CN112959297A - 驱动冗余并联机器人的驱动力优化方法 - Google Patents

驱动冗余并联机器人的驱动力优化方法 Download PDF

Info

Publication number
CN112959297A
CN112959297A CN202110103601.5A CN202110103601A CN112959297A CN 112959297 A CN112959297 A CN 112959297A CN 202110103601 A CN202110103601 A CN 202110103601A CN 112959297 A CN112959297 A CN 112959297A
Authority
CN
China
Prior art keywords
generalized
rectangle
minimum
side length
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110103601.5A
Other languages
English (en)
Other versions
CN112959297B (zh
Inventor
吴军
丘嘉豪
王潇剑
叶豪
孙润桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202110103601.5A priority Critical patent/CN112959297B/zh
Publication of CN112959297A publication Critical patent/CN112959297A/zh
Application granted granted Critical
Publication of CN112959297B publication Critical patent/CN112959297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种驱动冗余并联机器人的驱动力优化方法,包括如下步骤:S1:建立所述冗余并联机器人的动力学模型;S2:给定所述冗余并联机器人的末端运动轨迹,将动力学模型转换为四维空间中的直线,建立四维直线集合;S3:计算所述四维直线集合中的所有所述四维直线穿过的最小四维广义矩形,通过数值优化,得到所述冗余并联机器人的各驱动力的最小需求范围。本发明能有效解决并联构型机器人的最小驱动力需求范围计算问题,为电机选型提供更为准确的参考,降低制造成本。

Description

驱动冗余并联机器人的驱动力优化方法
技术领域
本发明涉及机器人技术领域,尤其是涉及一种驱动冗余并联机器人的驱动力优化方法。
背景技术
与串联机器人相比,并联机器人拥有高刚度、高承载能力、高动态性能和高运动精度等。由于这些优点,在过去的二十多年中,并联机器人得到了广泛的研究和应用,有 大量基于并联机构开发的工业装备被研发和使用,比如并联机床,高速拾取机器人,微 动平台和工业机器人。但是,并联机器人也有一些缺陷,比如作业空间小、工作空间内 存在奇异位形等。
驱动冗余是消除并联机器人工作空间内部奇异位形的有效方法。驱动冗余是指驱动 关节数量大于末端执行器所拥有自由度数量的性质,驱动冗余并不改变末端执行器的运 动性质,只增加了驱动关节的数量,可以有效消除工作空间内部的奇异位形。驱动冗余通常是通过增加主动支链的方式实现,因此驱动冗余的并联机器人通常拥有更高的刚度和负载能力。因此,针对驱动冗余并联机器人的研究对于提升并联机器人的性能有着十 分重要的意义。
应当注意到,驱动冗余同时也意味着机器人的动力学方程中未知数的个数多于方程 个数,因此将带来动力学方程无法直接求解的问题。然而,从另一个角度看,动力学方程有无数解,同时也提供了驱动力优化分配的可能。通过数值优化,可以从无数多的动 力学解中找到在给定目标函数意义下的最优解。为此,提出合适的目标函数,对于提升 驱动冗余并联机器人的动力学性能有着十分重要的意义。
对于驱动冗余的并联机器人,合理的驱动力矩分配可以得到提升机器人的动态性能 表现,降低能量消耗。因此,选取目标函数时应当着重考虑驱动力矩。目前最为典型的目标函数是选取2-范数最小的驱动力矩,该目标函数的数学意义清晰,但是物理上并没 有明确的意义。将各驱动关节驱动力矩合在一起考虑其整体的2-范数最小,各驱动力矩 本身仍可能有很大范围的变化,这就对电机提出了更高的要求,增加了成本。一个更为 合理的做法应当是单独考虑各驱动力矩本身变化范围的大小,使各驱动力矩最大值与最 小值之差都取到最小。然而,由于机器人动力学方程的约束,各驱动力矩之间存在不完 全的约束,当末端执行器在某一给定轨迹上运行时,各驱动力矩最大值与最小值之差并 不容易得到。本专利将给出一种针对四驱动三自由度的驱动冗余并联机器人的驱动力矩 优化方法,计算在给定末端执行器运动轨迹时各驱动力矩可以同时取得的最小变化范围。 该方法利用驱动冗余的特性,可以求出各驱动力矩在给定末端轨迹下的最小变化范围, 为电机选型提供更为准确的参考,降低制造成本。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在 于提出一种驱动冗余并联机器人的驱动力优化方法,能有效解决并联构型机器人的最小 驱动力需求范围计算问题,为电机选型提供更为准确的参考,降低制造成本。
根据本发明实施例的驱动冗余并联机器人的驱动力优化方法,所述冗余并联机器人 为四驱动三自由度的机器人,所述驱动力优化方法包括如下步骤:
S1:建立所述冗余并联机器人的动力学模型;
S2:给定所述冗余并联机器人的末端运动轨迹,将动力学模型转换为四维空间中的 直线,建立四维直线集合;
S3:计算所述四维直线集合中的所有所述四维直线穿过的最小四维广义矩形,通过 数值优化,得到所述冗余并联机器人的各驱动力的最小需求范围。
也就是说,在建立冗余并联机器人的动力学模型的基础上,再给定所述冗余并联机 器人的末端运动轨迹,将末端运动轨迹上的每一个点的运动学量代入动力学模型中,得到动力学方程,来求解驱动力的需求范围;而动力学方程可以转换为四维空间中的直线,同时驱动力的需求范围可以转换为四维空间中的一个广义矩形,通过这两步的转换,把 求解驱动力的需求问题转换为一个四维空间中的几何问题,即计算四维直线集合中的所 有直线穿过的最小四维广义矩形的问题,最后,从几何上建立优化目标函数,通过数值 优化求出广义矩形各边的最小边长,即得到各驱动力的最小需求范围。
根据本发明实施例的驱动冗余并联机器人的驱动力优化方法,能有效解决并联构型 机器人的最小驱动力需求范围计算问题,为电机选型提供更为准确的参考,降低制造成本。
根据本发明的一个实施例,在所述步骤1中,所述动力学模型为:
Figure BDA0002916963540000021
式(1)中,J为雅可比矩阵,表示末端执行器速度到驱动关节速度的线性映射关系,τ=[τ1 τ2 τ3 τ4]T为各驱动轴的驱动力,P=[P1 P2 P3]T为末端执行器的广义坐标,
Figure BDA0002916963540000031
Figure BDA0002916963540000032
为末端执行器的加速度与速度,M为惯量矩阵,H为 离心力/科氏力矩阵,G为重力向量。
根据本发明进一步的实施例,在已知式所述冗余并联机器人的末端的加速度、速度和 位姿的情况下,式(1)中等号右边的量为常矢量b,从而式(1)简化为:
JTτ=b (2)
式(2)为关于驱动力τ的线性方程组。
根据本发明再进一步的实施例,在所述步骤S2中,对于所述末端运动轨迹上的每一个点,通过式(2)得到驱动力求解对应的一条四维空间中的直线l;所述末端运动轨 迹上的每一个点处驱动力τ的解构成直线集合F。
根据本发明再进一步的实施例,在所述步骤S3中,在所述最小广义矩形的中点不固 定在坐标原点且所述最小广义矩形的各边长不相等的情况下,若广义矩形各边边长为S=2s·[s1,s2,s3,s4]T,其中s1、s2、s3、s4为事先给定的、表示四个边长的比例关系的参数,s为边长参数,对四维空间四个方向的坐标轴分别作倍数为1/s1、1/s2、1/s3、1/s4的伸缩 变换,则原广义矩形变换为中心点不固定在坐标原点、各边长相等且均为2s的超立方体; 此时,所述集合F中所有直线都能穿过超立方体时,边长参数s应满足:
Figure BDA0002916963540000033
式(3)中,
Figure BDA0002916963540000034
表示广义矩形与直线l1相交时,边长参数s所需要满足的最小值条件,依此类推,
Figure BDA0002916963540000035
表示广义矩形与直线ln相交时,边长参数s所需 要满足的最小值条件;
Figure BDA0002916963540000037
表示围成广义矩形的第1个三维超平面与直线l1相交时,边长 参数s所需要满足的最小值条件,依此类推,
Figure BDA0002916963540000038
表示围成广义矩形的第8个三维超平面 与直线l1相交时,边长参数s所需要满足的最小值条件;J和b为所述动力学模型参数,下标 ln表示是第n条直线ln对应的参数;
Figure BDA0002916963540000036
为四个边长比例参数构成的矩阵;
通过对式(3)右端表达式进行所述数值优化,得到最小边长参数s*以及对应的变换后 超立方体的中心点坐标Y*,进而得到最小广义矩形的各边边长S*=2s*·[s1,s2,s3,s4]T以及对 应的广义矩形中心点坐标
Figure BDA0002916963540000039
根据本发明再进一步的实施例,在所述步骤S3中,在所述最小广义矩形的中点不固定 在坐标原点、所述最小广义矩形的各边长相等且均为2s的情况下,若广义矩形中心点坐标 为Y,对四维空间作+Y平移变换,则广义矩形变换为中心点固定在坐标原点且各边长相等 的超立方体;此时,所述集合F中所有直线都能穿过超立方体时,边长参数s应满足:
Figure BDA0002916963540000041
式(4)中,
Figure BDA0002916963540000042
表示广义矩形与直线l1相交时,边 长参数s所需要满足的最小值条件,依此类推,
Figure BDA0002916963540000043
表 示广义矩形与直线ln相交时,边长参数s所需要满足的最小值条件;
Figure BDA0002916963540000044
表示围成广义矩 形的第1个三维超平面与直线l1相交时,边长参数s所需要满足的最小值条件,依此类推,
Figure BDA0002916963540000045
表示围成广义矩形的第8个三维超平面与直线l1相交时,边长参数s所需要满足的最 小值条件;J和b为所述动力学模型参数,下标ln表示是第n条直线ln对应的参数;
通过对式(4)右端表达式进行所述数值优化,得到最小边长参数s*以及对应的超立方 体中心点坐标Y*,进而得到所述最小超立方体的边长2s*
根据本发明再进一步的实施例,在所述步骤S3中,在所述最小广义矩形的中点固定在 坐标原点、所述最小广义矩形的各边长相等且均为2s的情况下,则所述集合F中所有直线 都能穿过超立方体时,边长参数s应满足:
Figure BDA0002916963540000046
式(5)中,
Figure BDA0002916963540000047
表示直线l1与超立方体相交时,超立方 体的边长参数s所需满足的最小值条件,依此类推,
Figure BDA0002916963540000048
表 示广义矩形与直线ln相交时,边长参数s所需要满足的最小值条件;
Figure BDA0002916963540000049
表示围成广义矩 形的第1个三维超平面与直线l1相交时,边长参数s所需要满足的最小值条件,依此类推,
Figure BDA00029169635400000410
表示围成广义矩形的第8个三维超平面与直线l1相交时,边长参数s所需要满足的最 小值条件;J和b为所述动力学模型参数,下标ln表示是第n条直线ln对应的参数;
通过对式(5)右端表达式进行所述数值优化,得到最小边长参数s*,进而得到所述最 小超立方体的边长2s*
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得 明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解,其中:
图1为本发明实施例的驱动冗余并联机器人的驱动力优化方法所涉及的一种典型的 并联构型机器人。
图2为本发明实施例的驱动冗余并联机器人的驱动力优化方法的流程图。
图3(a)和图3(b)为本发明实施例的驱动冗余并联机器人的驱动力优化方法与非冗余机构各驱动力变化情况的对比情况示意图。
图4(a))和图4(b)为本发明实施例的驱动冗余并联机器人的驱动力优化方法与非冗余机构各驱动力范围的对比情况示意图。
附图标记:
并联机器人1000
静平台1 动平台2 支链3 方形框架4
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
下面结合图1至图4(b)来描述本发明实施例的驱动冗余并联机器人的驱动力优化方法。
根据本发明实施例的驱动冗余并联机器人的驱动力优化方法,适用于四驱动三自由 度的冗余并联机器人,例如,图1示意出了一种四驱动三自由度的冗余并联机器人1000的结构。如图1所示,该并联机器人1000包括静平台1、动平台2、四个支链3的伸缩 部分和安装在静平台1上、中、下部位上的三个方形框架4,其中,静平台1相当于机 架,动平台2相当于末端并用于与末端执行器相连,四个支链3的伸缩部分分布在动平 台2的上边、下边、左边和右边位置相当于驱动轴部分,用于驱动动平台2运动;三 个方形框架4实现静平台1与支链3伸缩部分之间的铰链连接。
根据本发明实施例的驱动冗余并联机器人的驱动力优化方法,如图2所示,包括如下步骤:
S1:建立所述冗余并联机器人的动力学模型;
S2:给定所述冗余并联机器人的末端运动轨迹,将动力学模型转换为四维空间中的 直线,建立四维直线集合;
S3:计算所述四维直线集合中的所有所述四维直线穿过的最小四维广义矩形,通过 数值优化,得到所述冗余并联机器人的各驱动力的最小需求范围。
也就是说,在建立冗余并联机器人的动力学模型的基础上,再给定所述冗余并联机 器人的末端运动轨迹,将末端运动轨迹上的每一个点的运动学量代入动力学模型中,得到动力学方程,来求解驱动力的需求范围;而动力学方程可以转换为四维空间中的直线,同时驱动力的需求范围可以转换为四维空间中的一个广义矩形,通过这两步的转换,把 求解驱动力的需求问题转换为一个四维空间中的几何问题,即计算四维直线集合中的所 有直线穿过的最小四维广义矩形的问题,最后,从几何上建立优化目标函数,通过数值 优化求出广义矩形各边的最小边长,即得到各驱动力的最小需求范围。
根据本发明实施例的驱动冗余并联机器人的驱动力优化方法,能有效解决并联构型 机器人的最小驱动力需求范围计算问题,为电机选型提供更准确的参考,降低制造成本。
下面具体展开来描述本发明实施例的驱动冗余并联机器人的驱动力优化方法。如图 1所示,该方法包括如下步骤:
1)建立并联构型机器人的动力学模型:
Figure BDA0002916963540000061
式(1)中,J为雅可比矩阵,表示末端执行器速度到驱动关节速度的线性映射关系,τ=[τ1 τ2 τ3 τ4]T为各驱动轴的驱动力,P=[P1 P2 P3]T为末端执行器的广义坐标,
Figure BDA0002916963540000062
Figure BDA0002916963540000063
为末端执行器的加速度与速度,M为惯量矩阵,H 为离心力/科氏力矩阵,G为重力向量;
在机构末端执行器的速度与加速度均已知的情况下,上式(1)右端的量均已知,可以用一个常矢量b来表示,因此上式可以简化为:
JTτ=b
这是一个关于关节驱动力τ的线性方程组;
2)上式(2)中,JT∈R3×4,τ∈R4×1,b∈R3×1,方程数目比未知数数目小1,因此 τ有无穷多解,其解空间的维数为1,可以表示为:
τ=τp+cτn
式中,τp=(JT)+b为方程组的一个特解,(JT)+表示矩阵JT的广义逆; τn=null(JT)∈R4×1为方程组到处组的通解,即为矩阵JT的零空间的一组基;c为待定常 数。这样,1)中关于τ的线性方程组的解就转化成了四维空间span{τ1,τ2,τ3,τ4}中的一条 经过点τp、方向平行于向量τn的直线;
3)各驱动力矩的需求范围可以表示为:
Figure BDA0002916963540000071
该需求范围可以转化为四维空间span{τ1234}中的一个实心的广义矩形;
4)若给定一条末端轨迹,轨迹上每一个点上的位姿、速度、加速度信息均已知, 则对于轨迹上每一个点都可以通过动力学模型得到驱动力矩解对应的一条四维空间 span{τ1234}中的直线l;轨迹上每一个点处τ的解构成的直线的集合记为F;
由于轨迹上每个点的动力学模型在需求范围内都必须有解,因此需求范围对应的广 义矩形必须与F中的所有直线都有交集,即所有直线都必须穿过广义矩形;于是,求解最小驱动力需求范围的问题就转化成了求解一个最小的四维广义矩形,使得F中的所有 直线都穿过该广义矩形;
5)求解最小广义矩形:
第一种情况:先考虑一种特殊情况,假设广义矩形的各边长都相等,且其几何中心固定在坐标原点上;又几何知识,四维超立方体由8个三维超平面围成,这8个超平面 可以表示为:
Figure BDA0002916963540000072
式中s为边长参数,表示超立方体边长的一半;
第i条直线可以表示为:
Figure BDA0002916963540000073
其中:
Figure BDA0002916963540000074
假设直线穿过超平面τ1=s,联立该超平面的方程与直线方程,可以得到直线与超平面的交点
Figure BDA0002916963540000081
式中,
Figure BDA0002916963540000082
此时,超立方体的边长参数应为交点的四个坐标值绝对值中的最大值,即
Figure BDA0002916963540000083
同理,可以依次求出直线与其余7个超平面相交时,超立方体的边长参数
Figure BDA0002916963540000084
则直线与超立方体相交时,超立方体的边长参数可以取其中的最小值,即:
Figure BDA0002916963540000085
因此,所有直线都能穿过超立方体时,其边长参数应当满足
Figure BDA0002916963540000086
通过数值优化求解上式右端表达式的最小值,得到最小边长参数s*,进而得到最小超 立方体的边长2s*
第二种情况:接下来处理中点不固定在坐标原点、边长相等的广义矩形的情况。此时,优化目标变成了广义矩形长度不相等的各边要尽可能的短,问题变成了一个多目标 优化问题。对于一个多目标优化问题,通常各优化目标之间是互相矛盾的,一个目标的 提升往往会带来其他目标的下降,因此多目标优化问题的最优解往往有多个,需要根据 各目标的重要程度对最优解进行选择。一个比较简单的选择方法,是对广义矩形四个方 向上的边长进行加权处理。在几何上,广义矩形边长的加权可以通过四维空间的伸缩变 换来实现。假设广义矩形在四个方向上的最小边长的一半分别为s1s、s2s、s3s、s4s,令 四维空间四个坐标轴分别伸长或缩短为原来的1/s1、1/s2、1/s3、1/s4,此时第i条直线 的方程变为:
Figure BDA0002916963540000091
式中
Figure BDA0002916963540000092
这样,只要事先根据对各驱动力矩指定s1、s2、s3、s4的估计值,然后通过空间伸 缩变换,即可将问题转换成为对边长为2s的超立方体的求解。运用第一种情况的结果, 可以得到边长参数s应满足的条件:
Figure BDA0002916963540000093
同样通过数值优化求解上式的最小值,即为所有直线都穿过的广义矩形的最小边长。
第三种情况:最后处理广义矩形中点不在坐标原点的一般情况。假设在进行了空间 伸缩变换以后,超立方体的中点为Y,以Y为原点建立一个新的坐标系,其坐标轴方向与原坐标系相同,则n条直线在新坐标系中的表达式为
Figure BDA0002916963540000094
Figure BDA0002916963540000095
这样,利用第二种情况的结果,所有直线都能穿过的超立方体的边长参数s应当满足:
Figure BDA0002916963540000096
通过数值优化求解上式右端表达式的最小值,得到最小边长参数s*以及对应的伸缩变换 后超立方体的中心点坐标Y*,进而得到最小广义矩形的各边边长S*=2s*·[s1,s2,s3,s4]T以及 对应的广义矩形中心点坐标
Figure BDA0002916963540000097
最后,利用步骤5)中得到的S*
Figure BDA0002916963540000098
可以得出各驱动电机的最小驱动力范围。
下面用一个具体的实例来详细描述本发明的驱动冗余并联机器人的驱动力优化方 法。
图1为本发明实施例的驱动冗余并联机器人1000的驱动力优化方法所涉及的一种典型的并联机器人1000的结构示意图。该并联机器人1000包括静平台1、动平台2、 四个支链3的伸缩部分和安装在静平台1上、中、下部位上的三个方形框架4,其中, 静平台1相当于机架,动平台2相当于末端并用于与末端执行器相连,四个支链3的伸 缩部分分布在动平台2的上边、下边、左边和右边位置相当于驱动轴部分,用于驱动动 平台2运动;三个方形框架4实现静平台1与支链3伸缩部分之间的铰链连接。
针对图1的并联机器人1000的驱动力优化方法,具体方法步骤如下:
1)针对图一所示的并联构型主轴头,建立其动力学模型:
Figure BDA0002916963540000101
式中,J为雅可比矩阵,表示末端执行器速度到驱动关节速度的线性映射关系, τ=[τ1 τ2 τ3 τ4]T为各驱动轴的驱动力,P=[P1 P2 P3]T为末端执行器的广义坐标,
Figure BDA0002916963540000102
Figure BDA0002916963540000103
为末端执行器的加速度与速度,M为惯量矩阵,H为 离心力/科氏力矩阵,G为重力向量;
2)给定一条末端运动轨迹,并给出等间距的时间序列{ti},i=1,2,…,n,对时间序列上的 每一个时刻ti,将运动学量代入(1)式,得到
Figure BDA0002916963540000104
3)设定广义矩形各边长比例s1、s2、s3、s4的值,记:
Figure BDA0002916963540000105
广义矩形的各边长为S=2s[s1,s2,s3,s4]T,中心点坐标为
Figure BDA0002916963540000106
对(2)式中的每一条直 线,计算直线与广义矩形相交时,边长参数s需要满足的最小值条件:
Figure BDA0002916963540000107
进而计算所有直线都能穿过的广义矩形时,边长参数s需要满足的条件:
Figure BDA0002916963540000108
通过对(4)式右端表达式的数值优化,可以得到最小广义矩形的各边长 S*=2s*[s1,s2,s3,s4]T,以及广义矩形的中点坐标
Figure BDA0002916963540000109
Figure BDA00029169635400001010
S*=[30.274 44.822 30.274 44.822]TN·m
优化结果如图3(a)至图4(b)所示。
需要说明的是,对于冗余数为1的冗余并联机器人,如五驱动四自由度的冗余并联机器人,其驱动力优化方法也可以采用本发明的转换思路,但转换后的求解公式不同, 在此不做详细描述。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱 离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (7)

1.一种驱动冗余并联机器人的驱动力优化方法,其特征在于,所述冗余并联机器人为四驱动三自由度的机器人,所述驱动力优化方法包括如下步骤:
S1:建立所述冗余并联机器人的动力学模型;
S2:给定所述冗余并联机器人的末端运动轨迹,将动力学模型转换为四维空间中的直线,建立四维直线集合;
S3:计算所述四维直线集合中的所有所述四维直线穿过的最小四维广义矩形,通过数值优化,得到所述冗余并联机器人的各驱动力的最小需求范围。
2.根据权利要求1所述的驱动冗余并联机器人的驱动优化方法,其特征在于,在所述步骤S1中,所述动力学模型为:
Figure FDA0002916963530000013
式(1)中,J为雅可比矩阵,表示末端执行器速度到驱动关节速度的线性映射关系,τ=[τ1 τ2 τ3 τ4]T为各驱动轴的驱动力,P=[P1 P2 P3]T为末端执行器的广义坐标,
Figure FDA0002916963530000011
Figure FDA0002916963530000012
为末端执行器的加速度与速度,M为惯量矩阵,H为离心力/科氏力矩阵,G为重力向量。
3.根据权利要求2所述的驱动冗余并联机器人的驱动优化方法,其特征在于,在已知式(1)所述冗余并联机器人的末端的加速度、速度和位姿的情况下,式(1)中等号右边的量为常矢量b,从而式(1)简化为:
JTτ=b (2)
式(2)为关于驱动力τ的线性方程组。
4.根据权利要求3所述的驱动冗余并联机器人的驱动优化方法,其特征在于,在所述步骤S2中,对于所述末端运动轨迹上的每一个点,通过式(2)得到驱动力求解对应的一条四维空间中的直线l;所述末端运动轨迹上的每一个点处驱动力τ的解构成直线集合F。
5.根据权利要求4所述的驱动冗余并联机器人的驱动力优化方法,其特征在于,在所述步骤S3中,在所述最小广义矩形的中心点不固定在原点且所述最小广义矩形的各边长不相等的情况下,若广义矩形各边边长为s=2s·[s1,s2,s3,s4]T,其中s1、s2、s3、s4为事先给定的、表示四个边长的比例关系的参数,s为边长参数,对四维空间四个方向的坐标轴分别作倍数为1/s1、1/s2、1/s3、1/s4的伸缩变换,则原广义矩形变换为中心点不固定在坐标原点、各边长相等且均为2s的超立方体;此时,所述集合F中所有直线都能穿过超立方体时,边长参数s应满足:
Figure FDA0002916963530000021
式(3)中,
Figure FDA0002916963530000022
表示广义矩形与直线l1相交时,边长参数s所需要满足的最小值条件,依此类推,
Figure FDA0002916963530000023
表示广义矩形与直线ln相交时,边长参数s所需要满足的最小值条件;
Figure FDA0002916963530000024
表示围成广义矩形的第1个三维超平面与直线l1相交时,边长参数s所需要满足的最小值条件,依此类推,
Figure FDA0002916963530000025
表示围成广义矩形的第8个三维超平面与直线l1相交时,边长参数s所需要满足的最小值条件;Y为伸缩变换后超立方体的中心点坐标;J和b为所述动力学模型参数,下标ln表示是第n条直线ln对应的参数;
Figure FDA0002916963530000026
为四个边长比例参数构成的矩阵;
通过对式(3)右端表达式进行所述数值优化,得到最小边长参数s*以及对应的伸缩变换后超立方体的中心点坐标Y*,进而得到最小广义矩形的各边边长s*=2s*·[s1,s2,s3,s4]T以及对应的广义矩形中心点坐标
Figure FDA0002916963530000027
6.根据权利要求5所述的驱动冗余并联机器人的驱动力优化方法,其特征在于,在所述步骤S3中,在所述最小广义矩形的中心点不固定在坐标原点、所述最小广义矩形的各边长相等且均为2s的情况下,若广义矩形中心点坐标为Y,对四维空间作+Y平移变换,则广义矩形变换为中心点固定在坐标原点且各边长相等的超立方体;此时,所述集合F中所有直线都能穿过超立方体时,边长参数s应满足:
Figure FDA0002916963530000028
式(4)中,
Figure FDA0002916963530000029
表示广义矩形与直线l1相交时,边长参数s所需要满足的最小值条件,依此类推,
Figure FDA00029169635300000210
表示广义矩形与直线ln相交时,边长参数s所需要满足的最小值条件;
Figure FDA00029169635300000211
表示围成广义矩形的第1个三维超平面与直线l1相交时,边长参数s所需要满足的最小值条件,依此类推,
Figure FDA00029169635300000212
表示围成广义矩形的第8个三维超平面与直线l1相交时,边长参数s所需要满足的最小值条件;J和b为所述动力学模型参数,下标ln表示是第n条直线ln对应的参数;
通过对式(4)右端表达式进行所述数值优化,得到最小边长参数s*以及对应的超立方体中心点坐标Y*,进而得到所述最小超立方体的边长2s*
7.根据权利要求6所述的驱动力冗余并联机器人的驱动优化方法,其特征在于,在所述步骤S3中,在所述最小广义矩形的中心点固定在原点、所述最小广义矩形的各边长相等且均为2s的情况下,则所述集合F中所有直线都能穿过超立方体时,边长参数s应满足:
Figure FDA0002916963530000031
式(5)中,
Figure FDA0002916963530000032
表示直线l1与超立方体相交时,超立方体的边长参数s所需满足的最小值条件,依此类推,
Figure FDA0002916963530000033
表示广义矩形与直线ln相交时,边长参数s所需要满足的最小值条件;
Figure FDA0002916963530000034
表示围成广义矩形的第1个三维超平面与直线l1相交时,边长参数s所需要满足的最小值条件,依此类推,
Figure FDA0002916963530000035
表示围成广义矩形的第8个三维超平面与直线l1相交时,边长参数s所需要满足的最小值条件;J和b为所述动力学模型参数,下标ln表示是第n条直线ln对应的参数;
通过对式(5)右端表达式进行所述数值优化,得到最小边长参数s*,进而得到所述最小超立方体的边长2s*
CN202110103601.5A 2021-01-26 2021-01-26 驱动冗余并联机器人的驱动力优化方法 Active CN112959297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110103601.5A CN112959297B (zh) 2021-01-26 2021-01-26 驱动冗余并联机器人的驱动力优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110103601.5A CN112959297B (zh) 2021-01-26 2021-01-26 驱动冗余并联机器人的驱动力优化方法

Publications (2)

Publication Number Publication Date
CN112959297A true CN112959297A (zh) 2021-06-15
CN112959297B CN112959297B (zh) 2022-08-30

Family

ID=76272661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110103601.5A Active CN112959297B (zh) 2021-01-26 2021-01-26 驱动冗余并联机器人的驱动力优化方法

Country Status (1)

Country Link
CN (1) CN112959297B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115741689A (zh) * 2022-11-14 2023-03-07 吉林大学 机器人智能驱动控制系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103403A (en) * 1987-02-04 1992-04-07 Logabex S.A.R.L. Redundant modular robot
US5430643A (en) * 1992-03-11 1995-07-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Configuration control of seven degree of freedom arms
CN103302667A (zh) * 2012-03-15 2013-09-18 株式会社捷太格特 机器人控制方法、机器人控制装置和机器人控制系统
CN112123323A (zh) * 2020-10-19 2020-12-25 东南大学 一种4upu-up冗余驱动并联机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103403A (en) * 1987-02-04 1992-04-07 Logabex S.A.R.L. Redundant modular robot
US5430643A (en) * 1992-03-11 1995-07-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Configuration control of seven degree of freedom arms
CN103302667A (zh) * 2012-03-15 2013-09-18 株式会社捷太格特 机器人控制方法、机器人控制装置和机器人控制系统
JP2013193131A (ja) * 2012-03-15 2013-09-30 Jtekt Corp ロボットの制御方法及びロボット制御装置、並びにロボット制御システム
CN112123323A (zh) * 2020-10-19 2020-12-25 东南大学 一种4upu-up冗余驱动并联机器人

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115741689A (zh) * 2022-11-14 2023-03-07 吉林大学 机器人智能驱动控制系统和方法

Also Published As

Publication number Publication date
CN112959297B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Liu et al. Cooperation control of multiple manipulators with passive joints
Merlet Parallel manipulators: state of the art and perspectives
Yang et al. Kinematic design of a six-DOF parallel-kinematics machine with decoupled-motion architecture
Jin et al. Kinematic design of a family of 6-DOF partially decoupled parallel manipulators
Zhao et al. Dynamic performance comparison of the 8PSS redundant parallel manipulator and its non-redundant counterpart—the 6PSS parallel manipulator
Corbel et al. Actuation redundancy as a way to improve the acceleration capabilities of 3T and 3T1R pick-and-place parallel manipulators
Company et al. A new high-speed 4-DOF parallel robot synthesis and modeling issues
Aginaga et al. Improving static stiffness of the 6-RUS parallel manipulator using inverse singularities
CN113172627B (zh) 多移动机械手协同搬运系统运动学建模与分布式控制方法
CN112959297B (zh) 驱动冗余并联机器人的驱动力优化方法
Lee et al. Workspace and singularity analysis of a double parallel manipulator
Bai et al. Design of mechanical presses driven by multi-servomotor
Xu et al. Design, analysis and optimization of Hex4, a new 2R1T overconstrained parallel manipulator with actuation redundancy
TW201426229A (zh) 控制裝置、控制方法及位置命令補償方法
Wang et al. Kinematic performance analysis and promotion of a spatial 3-RPaS parallel manipulator with multiple actuation modes
Zhao et al. The joint velocity, torque, and power capability evaluation of a redundant parallel manipulator
Shayya et al. A novel (3T-1R) redundant parallel mechanism with large operational workspace and rotational capability
Saied et al. Actuator and friction dynamics formulation in control of pkms: From design to real-time experiments
Choi et al. Design and control of a novel 4-DOFs parallel robot H4
Castillo-Castañeda et al. Improving path accuracy of a crank-type 6-dof parallel mechanism by stiction compensation
Company et al. Modelling and preliminary design issues of a four-axis parallel machine for heavy parts handling
WO2020017093A1 (ja) 加速度調整装置及び加速度調整プログラム
Kalaycioglu et al. Coordinated Motion and Force Control of Multi-Rover Robotics System with Mecanum Wheels
Atia et al. A general dynamic model for a large-scale 2-DOF planar parallel manipulator
Müller Manipulability and static stability of parallel manipulators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant