CN112959992A - 基于能效分析与效率最优的混合动力汽车能量管理方法 - Google Patents

基于能效分析与效率最优的混合动力汽车能量管理方法 Download PDF

Info

Publication number
CN112959992A
CN112959992A CN202110373700.5A CN202110373700A CN112959992A CN 112959992 A CN112959992 A CN 112959992A CN 202110373700 A CN202110373700 A CN 202110373700A CN 112959992 A CN112959992 A CN 112959992A
Authority
CN
China
Prior art keywords
energy
power
vehicle
engine
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110373700.5A
Other languages
English (en)
Other versions
CN112959992B (zh
Inventor
宋大凤
郑琦
陈建新
曾小华
梁伟智
陈虹旭
姜效望
岳一霖
李亚朋
黄钰峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202110373700.5A priority Critical patent/CN112959992B/zh
Publication of CN112959992A publication Critical patent/CN112959992A/zh
Application granted granted Critical
Publication of CN112959992B publication Critical patent/CN112959992B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明旨在解决针对重型商用车动态规划能量管理方法计算负荷大的问题,设计基于能效分析与效率最优的混合动力汽车能量管理方法,并与动态规划能量管理方法进行对比。本方法通过对混合动力汽车进行整车级别的能量流分析得到整车能量守恒方程,定义整车平均效率和瞬时效率,描述了如何以瞬时效率最优为目标选择发动机工作点和挡位的计算过程,针对重型商用车制定了模式切换规则。本发明将基于规则的能量管理方法与动态规划的能量管理方法进行对比,提出从油耗、电机发动机扭矩对比、发动机工作点的三个维度进行对比,证明本文所提出的管理方法的有效性。

Description

基于能效分析与效率最优的混合动力汽车能量管理方法
技术领域
本发明属于汽车能量管理方法,更确切地说,本发明涉及混合动力汽车基于能效分析与效率最优的能量管理方法。
背景技术
面对日益严苛的油耗法规限制和环保需求以及当前技术水平的限制,采用混合动力技术是当前阶段重型商用车发展的必经路线。相比于传统乘用车,重型商用车采用了非常高效的柴油发动机,因此混合动力系统能量管理方法的制定应与乘用车不同而有新的侧重。基于系统能效分析,确定整车能量守恒方程及车辆平均效率与综合效率值;同时寻找混合动力系统的效率最优的工作点,对发动机工作点控制规则和换挡规则进行设计选择,从而进行混合动力重型商用车能量管理方法的分析,是重型商用车的一种全面完善的能量管理方法。
目前对混合动力汽车整车能量效率最大化展开了相关的研究。中国专利公布号为CN2018109927514,授权公告日为2020-04-24,公开了一种基于能量效率最大化的多模混合动力汽车能量管理策略。该策略分两层,内层是效率归一化最大化策略,外层是动态规划,外层与内层相互协调,在实现能量管理控制策略优化的同时,能够保证模式切换的平顺性与合理的模式切换频率。本专利从另一个角度制定了基于规则的能量管理方法,寻找混合动力系统的效率最优的工作点,同时将基于规则的控制方法与动态规划的控制方法以P2、P3、EVT三种构型进行了燃油性、发动机工作点等多方面的对比,侧面验证了方法的可行性和有效性,更加具有说服力。
发明内容
本发明提出了基于能效分析与效率最优的混合动力汽车能量管理方法,探究在特定需求工况点下基于最优瞬时效率的发动机、挡位工作点,同时制定了最优的能量管理方法并进行验证。通过对混合动力汽车进行整车级别的能量流分析得到整车能量守恒方程,定义整车平均效率和瞬时效率,描述了如何以瞬时效率最优为目标选择发动机工作点和挡位的计算过程,针对重型商用车制定了模式切换规则。本发明设计的基于规则的能量管理方法与动态规划的能量管理方法的计算结果的对比,以三种不同构型从油耗、电机工作点、发动机工作点的不同维度进行对比,证明本文所提出的方法的有效性。
为实现上述目的,根据本发明实施例的基于能效分析与效率最优的混合动力汽车能量管理方法,包括以下内容:
基于能效分析与效率最优的混合动力汽车能量管理方法,其特征在于包括下列步骤:
第一步,整车能量守恒方程的确定
首先确定汽车总能量守恒方程与汽车功率的关系:汽车行驶方程式两边乘以车速可以得到汽车功率平衡方程Pt如公式(1)所示:
Pt=Pr+Pw+Pi+Pj (1)
式中,Pt——轮端驱动/制动力功率
Pw——空气阻力功率
Pi——坡度阻力功率
Pj——加速阻力功率
Pt的积分就是车辆在按照某一工况行驶需要的有效能量即汽车总能量守恒方程,当Pt>0时车辆处于驱动状态,Pt<0时车辆处于制动状态,如公式(2)所示:
Figure BDA0003010358380000021
式中,Ed——车辆用于驱动的有效能量
Ed——车辆用于制动的有效能量
然后明确混合动力汽车的典型模式,列写不同模式的能量守恒方程,明确不同模式下不同的能量输入与输出;将各模式能量守恒方程式合并,同时将各模式燃油热能、电池放电能量、电池充电能量、损耗项、驱动能量、制动能量合并同类项得到车辆在整个运行过程中的能量守恒方程Ed中,得到整合后的汽车总能量守恒方程与汽车功率的关系;
第二步,确定车辆平均效率与瞬时效率
车辆在整个运行过程中的平均效率为用于驱动消耗的有效能量Ed与输入总能量的比值,输入总能量为Eb与发动机输入能量Eoil与电池净输入/输出能量(Ebat,d-Ebat,c)的和,如公式(3)所示:
Figure BDA0003010358380000022
能量管理方法是要在车辆行驶的每一时刻根据工况的瞬时需求给出诸如发动机工作点、电机工作点、挡位等的控制目标,是针对瞬时需求而言的,根据各模式的能量守恒方程可以列写出各模式的瞬时功率守恒方程从而推导出各模式的瞬时效率计算式;
第三步,确定发动机工作点控制规则和换挡规则
车辆动力需求常根据当前踏板开度与车速解析得到轮端的一个驱动力需求,进行模式的判别和动力的分配;已知一个工况点的车速和驱动力,已知在外特性中的位置,可以对应满足该动力要求的不同挡位,对应不同的电机、发动机工作点;
每一个工作点组合可由其中发动机的转速、转矩查表计算发动机的燃油消耗率进而计算该点发动机燃油热功率,由两个电机的转速、转矩可查表计算两个电机的效率并计算两个电机的电功率进而得到电池端的需求功率,在得到燃油热功率和电池功率后可计算得到当前工作点组合下系统输入功率,由工况点车速、驱动力需求可计算当前有用功率,进而由式(3)计算该组工作点组合对应的车辆瞬时效率;
找出最高瞬时效率对应的工作点组合,再将各挡位下的最优工作点组合对比选出最高效率的工作点组合以及对应挡位,便求得了当前工况下最佳的发动机工作点控制目标和目标挡位;
按照以上步骤可逐一计算驱动力外特性曲线下每一个工况点对应的最佳发动机工作点和挡位,形成控制map。对于本文描述的计算方式由踏板开度和车速来进行查表,给出发动机转速转矩控制目标和挡位目标;
第四步,混合动力重型商用车能量管理方法分析
针对重型商用车的不同系统的各模式间的切换问题,制定了不同的工作模式。并联混合动力系统,制定了纯电动、发动机单独驱动、驱动并电助力、再生制动、机械制动五个模式,EVT混合动力系统基本模式包括纯电动、混动EVT、再生制动、机械制动四个模式,并对不同构型各个模式之间的切换规则进行描述;
第五步,混合动力系统能量管理方法验证
对所提出的能量管理方法进行验证,与动态规划能量管理方法计算得到的理论最低油耗对比,对P2、P3、EVT两种构型进行最优控制律的计算。两种构型优化计算的目标函数均为燃油消耗量,约束条件为始末SOC偏差在允许范围,P2构型的输入变量为电机扭矩和挡位,EVT构型的输入变量选择MG2扭矩、MG1转速、挡位。同时,以P2、EVT两个构型对计算结果中扭矩分配规律、发动机工作范围进行对比分析,从多角度说明该方法的有效性和适用性均较好;
与现有技术相比,本发明的有益效果是:
1.本发明所述的系统能效分析,确定了汽车总能量与汽车功率的关系方程,同时系统效率以能量形式进行表示,明确了整车级的能量流动关系。
2.本发明对车辆平均效率与瞬时效率进行了区分,瞬时效率以瞬时输入输出功率来表示,针对重型商用车混合动力系统几种典型的工作模式列出了对应的瞬时功率公式并进行了说明。
3.本发明以一个具体的重型商用车在某一车速的需求扭矩作为一工况点,对制定发动机工作点控制规则与换挡规则的过程进行叙述,该过程对其他工况点同样使用,具有普遍性。
4.本发明在制定能量管理方法时,将重型商用车与乘用车在整车部件及运行工况的进行对比,说明管理方法的不同;针对重型商用车并联和混联两种不同的混合动力构型的模式切换规则进行了对比分析。
5.本发明将制定的能量管理方法与动态规划管理方法进行对比,以并联、混联三种构型,分别从油耗、发动机工作点、电机工作点进行比较,证明本能量管理方法的有效性。
附图说明
下面结合附图对本发明作进一步的说明:
图1为本发明所述整车基于规则的能量管理方法制定流程。
图2为本发明所述并联构型的模式切换基本规则,驱动时当电池电量充足(超过SOC门限SOC_EV)且功率需求(Pow_req)较小时(低于功率门限Pow_EV)采用纯电驱动,否则进入发动机单独驱动模式;发动机单独驱动模式不足(需求功率大于功率门限Pow_ICE)进入电助力模式,发动机和电机一起提供动力。制动时当电池电量未超过允许SOC上限时(低于SOC门限SOC_RGB)允许再生制动,反之进入机械制动模式,仅依靠机械制动器实现制动。
图3为本发明所述混联构型的模式切换基本规则,驱动时当电池电量充足(超过SOC门限SOC_EV)且功率需求(Pow_req)较小时(低于功率门限Pow_EV)采用纯电驱动,否则进入混动EVT模式。制动时当电池电量未达到SOC上限时允许再生制动,反之进入机械制动模式,仅依靠机械制动器实现制动。
具体实施方式
下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
第一步,整车能量守恒方程的确定
首先确定汽车总能量守恒方程与汽车功率的关系:汽车行驶方程式两边乘以车速可以得到汽车功率平衡方程Pt如公式(1)所示:
Pt=Pr+Pw+Pi+Pj (1)
式中,Pt——轮端驱动/制动力功率
Pw——空气阻力功率
Pi——坡度阻力功率
Pj——加速阻力功率
Pt的积分就是车辆在按照某一工况行驶需要的有效能量即汽车总能量守恒方程,当Pt>0时车辆处于驱动状态,Pt<0时车辆处于制动状态,如公式(2)所示:
Figure BDA0003010358380000051
式中,Ed——车辆用于驱动的有效能量
Ed——车辆用于制动的有效能量
然后明确混合动力汽车的典型模式纯电动模式、发动机单独驱动模式、驱动并电助力模式、驱动并发电模式、再生制动模式、机械制动模式。
(1)纯电动模式:输入能量为电池放电能量Ebat,EV,输出能量为驱动能量Ed,EV。电池放电能量指的是包含电池端输出能量和电池自身内阻消耗能量的总的能量,电池的自身内阻消耗与其他部件的损耗一并算到损耗项中,纯电动模式能量守恒方程如(3)所示。
Ebat,EV-Eloss,EV=Ed,EV (3)
(2)发动机单独驱动模式:输入能量为燃油热能Eoil,ICE,输出能量为驱动能量Ed,ICE,能量守恒方程如(4)所示。
Eoil,ICE-Eloss,ICE=Ed,ICE (4)
(3)驱动并电助力模式:该模式下发动机和电机同时产生驱动扭矩共同驱动车辆,输入能量为电池放电能量Ebat,HEVD和燃油热能Eoil,HEVD,输出能量为Ed,HEVD。电池放电能量为电池端输出能量和电池自身内阻消耗能量之和,能量守恒方程如(5)所示。
Eoil,HEVD+Ebat,HEVD-Eloss,HEVD=Ed,HEVD (5)
(4)驱动并发电模式:该模式下发动机动力一部分用于驱动车辆行驶,一部分用于带动电机发电,输入能量为燃油热能Eoil,HEVC,输出能量为驱动能量Ed,HEVC与电池充电能量EbatHEVC。电池充入的能量Ebat,HEVC为电池端输入能量减去电池内阻消耗部分剩下的部分,能量守恒方程如式(6)所示。
Eoil,HEVC-Eloss,HEVC=Ed,HEVC+Ebat,HEVC (6)
(5)再生制动模式:该模式下输入能量为制动能量Eb,RGB,输出能量为电池充入的能量Ebat,RGB,能量守恒方程如式(7)所示。
Eb,RGB-Eloss,RGB=Ebat,RGB (7)
(6)机械制动模式:该模式下输入能量为制动能量Eb,MB,但全部被机械制动器转换为热量损失,输出能量为零,能量守恒方程如式(8)所示。
Eb,MB-Eloss,MB=0 (8)
将各模式能量守恒方程式合并,即将各模式燃油热能、电池放电能量、电池充电能量、损耗项、驱动能量、制动能量合并同类项得到车辆在整个运行过程中的能量守恒方程如式(9)所示。
Eoil+(Ebat,d-Ebat,c)+Eb-Eloss=Ed (9)
式(10)为整个车辆运行过程的能量守恒方程:
Figure BDA0003010358380000061
Ebatd表示电池总放电能量,Ebatc表示电池总充电能量。该式说明对整个车辆运行过程而言混合动力汽车能量输入来自三部分:燃油热能、电池净输出能量Ebatd-Ebatc、制动能量。将燃油热能表示为燃油质量moil与燃油低热值C的乘积得到式(11),这个式子表达了油耗、电耗、工况能量参数Ed、Eb间的定量关系,当电耗为零时,式(11)变为式(12),在式(12)中,当工况确定时Ed、Eb不变,油耗与整车损耗线性相关。
moilC+(Ebat,d-Ebat,c)+Eb-Eloss=Ed (11)
moilC+Eb-Eloss=Ed (12)
第二步,确定车辆平均效率与瞬时效率
车辆在整个运行过程中的平均效率为用于驱动消耗的有效能量Ed与输入总能量的比值,输入总能量为Es,Es为Eb与发动机输入能量Eoil与电池净输入/输出能量(Ebat,d-Ebat,c)的和,如公式所示:
Figure BDA0003010358380000071
式(13)是混合动力汽车在整个运行过程运行效率的一个总评价,无法应用到能量管理方法中,式(13)中的各项都是能量的统计项。能量管理方法指在车辆行驶的每一时刻根据工况的瞬时需求时刻给出诸如发动机工作点、电机工作点、挡位等的控制目标,是针对瞬时需求而言的。式(9)和(10)表明,降低车辆油耗就要降低整车的损耗能量,对应到瞬时过程控制中为时刻降低车辆的瞬时损耗,提高车辆的瞬时效率。类比各模式的能量守恒方程可以列写出各模式的瞬时功率守恒方程。
(1)纯电动模式:输入功率为电池放电功率Pbat,EV,输出能量为驱动能量Pd,EV。该模式下系统瞬时效率如式(14)所示。
Figure BDA0003010358380000072
(2)发动机单独驱动模式:该模式下输入功率为燃油热能Poil,ICE,输出功率为驱动能量Pd,ICE,发动机单独驱动模式系统瞬时效率如式(15)(15)所示。
Figure BDA0003010358380000073
(3)驱动并电助力模式:输入功率为电池放电功率Pbat,HEVD和燃油热功率Poil,HEVD,输出功率为Pd,HEVD,发动机驱动并电助力模式系统瞬时效率如式(16)所示。
Figure BDA0003010358380000074
(4)驱动并发电模式:输入功率为燃油热功率Poil,HEVC,输出功率为驱动功率Pd,HEVC和Pbat,HEVC,但电池充入的功率并非有用功,需将电池充入功率转化为驱动功率,因此输出功率为当前驱动功率Pd,HEVC和电池充入的电功率在未来转化得到的驱动功率Pd,HEVC,future之和。驱动并发电模式下系统瞬时效率如式(17)所示,由于Pd,HEVC,future对应的电机效率未知,可取电机平均效率=0.9进行简单计算。
Figure BDA0003010358380000075
(5)再生制动模式:该模式下输入功率为制动功率Pb,RGB,输出功率为电池充入的功率Pbat,RGB,该模式下系统瞬时效率如式(18)所示,类比驱动并发电模式把Pbat,RGB乘以一个电机平均效率转化为有用功率计算瞬时效率。
Figure BDA0003010358380000081
(6)机械制动模式:输入功率为制动功率Pb,MB,但全部被机械制动器转换为热功率损失,输出功率为零,该模式下瞬时效率为零。
ηMB=0 (19)
第三步,确定发动机工作点控制规则和换挡规则
车辆动力需求常根据当前踏板开度与车速解析得到轮端的一个驱动力需求,进行模式的判别和动力的分配。已知任一个工况点在混动模式下的驱动力外特性图的位置,可以确定满足该动力要求的几个挡位。每个挡位下可离散出若干满足该工况点动力需求的发动机与电机工作点组合,为了保证SOC的平衡规定发动机输出功率应该满足功率跟随原则即发动机功率不小于驱动需求功率。每一个离散三动力源工作点组合,根据发动机的转速、转矩查表计算发动机的燃油消耗率,确定该点发动机燃油热功率。根据两个电机的转速、转矩查表计算两个电机的效率,确定两个电机的电功率,得到电池端的需求功率。得到燃油热功率和电池功率,计算得到当前工作点组合下系统输入功率,由工况点车速、驱动力需求计算当前有用功率,由式(17)计算该组工作点组合对应的车辆瞬时效率,对每一个挡位计算所有离散工作点组合对应的车辆瞬时效率并找出最高瞬时效率对应的工作点组合,将各挡位下的最优工作点组合对比选出最高效率的工作点组合以及对应挡位,求得当前工况下最佳的发动机工作点控制目标和目标挡位。
按照以上步骤计算驱动力外特性曲线下每一个离散工况点对应的最佳发动机工作点和挡位,形成控制map,对于本文描述的计算方式是得到车速、驱动力的二维数据,而驱动力根据踏板开度来表征,得到的控制map根据踏板开度和车速查表确定发动机转速转矩控制目标和挡位目标。
第四步,混合动力重型商用车能量管理方法分析
以P2构型为例,对重型商用车的模式划分进行分析。
当发动机仅用于驱动时,有如式(20)所示功率平衡方程,其中Poil1为燃油热功率,等于当前瞬时油耗与燃油低热值的乘积,ηe1为当前发动机热效率,ηmech为到轮端的机械传动效率,Pd为当前车辆驱动功率,此时车辆瞬时效率如(20)式所示;当发动机驱动并发电时,发动机满足当前驱动功率需求的同时,还需要多输出功率供给电机发电,实际的输出功率Pd,future为当前驱动功率与电机充入的功之和,驱动并发电下车辆的燃油利用效率如式(21)所示,其中δ代表发动机输出功率用于直接驱动部分的比重,ηg代表电机发电效率,ηm代表电机电动效率。两种动力分配方式的瞬时效率比值如式(22)所示。
Poil1ηe1ηmech=Pd→ηv1=ηe1ηmech (20)
Figure BDA0003010358380000091
Figure BDA0003010358380000092
假设电机发电与电动的效率均为0.9,该效率比值是对应发动机热效率的比值ηe2e1与直驱功率占比δ的函数。按照发动机最高效率45%,最低效率38%来计算可得ηe2e1的范围在1~1.2之间,δ的范围为0~1。发动机热效率提升幅度不变时,发动机直驱功率占比δ越小,ηv2v1越大;δ不变时,发动机热效率提升幅度ηe2e1越大,ηv2v1越大。在整个直驱功率,占比δ与发动机热效率提升幅度ηe2e1形成的二维空间内,驱动并发电的动力分配方式在发动机效率提升幅度较大、直驱功率需求占比很小的条件下更具优势。在中高负荷工况下,发动机通过多挡变速器可以保证处于较高的热效率,负荷需求直驱功率占比会占据中高比重,驱动并发电的功率利用方式经济性没有优势。在低负荷工况使用纯电驱动的模式运行,驱动并发电的模式在重型商用车上不常用,燃油的最佳利用方式是直接驱动。
针对EVT系统,发动机通过电路径和机械路径两个路径传递至轮端,发动机功率有一部分是发电再电动被利用的。发动机效率的提升幅度相比并联构型如果没有提高,EVT系统的节油效果不再最好。
重型商用车并联混合动力系统,制定了纯电动、发动机单独驱动、驱动并电助力、再生制动、机械制动五个模式,并联系统模式切换基本规则如图2所示。驱动时电池电量充足且功率需求较小时采用纯电驱动,反之进入发动机单独驱动模式。发动机单独驱动模式不足以提供足够动力进入电助力模式。制动时当电池电量未超过允许SOC上限时允许再生制动,反之进入机械制动模式仅依靠机械制动器实现制动。
重型商用车EVT混合动力系统基本模式包括纯电动、混合动力EVT、再生制动、机械制动四个模式。EVT系统模式切换基本规则如图3所示。驱动时电池电量充足且功率需求较小时采用纯电驱动,反之进入混合动力EVT模式。制动时电池电量未SOC上限允许再生制动,反之入机械制动模式仅依靠机械制动器实现制动。
第五步,混合动力系统能量管理方法验证
对所提出的系统能量管理方法进行验证,与动态规划控制方法计算得到的理论最低油耗对比,对P2、EVT两种构型进行最优控制律的计算。两种构型优化计算的目标函数均为燃油消耗量,约束条件为始末SOC偏差在允许范围,P2构型的输入变量为电机扭矩和挡位,EVT构型的输入变量选择MG2扭矩、MG1转速、挡位。对比两种构型不同方法的油耗计算结果从而说明本发明的有效性和适用性。同时,对计算结果中扭矩分配规律、发动机工作范围进行对比分析,通过观察发动机扭矩与电机扭矩的控制轨迹确定不同工作模式下电机与发动机的工作模式占比。确定重型商用车的基于规则的能量管理方法的典型工作模式,通过观察发动机工作点保证发动机尽量工作在高效区。

Claims (1)

1.基于能效分析与效率最优的混合动力汽车能量管理方法,其特征在于包括下列步骤:
第一步,整车能量守恒方程的确定
首先确定汽车总能量守恒方程与汽车功率的关系:汽车行驶方程式两边乘以车速可以得到汽车功率平衡方程Pt如公式(1)所示:
Pt=Pr+Pw+Pi+Pj (1)
式中,Pt——轮端驱动/制动力功率
Pw——空气阻力功率
Pi——坡度阻力功率
Pj——加速阻力功率
Pt的积分就是车辆在按照某一工况行驶需要的有效能量即汽车总能量守恒方程,当Pt>0时车辆处于驱动状态,Pt<0时车辆处于制动状态,如公式(2)所示:
Figure FDA0003010358370000011
式中,Ed——车辆用于驱动的有效能量
Ed——车辆用于制动的有效能量
然后明确混合动力汽车的典型模式,列写不同模式的能量守恒方程,明确不同模式下不同的能量输入与输出;将各模式能量守恒方程式合并,同时将各模式燃油热能、电池放电能量、电池充电能量、损耗项、驱动能量、制动能量合并同类项得到车辆在整个运行过程中的能量守恒方程Ed中,得到整合后的汽车总能量守恒方程与汽车功率的关系;
第二步,确定车辆平均效率与瞬时效率
车辆在整个运行过程中的平均效率为用于驱动消耗的有效能量Ed与输入总能量的比值,输入总能量为Eb与发动机输入能量Eoil与电池净输入/输出能量(Ebat,d-Ebat,c)的和,如公式(3)所示:
Figure FDA0003010358370000012
能量管理方法是要在车辆行驶的每一时刻根据工况的瞬时需求给出诸如发动机工作点、电机工作点、挡位等的控制目标,是针对瞬时需求而言的,根据各模式的能量守恒方程可以列写出各模式的瞬时功率守恒方程从而推导出各模式的瞬时效率计算式;
第三步,确定发动机工作点控制规则和换挡规则
车辆动力需求常根据当前踏板开度与车速解析得到轮端的一个驱动力需求,进行模式的判别和动力的分配;已知一个工况点的车速和驱动力,已知在外特性中的位置,可以对应满足该动力要求的不同挡位,对应不同的电机、发动机工作点;
每一个工作点组合可由其中发动机的转速、转矩查表计算发动机的燃油消耗率进而计算该点发动机燃油热功率,由两个电机的转速、转矩可查表计算两个电机的效率并计算两个电机的电功率,得到电池端的需求功率,在得到燃油热功率和电池功率后可计算得到当前工作点组合下系统输入功率,由工况点车速、驱动力需求可计算当前有用功率,进而由式(3)计算该组工作点组合对应的车辆瞬时效率;
找出最高瞬时效率对应的工作点组合,再将各挡位下的最优工作点组合对比选出最高效率的工作点组合以及对应挡位,便求得了当前工况下,最佳的发动机工作点控制目标和目标挡位;
按照以上步骤可逐一计算驱动力外特性曲线下每一个工况点对应的最佳发动机工作点和挡位,形成控制map;对于本文描述的计算方式由踏板开度和车速来进行查表,给出发动机转速转矩控制目标和挡位目标;
第四步,混合动力重型商用车能量管理方法分析
针对重型商用车的不同系统的各模式间的切换问题,制定了不同的工作模式;重型商用车并联混合动力系统,制定了纯电动、发动机单独驱动、驱动并电助力、再生制动、机械制动五个模式;驱动时当电池电量充足且功率需求较小时采用纯电驱动,反之进入发动机单独驱动模式,若发动机单独驱动模式不足以提供足够动力进入电助力模式;制动时电池电量未超过允许SOC上限时允许再生制动,否则进入机械制动模式仅依靠机械制动器实现制动;
重型商用车EVT混合动力系统基本模式包括纯电动、混动EVT、再生制动、机械制动四个模式;驱动时当电池电量充足且功率需求较小时采用纯电驱动,反之进入混动EVT模式;制动时当电池电量未达到SOC上限时允许再生制动,否则进入机械制动模式,仅依靠机械制动器实现制动;
第五步,混合动力系统能量管理方法验证
对所提出的能量管理方法进行验证,与动态规划能量管理方法计算得到的理论最低油耗对比,对P2、P3、EVT两种构型进行最优控制律的计算;两种构型优化计算的目标函数均为燃油消耗量,约束条件为始末SOC偏差在允许范围,P2构型的输入变量为电机扭矩和挡位,EVT构型的输入变量选择MG2扭矩、MG1转速、挡位;同时,以P2、EVT两个构型对计算结果中扭矩分配规律、发动机工作范围进行对比分析,从多角度说明该方法的有效性和适用性均较好。
CN202110373700.5A 2021-04-07 2021-04-07 基于能效分析与效率最优的混合动力汽车能量管理方法 Expired - Fee Related CN112959992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110373700.5A CN112959992B (zh) 2021-04-07 2021-04-07 基于能效分析与效率最优的混合动力汽车能量管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110373700.5A CN112959992B (zh) 2021-04-07 2021-04-07 基于能效分析与效率最优的混合动力汽车能量管理方法

Publications (2)

Publication Number Publication Date
CN112959992A true CN112959992A (zh) 2021-06-15
CN112959992B CN112959992B (zh) 2022-04-19

Family

ID=76279726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110373700.5A Expired - Fee Related CN112959992B (zh) 2021-04-07 2021-04-07 基于能效分析与效率最优的混合动力汽车能量管理方法

Country Status (1)

Country Link
CN (1) CN112959992B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465968A (zh) * 2021-06-29 2021-10-01 浙江三一装备有限公司 工程机械的效率测试系统
CN114475258A (zh) * 2022-02-11 2022-05-13 西北工业大学 电动汽车的驱动效率计算方法及装置
CN114812895A (zh) * 2022-04-14 2022-07-29 浙江飞碟汽车制造有限公司 P2架构混动动力总成效率测试试验方法及试验台
GB2617696A (en) * 2022-04-11 2023-10-18 Hydrogen Vehicle Systems Ltd A system for hybrid electric vehicle fleet management
CN117962864A (zh) * 2024-04-01 2024-05-03 吉林大学 一种基于双层优化框架的混联混合动力车辆能量管理方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080196953A1 (en) * 2007-02-21 2008-08-21 Ihab Soliman System and Method of Torque Converter Lockup State Adjustment Using an Electric Energy Conversion Device
CN101602364A (zh) * 2008-12-31 2009-12-16 宾洋 应用于phev的快速dp控制方法
US20100204863A1 (en) * 2009-02-04 2010-08-12 Denso Corporation Vehicle drive power generation control apparatus
US20110004364A1 (en) * 2008-02-13 2011-01-06 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
US20110130901A1 (en) * 2006-12-11 2011-06-02 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Method for controlling the hybrid drive of a motor vehicle and control system
CN103492249A (zh) * 2011-11-14 2014-01-01 丰田自动车株式会社 混合动力车辆
US20150283996A1 (en) * 2014-04-08 2015-10-08 Ford Global Technologies, Llc Step-ratio transmission control for a hybrid vehicle
US20150375733A1 (en) * 2013-02-25 2015-12-31 Audi Ag Method for operating a motor vehicle having a hybrid drive
US20160200315A1 (en) * 2013-08-21 2016-07-14 Jaguar Land Rover Limited Hybrid Electric Vehicle Controller and Method
CN109229091A (zh) * 2018-08-29 2019-01-18 东南大学 基于能量效率最大化的多模混合动力汽车能量管理策略
CN109760669A (zh) * 2019-01-17 2019-05-17 浙江工业大学 一种插电式混合动力汽车的实时优化能量管理方法
EP3505410A1 (en) * 2017-12-28 2019-07-03 Magneti Marelli S.p.A. Method for efficient management and control of a hybrid propulsion system
JP2020069812A (ja) * 2018-10-29 2020-05-07 スズキ株式会社 四輪駆動車両の制御装置
CN111301398A (zh) * 2020-02-28 2020-06-19 武汉理工大学 一种cvt插电式混合动力汽车能量管理方法及系统
CN111332274A (zh) * 2020-03-16 2020-06-26 吉林大学 一种混合动力客车整车控制器标定参数优选方法
WO2020143495A1 (zh) * 2019-01-10 2020-07-16 乾碳国际公司 混动商用车再生制动和缓速系统
CN112298153A (zh) * 2019-07-30 2021-02-02 丰田自动车株式会社 车辆的控制装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110130901A1 (en) * 2006-12-11 2011-06-02 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Method for controlling the hybrid drive of a motor vehicle and control system
US20080196953A1 (en) * 2007-02-21 2008-08-21 Ihab Soliman System and Method of Torque Converter Lockup State Adjustment Using an Electric Energy Conversion Device
US20110004364A1 (en) * 2008-02-13 2011-01-06 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
CN101602364A (zh) * 2008-12-31 2009-12-16 宾洋 应用于phev的快速dp控制方法
US20100204863A1 (en) * 2009-02-04 2010-08-12 Denso Corporation Vehicle drive power generation control apparatus
CN103492249A (zh) * 2011-11-14 2014-01-01 丰田自动车株式会社 混合动力车辆
US20150375733A1 (en) * 2013-02-25 2015-12-31 Audi Ag Method for operating a motor vehicle having a hybrid drive
US20160200315A1 (en) * 2013-08-21 2016-07-14 Jaguar Land Rover Limited Hybrid Electric Vehicle Controller and Method
US20150283996A1 (en) * 2014-04-08 2015-10-08 Ford Global Technologies, Llc Step-ratio transmission control for a hybrid vehicle
EP3505410A1 (en) * 2017-12-28 2019-07-03 Magneti Marelli S.p.A. Method for efficient management and control of a hybrid propulsion system
CN109229091A (zh) * 2018-08-29 2019-01-18 东南大学 基于能量效率最大化的多模混合动力汽车能量管理策略
JP2020069812A (ja) * 2018-10-29 2020-05-07 スズキ株式会社 四輪駆動車両の制御装置
WO2020143495A1 (zh) * 2019-01-10 2020-07-16 乾碳国际公司 混动商用车再生制动和缓速系统
CN109760669A (zh) * 2019-01-17 2019-05-17 浙江工业大学 一种插电式混合动力汽车的实时优化能量管理方法
CN112298153A (zh) * 2019-07-30 2021-02-02 丰田自动车株式会社 车辆的控制装置
CN111301398A (zh) * 2020-02-28 2020-06-19 武汉理工大学 一种cvt插电式混合动力汽车能量管理方法及系统
CN111332274A (zh) * 2020-03-16 2020-06-26 吉林大学 一种混合动力客车整车控制器标定参数优选方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "《IP.COM非专利全文库》", 2 June 2010, IP.COM *
邓涛等: "基于动态规划算法的混合动力汽车改进型ECMS能量管理控制研究", 《中国机械工程》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465968A (zh) * 2021-06-29 2021-10-01 浙江三一装备有限公司 工程机械的效率测试系统
CN113465968B (zh) * 2021-06-29 2024-03-12 浙江三一装备有限公司 履带式起重机的效率测试系统
CN114475258A (zh) * 2022-02-11 2022-05-13 西北工业大学 电动汽车的驱动效率计算方法及装置
GB2617696A (en) * 2022-04-11 2023-10-18 Hydrogen Vehicle Systems Ltd A system for hybrid electric vehicle fleet management
CN114812895A (zh) * 2022-04-14 2022-07-29 浙江飞碟汽车制造有限公司 P2架构混动动力总成效率测试试验方法及试验台
CN114812895B (zh) * 2022-04-14 2024-05-10 浙江飞碟汽车制造有限公司 P2架构混动动力总成效率测试试验方法及试验台
CN117962864A (zh) * 2024-04-01 2024-05-03 吉林大学 一种基于双层优化框架的混联混合动力车辆能量管理方法

Also Published As

Publication number Publication date
CN112959992B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN112959992B (zh) 基于能效分析与效率最优的混合动力汽车能量管理方法
Mashadi et al. Dual-mode power-split transmission for hybrid electric vehicles
Salman et al. Control strategies for parallel hybrid vehicles
CN107697063B (zh) 一种智能混合动力汽车能量管理控制方法
Wang et al. Dynamic programming technique in hybrid electric vehicle optimization
CN106080585B (zh) 一种双行星排式混合动力汽车非线性模型预测控制方法
CN109606348B (zh) 一种插电式行星混联汽车能量管理控制方法
CN110304044A (zh) 基于ecms的phev四驱转矩分配方法
Nazari et al. Optimal energy management for a mild hybrid vehicle with electric and hybrid engine boosting systems
He et al. Energy management strategies for a hybrid electric vehicle
Liang et al. Energy management strategy for a parallel hybrid electric vehicle equipped with a battery/ultra-capacitor hybrid energy storage system
CN105015549A (zh) 电驱动系统的扭矩控制方法及装置
Zhang et al. Powertrain design and energy management of a novel coaxial series-parallel plug-in hybrid electric vehicle
CN109177968A (zh) 一种功率分流式混合动力汽车的驱动模式控制方法
CN110001620B (zh) 一种液压轮毂混合动力车辆多模式切换控制方法
CN115879275A (zh) 混合动力电动汽车性能仿真系统、方法、设备及存储介质
AU2020102967A4 (en) A parallel – series electric hybrid vehicles based on geometry formulation
Dingel et al. Model-based assessment of hybrid powertrain solutions
Song et al. Study on the energy management strategy of DCT-based series-parallel PHEV
CN113022544A (zh) 一种功率分流式混合动力系统及其参数匹配方法
Zeman et al. Modeling and optimization of plug-In hybrid electric vehicle fuel economy
Tan et al. An Efficiency-Based Hybrid Mode Selection Model for A P134 Plug-In Hybrid Powertrain Architecture
Yadav et al. Fuzzy control implementation for energy management in hybrid electric vehicle
Lyati Hybrid Electric Vehicles (HEV): classification, configuration, and vehicle control
Fu et al. Torque split strategy for parallel hybrid electric vehicles with an integrated starter generator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220419

CF01 Termination of patent right due to non-payment of annual fee