CN112968286B - 一种波束控制方法、装置、波束控制设备和波束控制器 - Google Patents
一种波束控制方法、装置、波束控制设备和波束控制器 Download PDFInfo
- Publication number
- CN112968286B CN112968286B CN202110151913.3A CN202110151913A CN112968286B CN 112968286 B CN112968286 B CN 112968286B CN 202110151913 A CN202110151913 A CN 202110151913A CN 112968286 B CN112968286 B CN 112968286B
- Authority
- CN
- China
- Prior art keywords
- amplitude
- phase
- target antenna
- antenna
- phase compensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 230000015654 memory Effects 0.000 claims description 45
- 238000004590 computer program Methods 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 20
- 238000003384 imaging method Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 101100325756 Arabidopsis thaliana BAM5 gene Proteins 0.000 description 1
- 102100031584 Cell division cycle-associated 7-like protein Human genes 0.000 description 1
- 244000089409 Erythrina poeppigiana Species 0.000 description 1
- 101000777638 Homo sapiens Cell division cycle-associated 7-like protein Proteins 0.000 description 1
- 101150046378 RAM1 gene Proteins 0.000 description 1
- 235000009776 Rathbunia alamosensis Nutrition 0.000 description 1
- 101100476489 Rattus norvegicus Slc20a2 gene Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/005—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using remotely controlled antenna positioning or scanning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/267—Phased-array testing or checking devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/28—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本申请实施例提供一种波束控制方法、装置、波束控制设备和波束控制器,所述方法包括:接收所述电子设备发送的第一控制指令,根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位;所述目标天线表示与接收第一控制指令的波束控制器连接的天线;获取所述InSAR系统中目标天线的幅相补偿信息;所述幅相补偿信息表示对所述目标天线的幅度和/或相位进行补偿的信息;基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码;基于所述波束控制码,对所述目标天线的波束进行控制。
Description
技术领域
本申请涉及雷达成像技术领域,尤其涉及一种波束控制方法、装置、波束控制设备和波束控制器。
背景技术
二维高分辨率雷达成像技术通常被称为合成孔径雷达(Synthetic ApertureRadar,SAR);星载干涉合成孔径雷达(Interferometric Synthetic Aperture Radar,InSAR)系统建立在星载SAR技术基础上,是一种基于干涉测量技术的雷达系统;其中,合成孔径雷达干涉测量技术是指利用不同入射角下、满足干涉条件的两幅或多幅SAR图像所形成的干涉相位或干涉信息来反演地表三维地形、微小变化或地物属性的技术。可见,相对传统的单平台单天线SAR系统,单平台双天线InSAR卫星能够实现全天时、全天候的陆地和海洋监视监测,其获取的高精度的数字高程模型(Digital Elevation Model,DEM)数据,是国家重要的地理空间基础信息,可形成对境内DEM的业务化覆盖,广泛应用于国民经济与社会发展的多个行业,全面提高在国土测绘、资源勘探、地震及灾害监测方面的能力。
相关技术中,大多数SAR系统都采用数字阵列天线,且波束控制器是SAR系统的重要组成部分;对于单平台双天线的InSAR系统,由于该系统中的波束控制器无法根据天线的幅相补偿信息对天线的波束进行控制,会增加SAR图像之间的干涉误差,进而,降低InSAR系统的成像精度。
发明内容
本申请实施例提供一种波束控制方法、装置、波束控制设备和波束控制器。
本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种波束控制方法,应用于InSAR系统的每个波束控制器中,所述InSAR系统包括:电子设备、第一波束控制器、第二波束控制器、第一天线和第二天线;其中,所述电子设备分别与第一波束控制器和第二波束控制器连接,所述第一波束控制器与所述第一天线连接,所述第二波束控制器与所述第二天线连接,所述方法包括:
接收所述电子设备发送的第一控制指令,根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位;所述目标天线表示与接收所述第一控制指令的波束控制器连接的天线;
获取所述InSAR系统中目标天线的幅相补偿信息;所述幅相补偿信息表示对所述目标天线的幅度和/或相位进行补偿的信息;
基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码;基于所述波束控制码,对所述目标天线的波束进行控制。
在一些实施例中,所述第一控制指令包括身份标识号ID信息,所述根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位,包括:
根据所述第一控制指令,确定所述ID信息;
在所述ID信息满足匹配条件时,确定目标天线对应的方位向扫描相位和距离向扫描相位。
在一些实施例中,所述目标天线的幅相补偿信息为所述InSAR系统在当前工作模式下目标天线的幅相补偿信息;
所述获取所述InSAR系统中目标天线的幅相补偿信息,包括:
利用地面测试系统,对所述InSAR系统在多种工作模式下目标天线的幅相误差进行测量,得到所述多种工作模式下目标天线的幅相补偿信息;所述幅相补偿信息包括接收相位补偿码、发射相位补偿码和接收幅度补偿码;
从所述多种工作模式下目标天线的幅相补偿信息中获取所述InSAR系统在当前工作模式下目标天线的幅相补偿信息。
在一些实施例中,在获取所述InSAR系统中目标天线的幅相补偿信息后,所述方法还包括:
重新接收所述电子设备发送的第二控制指令,并根据所述第二控制指令,重新确定所述InSAR系统在当前工作模式下目标天线的幅相补偿信息。
在一些实施例中,所述重新接收所述电子设备发送的第二控制指令,包括:
在所述InSAR系统的工作时间达到设定时间后,重新接收所述电子设备发送的第二控制指令。
在一些实施例中,所述根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位,包括:
根据所述第一控制指令,确定所述目标天线的方位向扫描角和距离向扫描角;
确定所述目标天线在各个方位向扫描角对应的方位向扫描相位集和各个距离向扫描角对应的距离向扫描相位集;
根据所述方位向扫描相位集和所述距离向扫描相位集,确定所述方位向扫描角对应的方位向扫描相位和距离向扫描角对应的距离向扫描相位。
在一些实施例中,所述方法还包括:
在获取所述InSAR系统中目标天线的幅相补偿信息后,将所述目标天线的幅相补偿信息存储在存储器中;
所述基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码,包括:
从所述存储器中获取所述目标天线的幅相补偿信息,基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码。
本申请实施例提供一种波束控制装置,应用于InSAR系统的每个波束控制器中,所述InSAR系统包括:电子设备、第一波束控制器、第二波束控制器、第一天线和第二天线;其中,所述电子设备分别与第一波束控制器和第二波束控制器连接,所述第一波束控制器与所述第一天线连接,所述第二波束控制器与所述第二天线连接,所述装置包括:
确定模块,用于接收所述电子设备发送的第一控制指令,根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位;所述目标天线表示与接收所述第一控制指令的波束控制器连接的天线;
获取模块,用于获取所述InSAR系统中目标天线的幅相补偿信息;所述幅相补偿信息表示对所述目标天线的幅度和/或相位进行补偿的信息;
控制模块,用于基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码;基于所述波束控制码,对所述目标天线的波束进行控制。
本申请实施例提供一种波束控制设备,应用于干涉合成孔径雷达InSAR系统的每个波束控制器中,所述InSAR系统包括:电子设备、第一波束控制器、第二波束控制器、第一天线和第二天线;其中,所述电子设备分别与第一波束控制器和第二波束控制器连接,所述第一波束控制器与所述第一天线连接,所述第二波束控制器与所述第二天线连接;所述波束控制设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现前述一个或多个技术方案提供的波束控制方法。
本申请实施例提供一种波束控制器,包括上述波束控制装置或波束控制设备。
本申请实施例提供一种波束控制方法、装置、波束控制设备和波束控制器,所述方法包括:接收所述电子设备发送的第一控制指令,根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位;所述目标天线表示与接收第一控制指令的波束控制器连接的天线;获取所述InSAR系统中目标天线的幅相补偿信息;所述幅相补偿信息表示对所述目标天线的幅度和/或相位进行补偿的信息;基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码;基于所述波束控制码,对所述目标天线的波束进行控制;可见,该波束控制方法不仅适合于单平台双天线的InSAR系统,还可通过幅相补偿信息实时对目标天线的波束控制码进行调整,以实现目标天线的波束控制;进一步地,通过目标天线的波束控制可以减少InSAR系统中满足干涉条件的SAR图像之间的干涉误差,确保干涉测量性能,有效提高InSAR系统的成像精度。
附图说明
图1a为本申请实施例的InSAR系统的结构示意图;
图1b为本申请实施例的波束控制方法的流程图;
图1c为本申请实施例的InSAR系统中波束控制系统的结构示意图;
图1d为本申请实施例的InSAR天线坐标位置的结构示意图;
图1e为本申请实施例的InSAR成像坐标系的示意图;
图1f为本申请实施例的确定波束控制码的流程示意图;
图2为本申请实施例的InSAR系统中进行波束控制的结构示意图;
图3为本申请实施例的波束控制装置的组成结构示意图;
图4为本申请实施例提供的波束控制设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
下面结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所提供的实施例仅仅用以解释本申请,并不用于限定本申请。另外,以下所提供的实施例是用于实施本申请的部分实施例,而非提供实施本申请的全部实施例,在不冲突的情况下,本申请实施例记载的技术方案可以任意组合的方式实施。
需要说明的是,在本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的方法或者装置不仅包括所明确记载的要素,而且还包括没有明确列出的其他要素,或者是还包括为实施方法或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的方法或者装置中还存在另外的相关要素(例如方法中的步骤或者装置中的单元,例如的单元可以是部分电路、部分处理器、部分程序或软件等等)。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
例如,本申请实施例提供的波束控制方法包含了一系列的步骤,但是本申请实施例提供的波束控制方法不限于所记载的步骤,同样地,本申请实施例提供的波束控制装置包括了一系列模块,但是本申请实施例提供的波束控制装置不限于包括所明确记载的模块,还可以包括为获取相关信息、或基于信息进行处理时所需要设置的模块。
本申请实施例可以基于波束控制器实现,这里,波束控制器可以是瘦客户机、厚客户机、手持或膝上设备、基于微处理器的系统、机顶盒、可编程消费电子产品、网络个人电脑、小型计算机系统,等等。
波束控制器可以在由计算机系统执行的计算机系统可执行指令(诸如程序模块)的一般语境下描述。通常,程序模块可以包括例程、程序、目标程序、组件、逻辑、数据结构等等,它们执行特定的任务或者实现特定的抽象数据类型。计算机系统可以在分布式云计算环境中实施,在分布式云计算环境中,任务是由通过通信网络链接的远程处理设备执行的。
本申请实施例提供了一种波束控制方法,该方法可以应用于InSAR系统的每个波束控制器中;图1a为本申请实施例的InSAR系统的结构示意图,如图1a所示,该InSAR系统由电子设备100、第一波束控制器101、第二波束控制器102、第一天线103、第二天线104以及支撑臂电缆组成;其中,电子设备100通过支撑臂电缆分别与第一波束控制器101和第二波束控制器102连接,第一波束控制器101与第一天线103连接,第二波束控制器102与第二天线104连接。这里,第一波束控制器101和第二波束控制器102具有相同的功能和性能要求。
这里,InSAR系统为单平台双天线InSAR系统,它是在一个载机平台上同时搭载两套天线,同时获取同一测区的SAR图像,通过回波信号相位差得到干涉图,最后,结合航迹和传感器参数获得高精度、高分辨率的地面高程信息。对于高程反演,InSAR系统能够弥补SAR系统在等距离目标不可区分的信息,使得SAR系统对地观测的图像扩展到三维。
图1b为本申请实施例的波束控制方法的流程图,如图1b所示,该流程可以包括:
步骤200:接收电子设备发送的第一控制指令,根据第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位;目标天线表示与接收第一控制指令的波束控制器连接的天线。
示例性地,电子设备可以是位于雷达方舱内部的监控计算机或其它可以发送第一控制指令的设备;这里,雷达方舱是一种通用性好、机动性强,电子屏蔽性能优异的设备载体。
本申请实施例中,电子设备与波束控制器之间进行通信;即,电子设备向波束控制器发送第一控制指令,波束控制器接收电子设备发送的第一控制指令;这里,第一控制指令包括能够对目标天线波束进行控制的波束指向信息,波束控制器根据该波束指向信息,可以确定目标天线对应的方位向扫描相位和距离向扫描相位。
在一些实施例中,第一控制指令还包括身份标识号(Identity Document,ID)信息,根据第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位,可以包括:根据第一控制指令,确定ID信息;在ID信息满足匹配条件时,确定目标天线对应的方位向扫描相位和距离向扫描相位。
本申请实施例中,与电子设备连接的两个波束控制器均有对应的ID信息,且两个波束控制器的ID信息不相同;由于第一控制指令中包括ID信息;当电子设备同时向两个波束控制器发送第一控制指令时,波束控制器会判断第一控制指令中的ID信息是否满足匹配条件,即,是否与波束控制器自身的ID信息匹配;如果满足匹配条件,则确定与该波束控制器连接的目标天线对应的方位向扫描相位和距离向扫描相位;如果不满足匹配条件,则忽略第一控制指令。
示例性地,当第一控制指令中的ID信息与第一波束控制器的ID信息匹配时,则目标天线为第一天线;当第一控制指令中的ID信息与第二波束控制器的ID信息匹配时,则目标天线为第二天线。可见,通过第一控制指令中的ID信息可以唯一确定对应的目标天线,进而,能够适用于单平台双天线的InSAR系统。
图1c为本申请实施例的InSAR系统中波束控制系统的结构示意图,如图1c所示,InSAR系统中包括两个波束控制系统;其中,第一波束控制系统由第一波束控制器、多个波控单元和多个收发(Transmitter/Receiver,T/R)组件组成;对应地,第二波束控制系统由第二波束控制器、多个波控单元和多个T/R组件组成。
这里,以第一波束控制系统为例进行说明;在第一波束控制器根据接收到的第一控制指令得到波束指向信息后,将波束指向信息发送至对应的波控单元,波控单元作为数据接口电路将接收到的波束指向信息分发输出,控制T/R组件;其中,T/R组件是指无线收发系统中射频与天线之间的部分,即,T/R组件一端接天线,一端接波控单元组成的中频处理模块便构成一个无线收发系统,用于根据波束指向信息对天线信号进行放大、移相和衰减。同时将T/R组件获取的遥测数据送回电子设备。
在一种实施方式中,InSAR系统包括两套天线,每套天线可以包括天线阵面、波控单元和T/R组件;其中,波束控制器与波控单元连接,波控单元与T/R组件连接;天线阵面由若干个子阵组成,天线阵面中的每个子阵根据波束控制器发送的第一控制指令进行成像、定标等功能实现。
这里,对InSAR系统中天线的坐标位置进行说明;图1d为本申请实施例的InSAR天线坐标位置的结构示意图,如图1d所示,X轴表示波控单元所在天线阵面的子阵编号,该子阵编号从子阵1至子阵M;Y轴表示波控单元所在天线阵面的波控单元编号,该波控单元编号从波控单元编号1至波控单元编号N。可以看出,该天线的天线阵面由M个子阵组成,每个子阵对应N个波控单元,每个波控单元控制L个T/R组件。
示例性地,由图1d可以看出,与波束控制器相连的天线的布局为矩形布局;其中,天线位置坐标可以是由子阵编号和波控单元编号组成的坐标数据,该坐标数据表示天线所在的位置。例如,坐标数据(1,1)表示子阵编号为1且波控单元编号为1的天线位置;坐标数据(2,1)表示子阵编号为2且波控单元编号为1的天线位置。
在一些实施例中,根据第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位,可以包括:根据第一控制指令,确定目标天线的方位向扫描角和距离向扫描角;确定目标天线在各个方位向扫描角对应的方位向扫描相位集和各个距离向扫描角对应的距离向扫描相位集;根据方位向扫描相位集和距离向扫描相位集,确定方位向扫描角对应的方位向扫描相位和距离向扫描角对应的距离向扫描相位。
示例性地,第一控制指令的波束指向信息中包括目标天线的方位向扫描角和距离向扫描角;即,可以根据第一控制指令,直接确定目标天线的方位向扫描角和距离向扫描角。
在一种实施方式中,可以设定InSAR天线波束指向正方向参考为天线阵面本体坐标系,+Z方向为卫星对地面方向,方位向正方向为+X方向(卫星飞行方向),距离向正方向为+Y方向,其中,X方向、Y方向和Z方向均符合标准右手坐标系定义即X方向与Y方向的矢量相乘得到的方向为Z方向。
假设天线相位中心飞行方向平行于地平面,当固定距离向视角时,方位向扫描角变化时,波束中心地面轨迹平行于雷达星下点地面轨迹。图1e为本申请实施例的InSAR成像坐标系的示意图,如图1e所示,As为方位向扫描角,Rs为距离向扫描角,θ0为天线法向视角,θ为天线波束视角。在该InSAR成像坐标系下,天线的波束指向在成像坐标系中的扫描矢量为:(sinAS,cosASsinRS)。
天线对应的方位向扫描相位ΔPx和距离向扫描相位ΔPy如公式(1)所示:
其中,Dx为方位向单元间距,Dy为距离向单元间距,λ为中心频率波长。
由于在实际应用中,InSAR天线的方位向扫描范围仅为±4度,即cosAS≈1;因而,公式(1)可以简化成公式(2):
这里,根据公式(2)得到的方位向扫描相位ΔPx和距离向扫描相位ΔPy的单位为度。
本申请实施例中,由于目标天线的方位扫描角范围、距离向扫描角范围和扫描步进都是已知的,因而,可以根据公式(2)将目标天线在各个方位向扫描角对应的方位向扫描相位集和各个距离向扫描角对应的距离向扫描相位集提前计算出来;进而,可以从方位向扫描相位集和距离向扫描相位集中确定目标天线的方位向扫描角和距离向扫描角。
在一种实施方式中,可以预先将根据公式(2)确定的方位向扫描相位集和距离向扫描相位集存储在波束控制器的存储器中;在波束控制器根据第一控制指令确定目标天线的方位向扫描角和距离向扫描角时,可以直接在存储器中调用方位向扫描角对应的方位向扫描相位和距离向扫描角对应的距离向扫描相位;这样,可以节省波束控制器工作时的计算资源和计算时间。
示例性地,步骤200可以利用波束控制装置中的处理器实现,上述处理器可以为特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal ProcessingDevice,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种;上述存储器可以为处理器中的存储器,例如,可以为FPGA中的只读存储器(Read-Only Memory,ROM)。
步骤201:获取InSAR系统中目标天线的幅相补偿信息;幅相补偿信息表示对目标天线的幅度和/或相位进行补偿的信息。
示例性地,在根据步骤200确定目标天线对应的方位向扫描相位和距离向扫描相位后,结合图1d、图1e和公式(2),可以根据公式(3)确定坐标数据为(m,n)的波控单元中每个T/R组件的波束控制码:
C(m,n,l)=m*ΔPx+(n-1)*L*ΔPy+l*ΔPy (3)
其中,L表示T/R组件的个数,l表示其中一个T/R组件。
由于在常规SAR系统中,单机之间的微波信号互联电缆长度一般不超过3m,波束控制器可以根据上述公式(3)依次计算天线阵面对应的所有波控单元中每个T/R组件的波束控制码;但是在双天线InSAR系统中,虽然两个远端的波束控制器具有相同的功能和性能要求,但是由于器件个体差异、所处环境差异,沿长电缆(60~90m)的微小环境变化都将导致较大传输衰减差异,这是通道间信噪比不一致性的主要来源。即,若想获得高精度的InSAR测量结果,就要求两幅SAR图像的成像通道之间有很高的相关性;如果两个成像通道的幅度和相位不一致,会降低干涉相关性,进而降低干涉测量精度;因此,需要获取InSAR系统中目标天线的幅相补偿信息,对InSAR系统双成像通道的幅相一致性进行补偿,以提高干涉测量精度。
在一些实施例中,目标天线的幅相补偿信息为InSAR系统在当前工作模式下目标天线的幅相补偿信息;获取InSAR系统中目标天线的幅相补偿信息,可以包括:利用地面测试系统,对InSAR系统在多种工作模式下目标天线的幅相误差进行测量,得到多种工作模式下目标天线的幅相补偿信息;幅相补偿信息包括接收相位补偿码、发射相位补偿码和接收幅度补偿码;从多种工作模式下目标天线的幅相补偿信息中获取InSAR系统在当前工作模式下目标天线的幅相补偿信息。
示例性地,InSAR系统的当前工作模式可以包括条带模式、扫描模式或聚束模式等,本申请实施例对此不作限制。
在一种实施方式中,可以通过地面测试系统、电子设备和与目标天线连接的波束控制器共同完成长电缆引入的幅相误差的测量,得到多种工作模式下目标天线的幅相补偿信息,进而,可以从多种工作模式下目标天线的幅相补偿信息中获取InSAR系统在当前工作模式下目标天线的幅相补偿信息。
在一些实施例中,在获取InSAR系统中目标天线的幅相补偿信息后,该方法还可以包括:重新接收电子设备发送的第二控制指令,并根据第二控制指令,重新确定InSAR系统在当前工作模式下目标天线的幅相补偿信息。
示例性地,在获取InSAR系统中目标天线的幅相补偿信息后,还可以重新调整InSAR系统在当前工作模式下目标天线的幅相补偿信息,并将调整后的幅相补偿信息通过第二控制指令发送到对应的波束控制器中;即,波束控制器可以根据电子设备重新发送的第二控制指令,重新获取到InSAR系统在当前工作模式下目标天线的幅相补偿信息。
在一些实施例中,重新接收电子设备发送的第二控制指令,可以包括:在InSAR系统的工作时间达到设定时间后,重新接收电子设备发送的第二控制指令。
由于InSAR系统在星上实时工作的过程中,随着远端电子设备工作热耗等的影响而导致环境温度发生变化,射频器件特性随环境温度的变化容易产生漂移;而随着InSAR系统工作寿命的增加,空间辐照逐渐积累,辐照敏感器件特性也会随之出现幅相变化。这些都会使雷达发射和接收信号的幅相特性发生不期望的改变。也就是说,在InSAR系统的工作时间达到设定时间后,继续使用原有的幅相补偿信息可能无法提高干涉相关性,进而,会降低干涉测量精度;因而,在InSAR系统的工作时间达到设定时间后,重新接收电子设备发送的第二控制指令;即,重新确定InSAR系统在当前工作模式下目标天线的幅相补偿信息。
本申请实施例中,对设定时间的时长不作限制;例如,可以是三小时、六小时等。
示例性地,可以将获取到的幅相补偿信息预先存储在存储器中,当需要重新获取目标天线的幅相补偿信息时,将重新获取的幅相补偿信息加载到存储器中,覆盖原先存储的幅相补偿信息。这里,存储器可以为FLASH存储器,也可以为其它类型的存储器。
可见,本申请实施例可以通过电子设备发送的第二控制指令实时在轨调整接收相位补偿码、发射相位补偿码和接收幅度补偿码,确保干涉测量的有效性。
步骤202:基于幅相补偿信息、方位向扫描相位和距离向扫描相位,确定目标天线的波束控制码;基于波束控制码,对目标天线的波束进行控制。
示例性地,在获取到InSAR系统在当前工作模式下目标天线的幅相补偿信息后,将幅相补偿信息加入公式(3)中,得到更新后的公式(4):
C(m,n,l)=m*ΔPx+(n-1)*L*ΔPy+l*ΔPy+δ1+δ2+δ3 (4)
这里,δ1表示接收相位补偿码,δ2表示发射相位补偿码,δ3表示接收幅度补偿码。即,本申请实施例在获取到InSAR系统在当前工作模式下目标天线的方位向扫描相位、距离向扫描相位以及幅相补偿信息后,可以根据公式(4)确定天线阵面对应的所有波控单元中每个T/R组件的波束控制码;进而,根据该波束控制码对目标天线的波束进行控制。
在一些实施例中,上述方法还可以包括:在获取InSAR系统中目标天线的幅相补偿信息后,将目标天线的幅相补偿信息存储在存储器中;基于幅相补偿信息、方位向扫描相位和距离向扫描相位,确定目标天线的波束控制码,可以包括:从存储器中获取目标天线的幅相补偿信息,基于幅相补偿信息、方位向扫描相位和距离向扫描相位,确定目标天线的波束控制码。
本申请实施例,可以预先将获取到的幅相补偿信息存储在存储器中,这样,在确定目标天线的波束控制码时,可以直接从存储器读取出对应的幅相补偿信息,并将该幅相补偿信息加载到波束控制器的处理器FPGA的存储器中待用;这里,存储器可以为随机存取存储器(Random Access Memory,RAM),也可以为其它类型的存储器。
图1f为本申请实施例的确定波束控制码的流程示意图,如图1f所示,波束控制器首先从FLASH存储器中获取对应的接收相位补偿码、发射相位补偿码和接收幅度补偿码;并将接收相位补偿码加载到第一存储器RAM1中,将发射相位补偿码加载到第二存储器RAM2中,将接收幅度补偿码加载到第三存储器RAM3中;然后调用方位向扫描相位和距离向扫描相位;再结合公式(4),可以得到天线阵面对应的所有波控单元中每个T/R组件的波束控制码;最后将波束控制码发送到对应天线的波控单元中。
本申请实施例中,在得到目标天线的波束控制码后,将波束控制码发送到目标天线的波控单元中,波控单元根据波束控制码控制对应的T/R组件,使得目标天线的收发波束指向设定的方向,实现目标天线的波束控制。
图2为本申请实施例的InSAR系统中进行波束控制的结构示意图,如图2所示,第一波束控制器可以向第一FLASH存储器上载幅相补偿信息,也可以读取幅相补偿信息;同样地,第二波束控制器可以向第二FLASH存储器上载幅相补偿信息,也可以读取幅相补偿信息;这里,以第一波束控制器为例进行说明,在第一FLASH存储器中的幅相补偿信息可用,不需要重新根据第二控制指令向第一FLASH存储器上载幅相补偿信息的情况下,InSAR系统中的第一波束控制器开始上电工作后,将多种工作模式下目标天线的幅相补偿信息读取到FPGA的存储器中待用,然后根据InSAR系统电子设备发送的第一控制指令,确定目标天线的方位向扫描角和距离向扫描角,从存储器中读取出目标天线的方位向扫描相位ΔPx和距离向扫描相位ΔPy,然后根据公式(4)得到每个T/R组件的波束控制码发送给第一波控单元。
本申请实施例提供一种波束控制装置,应用于InSAR系统的每个波束控制器中;图3为本申请实施例的波束控制装置的组成结构示意图,如图3所示,该装置包括:确定模块300、获取模块301和控制模块302,其中:
确定模块300,用于接收电子设备发送的第一控制指令,根据第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位;目标天线表示与接收第一控制指令的波束控制器连接的天线;
获取模块301,用于获取InSAR系统中目标天线的幅相补偿信息;幅相补偿信息表示对目标天线的幅度和/或相位进行补偿的信息;
控制模块302,用于基于幅相补偿信息、方位向扫描相位和距离向扫描相位,确定目标天线的波束控制码;基于波束控制码,对目标天线的波束进行控制。
在一些实施例中,第一控制指令包括身份标识号ID信息,确定模块300,用于根据第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位,包括:
根据第一控制指令,确定ID信息;
在ID信息满足匹配条件时,确定目标天线对应的方位向扫描相位和距离向扫描相位。
在一些实施例中,目标天线的幅相补偿信息为InSAR系统在当前工作模式下目标天线的幅相补偿信息;
获取模块301,用于获取InSAR系统中目标天线的幅相补偿信息,包括:
利用地面测试系统,对InSAR系统在多种工作模式下目标天线的幅相误差进行测量,得到多种工作模式下目标天线的幅相补偿信息;幅相补偿信息包括接收相位补偿码、发射相位补偿码和接收幅度补偿码;
从多种工作模式下目标天线的幅相补偿信息中获取InSAR系统在当前工作模式下目标天线的幅相补偿信息。
在一些实施例中,在获取InSAR系统中目标天线的幅相补偿信息后,获取模块301,还用于:
重新接收电子设备发送的第二控制指令,并根据第二控制指令,重新确定InSAR系统在当前工作模式下目标天线的幅相补偿信息。
在一些实施例中,获取模块301,还用于重新接收电子设备发送的第二控制指令,包括:
在InSAR系统的工作时间达到设定时间后,重新接收电子设备发送的第二控制指令。
在一些实施例中,确定模块300,用于根据第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位,包括:
根据第一控制指令,确定目标天线的方位向扫描角和距离向扫描角;
确定目标天线在各个方位向扫描角对应的方位向扫描相位集和各个距离向扫描角对应的距离向扫描相位集;
根据方位向扫描相位集和距离向扫描相位集,确定方位向扫描角对应的方位向扫描相位和距离向扫描角对应的距离向扫描相位。
在一些实施例中,获取模块301,用于:
在获取InSAR系统中目标天线的幅相补偿信息后,将目标天线的幅相补偿信息存储在存储器中;
控制模块302,用于基于幅相补偿信息、方位向扫描相位和距离向扫描相位,确定目标天线的波束控制码,包括:
从存储器中获取目标天线的幅相补偿信息,基于幅相补偿信息、方位向扫描相位和距离向扫描相位,确定目标天线的波束控制码。
在实际应用中,上述确定模块300、获取模块301和控制模块302均可以由位于电子设备中的处理器实现,该处理器可以为ASIC、DSP、DSPD、PLD、FPGA、CPU、控制器、微控制器、微处理器中的至少一种。
另外,在本实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
基于前述实施例相同的技术构思,参见图4,其示出了本申请实施例提供的一种波束控制设备400,可以包括:存储器401和处理器402;其中,
存储器401,用于存储计算机程序和数据;
处理器402,用于执行存储器中存储的计算机程序,以实现前述实施例的任意一种波束控制方法。
在实际应用中,上述存储器401可以是易失性存储器(volatile memory),例如RAM;或者非易失性存储器(non-volatile memory),例如ROM、快闪存储器(flash memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者上述种类的存储器的组合,并向处理器402提供指令和数据。
上述处理器402可以为ASIC、DSP、DSPD、PLD、FPGA、CPU、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的波束控制平台,用于实现上述处理器功能的电子器件还可以为其它,本申请实施例不作具体限定。
本申请实施例提供一种波束控制器,包括上述波束控制装置或波束控制设备。
在一些实施例中,本申请实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述,为了简洁,这里不再赘述。
上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考,为了简洁,本文不再赘述。
本申请所提供的各方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本申请所提供的各产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的各方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
Claims (10)
1.一种波束控制方法,其特征在于,应用于干涉合成孔径雷达InSAR系统的每个波束控制器中,所述InSAR系统包括:电子设备、第一波束控制器、第二波束控制器、第一天线和第二天线;其中,所述电子设备分别与第一波束控制器和第二波束控制器连接,所述第一波束控制器与所述第一天线连接,所述第二波束控制器与所述第二天线连接,所述方法包括:
接收所述电子设备发送的第一控制指令,根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位;所述目标天线表示与接收所述第一控制指令的波束控制器连接的天线;
获取所述InSAR系统中目标天线的幅相补偿信息;所述幅相补偿信息表示对所述目标天线的幅度和/或相位进行补偿的信息;所述幅相补偿信息包括接收相位补偿码、发射相位补偿码和接收幅度补偿码;
基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码;基于所述波束控制码,对所述目标天线的波束进行控制。
2.根据权利要求1所述的方法,其特征在于,所述第一控制指令包括身份标识号ID信息,所述根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位,包括:
根据所述第一控制指令,确定所述ID信息;
在所述ID信息满足匹配条件时,确定目标天线对应的方位向扫描相位和距离向扫描相位。
3.根据权利要求1所述的方法,其特征在于,所述目标天线的幅相补偿信息为所述InSAR系统在当前工作模式下目标天线的幅相补偿信息;
所述获取所述InSAR系统中目标天线的幅相补偿信息,包括:
利用地面测试系统,对所述InSAR系统在多种工作模式下目标天线的幅相误差进行测量,得到所述多种工作模式下目标天线的幅相补偿信息;所述幅相补偿信息包括接收相位补偿码、发射相位补偿码和接收幅度补偿码;
从所述多种工作模式下目标天线的幅相补偿信息中获取所述InSAR系统在当前工作模式下目标天线的幅相补偿信息。
4.根据权利要求1所述的方法,其特征在于,在获取所述InSAR系统中目标天线的幅相补偿信息后,所述方法还包括:
重新接收所述电子设备发送的第二控制指令,并根据所述第二控制指令,重新确定所述InSAR系统在当前工作模式下目标天线的幅相补偿信息。
5.根据权利要求4所述的方法,其特征在于,所述重新接收所述电子设备发送的第二控制指令,包括:
在所述InSAR系统的工作时间达到设定时间后,重新接收所述电子设备发送的第二控制指令。
6.根据权利要求1所述的方法,其特征在于,所述根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位,包括:
根据所述第一控制指令,确定所述目标天线的方位向扫描角和距离向扫描角;
确定所述目标天线在各个方位向扫描角对应的方位向扫描相位集和各个距离向扫描角对应的距离向扫描相位集;
根据所述方位向扫描相位集和所述距离向扫描相位集,确定所述方位向扫描角对应的方位向扫描相位和距离向扫描角对应的距离向扫描相位。
7.根据权利要求1所述的方法,其特征在于,所述方法还包括:
在获取所述InSAR系统中目标天线的幅相补偿信息后,将所述目标天线的幅相补偿信息存储在存储器中;
所述基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码,包括:
从所述存储器中获取所述目标天线的幅相补偿信息,基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码。
8.一种波束控制装置,其特征在于,应用于干涉合成孔径雷达InSAR系统的每个波束控制器中,所述InSAR系统包括:电子设备、第一波束控制器、第二波束控制器、第一天线和第二天线;其中,所述电子设备分别与第一波束控制器和第二波束控制器连接,所述第一波束控制器与所述第一天线连接,所述第二波束控制器与所述第二天线连接,所述装置包括:
确定模块,用于接收所述电子设备发送的第一控制指令,根据所述第一控制指令,确定目标天线对应的方位向扫描相位和距离向扫描相位;所述目标天线表示与接收所述第一控制指令的波束控制器连接的天线;
获取模块,用于获取所述InSAR系统中目标天线的幅相补偿信息;所述幅相补偿信息表示对所述目标天线的幅度和/或相位进行补偿的信息;所述幅相补偿信息包括接收相位补偿码、发射相位补偿码和接收幅度补偿码;
控制模块,用于基于所述幅相补偿信息、所述方位向扫描相位和所述距离向扫描相位,确定所述目标天线的波束控制码;基于所述波束控制码,对所述目标天线的波束进行控制。
9.一种波束控制设备,其特征在于,应用于干涉合成孔径雷达InSAR系统的每个波束控制器中,所述InSAR系统包括:电子设备、第一波束控制器、第二波束控制器、第一天线和第二天线;其中,所述电子设备分别与第一波束控制器和第二波束控制器连接,所述第一波束控制器与所述第一天线连接,所述第二波束控制器与所述第二天线连接;所述波束控制设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至7任一项所述的方法。
10.一种波束控制器,其特征在于,包括权利要求8所述的波束控制装置或权利要求9所述的波束控制设备。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110151913.3A CN112968286B (zh) | 2021-02-03 | 2021-02-03 | 一种波束控制方法、装置、波束控制设备和波束控制器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110151913.3A CN112968286B (zh) | 2021-02-03 | 2021-02-03 | 一种波束控制方法、装置、波束控制设备和波束控制器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112968286A CN112968286A (zh) | 2021-06-15 |
CN112968286B true CN112968286B (zh) | 2022-06-03 |
Family
ID=76274744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110151913.3A Active CN112968286B (zh) | 2021-02-03 | 2021-02-03 | 一种波束控制方法、装置、波束控制设备和波束控制器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112968286B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114114160A (zh) * | 2021-11-05 | 2022-03-01 | 中国航空工业集团公司雷华电子技术研究所 | 一种相控阵雷达天线波控系统 |
CN115291180B (zh) * | 2022-10-10 | 2022-12-16 | 中国科学院空天信息创新研究院 | 星载sar系统的波控电缆测试方法 |
CN115856893B (zh) * | 2022-11-15 | 2023-09-15 | 北京卫星信息工程研究所 | 用于卫星自身旋转的雷达天线波束控制系统 |
CN115932745B (zh) * | 2023-02-01 | 2023-06-16 | 中国科学院空天信息创新研究院 | 一种方位向扫描收发空间同步控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104617392A (zh) * | 2015-02-09 | 2015-05-13 | 上海航天测控通信研究所 | 一种星载gnss-r多波束相控阵天线波束控制单元 |
CN109831234A (zh) * | 2019-01-03 | 2019-05-31 | 中国联合网络通信集团有限公司 | 一种波控装置和方法 |
CN110806578A (zh) * | 2019-11-06 | 2020-02-18 | 中国科学院电子学研究所 | 一种波束控制方法及装置、可读存储介质 |
CN111668606A (zh) * | 2020-06-10 | 2020-09-15 | 维沃移动通信有限公司 | 天线配置信息的处理方法、装置和电子设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108627833B (zh) * | 2018-05-15 | 2021-08-24 | 电子科技大学 | 一种基于GB-InSAR的大气相位补偿方法 |
-
2021
- 2021-02-03 CN CN202110151913.3A patent/CN112968286B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104617392A (zh) * | 2015-02-09 | 2015-05-13 | 上海航天测控通信研究所 | 一种星载gnss-r多波束相控阵天线波束控制单元 |
CN109831234A (zh) * | 2019-01-03 | 2019-05-31 | 中国联合网络通信集团有限公司 | 一种波控装置和方法 |
CN110806578A (zh) * | 2019-11-06 | 2020-02-18 | 中国科学院电子学研究所 | 一种波束控制方法及装置、可读存储介质 |
CN111668606A (zh) * | 2020-06-10 | 2020-09-15 | 维沃移动通信有限公司 | 天线配置信息的处理方法、装置和电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN112968286A (zh) | 2021-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112968286B (zh) | 一种波束控制方法、装置、波束控制设备和波束控制器 | |
EP2449626B1 (en) | Self calibrating conformal phased array | |
CN108008388B (zh) | 一种星载相控阵sar载荷波束控制方法 | |
CN112965041B (zh) | 球面相控阵天线波控自跟踪的差阵列划分方法 | |
CN111624565B (zh) | 大型共形相控阵系统多区域联合波束跟踪方法 | |
CN111190151B (zh) | 扫描模式下多模态小卫星sar的系统参数设计及发射功率优化方法 | |
US10247815B1 (en) | Phased array radar system with specular multipath mitigation | |
CN109490881A (zh) | 基于涡旋电磁波的干涉sar高程测量系统及测量方法 | |
CN112684444A (zh) | 一种基于天线方向图合成抑制距离模糊的方法及装置 | |
CN114942409B (zh) | 一种适用于全极化sar系统的波束控制装置和方法 | |
Schuss et al. | Large-scale phased array calibration | |
US20240134061A1 (en) | Systems and Methods for a Global Positioning System using GNSS Signals and Stokes Parameters | |
US20220376389A1 (en) | Calibrating radars and tracking space objects | |
CN117368922A (zh) | 一种车载雷达测角方法、终端设备及存储介质 | |
CN114545448B (zh) | 星载gnss-r/s一体化接收系统与海洋智能探测方法 | |
Frid et al. | Determining installation errors for DOA estimation with four-quadrant monopulse arrays by using installed element patterns | |
JP5138217B2 (ja) | アレーアンテナ及びそのビーム制御方法 | |
Li et al. | Accuracy Analysis of Radiometric Calibration In-Orbit for SuperView Neo-2 SAR Satellite | |
Omi et al. | Multi-beam tracking for phased array antenna measurement by multiple UAVs | |
Di Lorenzo et al. | Optimal beamforming for range-Doppler ambiguity minimization in squinted SAR | |
CN112394328A (zh) | 一种波束控制方法和sar系统 | |
CN110376586A (zh) | 一种基于层析原理的分布式mimo雷达动目标探测方法 | |
CN115267714B (zh) | 一种基于dbf的杂波环境快速感知方法 | |
Matvienko | Estimation of the Practically Attainable Accuracy of Modern Ultrashort Baseline Hydroacoustic Navigation Systems for Underwater Robots | |
Recchia et al. | Impact of the antenna stability on the Doppler Centroid frequency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |