面在1115—1130nm的受激拉曼散射斯托克斯波长带表现为高损耗,从而更有效抑制高功率长距离传输过程中的受激拉曼散射效应。其中,折射率差Δ=2%,d的取值范围为[4.65μm,4.9μm]时,所述传能光纤具有理想受激拉曼散射效应抑制性能。相邻锗棒中心间距Λ取值范围为[8μm,13.5μm],能保证在1060nm—1080nm波段为绝对单模运转的光纤。
实施例3:
参照图5,本实施例提供一种高功率光纤激光器,包括激光产生单元301,激光产生单元用于产生高功率光纤激光,所述激光产生单元的输出尾纤302上熔接传能光纤303作为其长距离传输光纤,最终信号激光经中继光纤304传输至准直器305输出。得益于传能光纤的单模特性和天然SRS抑制效能,该激光传输系统可保证高功率激光的长距离单模传输的同时避免SRS效应的出现。所述传能光纤其截面结构示意图如图1所示,所述传能光纤的结构以及参数设计与实施例1或2相同,在此不在赘述。
综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何本领域普通技术人员,在不脱离本发明的精神和范围内,当可作各种更动与润饰,因此本发明的保护范围当视权利要求书界定的范围为准。

Claims (14)

1.抑制受激拉曼散射的方法,其特征在于,设计传能光纤作为高功率光纤激光的长距离传输光纤,所述传能光纤包括固态纤芯和微结构包层,微结构包层包覆在纤芯的外围,所述微结构包层包括围绕固态纤芯呈正六边形点阵排列的高折射率棒以及填充在高折射率棒间的固态基底,高折射率棒的中心折射率应大于固态基底的折射率;正六边形点阵中的所有高折射率棒直径均为d,正六边形点阵中任意两根相邻高折射率棒中心的间距为Λ,高折射率棒和固态基底之间存在折射率差Δ,满足Δ=(nhigh 2-nlow 2)/(2×nhigh 2),其中nhigh、nlow分别为高折射率棒中心折射率和固态基体折射率;
所述传能光纤的受激拉曼散射效应抑制效能通过设计高折射率棒直径d和折射率差Δ来实现,其中折射率差取值为Δ=2%,d的取值范围为[4.65μm,4.9μm]。
2.根据权利要求1所述的抑制受激拉曼散射的方法,其特征在于,所述固态纤芯为石英纤芯;所述固态基底为固态石英基底。
3.根据权利要求1所述的抑制受激拉曼散射的方法,其特征在于,所述高折射率棒为锗棒,或者为包含锗元素、钛元素的掺杂棒。
4.根据权利要求1或2或3所述的抑制受激拉曼散射的方法,其特征在于,所述传能光纤在弯曲半径不小于20cm时,对应1060-1080nm的信号激光波长带的基模弯曲损耗满足BL<0.1dB/m。
5.根据权利要求4所述的抑制受激拉曼散射的方法,其特征在于,位于正六边形点阵中最内层的高折射率棒紧靠固态纤芯,固态纤芯直径为2Λ-d。
6.根据权利要求5所述的抑制受激拉曼散射的方法,其特征在于,相邻高折射率棒中心间距Λ取值范围为[8μm,13.5μm],能保证所述传能光纤在1060nm-1080nm波段为绝对单模运转的光纤。
7.一种高功率光纤激光器,包括激光产生单元,激光产生单元用于产生高功率光纤激光,所述激光产生单元的输出尾纤上熔接传能光纤作为其长距离传输光纤,其特征在于:所述传能光纤包括固态纤芯和微结构包层,微结构包层包覆在纤芯的外围,所述微结构包层包括围绕固态纤芯呈正六边形点阵排列的高折射率棒以及填充在高折射率棒间的固态基底,高折射率棒的中心折射率应大于固态基底的折射率;其中所述固态纤芯为石英纤芯;所述固态基底为固态石英基底,正六边形点阵中的所有高折射率棒直径均为d,正六边形点阵中任意两根相邻高折射率棒中心的间距为Λ,高折射率棒和固态基底之间存在折射率差Δ,满足Δ=(nhigh 2-nlow 2)/(2×nhigh 2),其中nhigh、nlow分别为高折射率棒中心折射率和固态基体折射率;
所述传能光纤的受激拉曼散射效应抑制效能通过设计高折射率棒直径d和折射率差Δ来实现,其中折射率差取值为Δ=2%,d的取值范围为[4.65μm,4.9μm]。
8.根据权利要求7所述的高功率光纤激光器,其特征在于,所述传能光纤在弯曲半径不小于20cm时,对应1060-1080nm的信号激光波长带的基模弯曲损耗满足BL<0.1dB/m。
9.根据权利要求8所述的高功率光纤激光器,其特征在于,位于正六边形点阵中最内层的高折射率棒紧靠固态纤芯,固态纤芯直径为2Λ-d。
10.根据权利要求9所述的高功率光纤激光器,其特征在于,相邻锗棒中心间距Λ取值范围为[8μm,13.5μm]。
11.传能光纤,其特征在于:包括固态纤芯和微结构包层,微结构包层包覆在纤芯的外围,所述微结构包层包括围绕固态纤芯呈正六边形点阵排列的高折射率棒以及填充在高折射率棒间的固态基底,高折射率棒的中心折射率应大于固态基底的折射率;其中所述固态纤芯为石英纤芯;所述固态基底为固态石英基底,正六边形点阵中的所有高折射率棒直径均为d,正六边形点阵中任意两根相邻高折射率棒中心的间距为Λ,高折射率棒和固态基底之间存在折射率差Δ,满足Δ=(nhigh 2-nlow 2)/(2×nhigh 2),其中nhigh、nlow分别为高折射率棒中心折射率和固态基体折射率;
所述传能光纤的受激拉曼散射效应抑制效能通过设计高折射率棒直径d和折射率差Δ来实现,其中折射率差Δ=2%,d的取值范围为[4.65μm,4.9μm]。
12.根据权利要求11所述的传能光纤,其特征在于,所述传能光纤在弯曲半径不小于20cm时,对应1060-1080nm的信号激光波长带的基模弯曲损耗满足BL<0.1dB/m。
13.根据权利要求12所述的传能光纤,其特征在于,位于正六边形点阵中最内层的高折射率棒紧靠固态纤芯,固态纤芯直径为2Λ-d。
14.根据权利要求13所述的高功率光纤激光器,其特征在于,相邻锗棒中心间距Λ取值范围为[8μm,13.5μm]。
CN202110189734.9A 2021-02-19 2021-02-19 抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤 Active CN112968348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110189734.9A CN112968348B (zh) 2021-02-19 2021-02-19 抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110189734.9A CN112968348B (zh) 2021-02-19 2021-02-19 抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤

Publications (2)

Publication Number Publication Date
CN112968348A CN112968348A (zh) 2021-06-15
CN112968348B true CN112968348B (zh) 2022-08-02

Family

ID=76285120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110189734.9A Active CN112968348B (zh) 2021-02-19 2021-02-19 抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤

Country Status (1)

Country Link
CN (1) CN112968348B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622560A (zh) * 2007-03-05 2010-01-06 株式会社藤仓 光子带隙光纤
JP2011123418A (ja) * 2009-12-14 2011-06-23 Sumitomo Electric Ind Ltd 光ファイバ
CN103038682A (zh) * 2010-09-28 2013-04-10 株式会社藤仓 固态光子带隙光纤、使用了固态光子带隙光纤的光纤模块、光纤放大器以及光纤激光器
CN103645536A (zh) * 2013-12-18 2014-03-19 江苏大学 一种全固态大模场光子带隙光纤
US9146345B1 (en) * 2012-01-20 2015-09-29 Clemson University High power optical fibers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114847A1 (en) * 2009-03-31 2010-10-07 Imra America, Inc. Wide bandwidth, low loss photonic bandgap fibers
CN112147738B (zh) * 2020-10-19 2021-07-02 华中科技大学 可抑制受激布里渊散射效应的高拉曼增益光纤及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622560A (zh) * 2007-03-05 2010-01-06 株式会社藤仓 光子带隙光纤
JP2011123418A (ja) * 2009-12-14 2011-06-23 Sumitomo Electric Ind Ltd 光ファイバ
CN103038682A (zh) * 2010-09-28 2013-04-10 株式会社藤仓 固态光子带隙光纤、使用了固态光子带隙光纤的光纤模块、光纤放大器以及光纤激光器
US9146345B1 (en) * 2012-01-20 2015-09-29 Clemson University High power optical fibers
CN103645536A (zh) * 2013-12-18 2014-03-19 江苏大学 一种全固态大模场光子带隙光纤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Design Optimization of Large-Mode-Area All-Solid Photonic Bandgap Fibers for High-Power Laser Applications;Shota Saitoh;《Journal of Lightwave Technology》;20140201;第32卷(第3期);第2、3A、3B节,图1、2 *
Raman Gain Suppression in All-solid Photonic Bandgap Fiber;Toshiki Taru;《33rd European Conference and Exhibition of Optical Communication》;20110601;第1-2页,附图1-6) *
Shota Saitoh.Design Optimization of Large-Mode-Area All-Solid Photonic Bandgap Fibers for High-Power Laser Applications.《Journal of Lightwave Technology》.2014,第32卷(第3期), *

Also Published As

Publication number Publication date
CN112968348A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
CN101884146B (zh) 有源光纤和有源光纤的制造方法
US9146345B1 (en) High power optical fibers
CN102967981A (zh) 基于多芯光子晶体光纤的超连续谱光源
CN101173997B (zh) 供高功率应用的光纤
EP3063841A1 (en) Method and apparatus for high-power raman beam-combining in a multimode optical fiber
CN110187437A (zh) 一种三包层光纤、泵浦合束器、光纤光栅和光纤激光器
CN202995205U (zh) 基于多芯光子晶体光纤的超连续谱光源
WO2020259644A1 (zh) 一种大模场三包层无源光纤、模式剥离器和光纤激光器
CN100587528C (zh) 一种增益光子晶体光纤波导及其器件
US20230123319A1 (en) Optical amplifying fiber, optical fiber amplifier, and optical communication system
Ma et al. Design and analysis of a modified segmented cladding fiber with large mode area
CN214278468U (zh) 全固态微结构传能光纤及高功率光纤激光器
US11245241B2 (en) Optical fiber for a fiber laser, fiber laser, and production method for optical fiber for a fiber laser
CN104635296A (zh) 一种长距离激光能量传输光纤
US20020102081A1 (en) Photonic band-gap light-emitting fibers
CN110989072A (zh) 一种多包层螺旋结构的大模场单模光纤
CN112968348B (zh) 抑制受激拉曼散射的方法、高功率光纤激光器及传能光纤
CN103439763A (zh) 一种大模场面积全固体光纤及其制造方法
CN103698840A (zh) 一种多芯非线性光纤
CN112968347B (zh) 抑制受激拉曼散射的方法、高功率光纤激光器及全固态微结构光纤
Li et al. Double-end low-loss coupling of anti-resonant hollow-core fibers with solid-core single-mode fibers by tapering technique
CN214278469U (zh) 全固态微结构光纤
CN1251366C (zh) 大模式面积双包层光纤单模激光器及制备方法
CN107608021B (zh) 一种掺铋全固态带隙型微结构光纤
CN217134869U (zh) 高功率光纤激光器用变径光纤与高功率光纤激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant