CN112953278A - 一种应用于apf的svpwm调制方法 - Google Patents

一种应用于apf的svpwm调制方法 Download PDF

Info

Publication number
CN112953278A
CN112953278A CN202110263286.2A CN202110263286A CN112953278A CN 112953278 A CN112953278 A CN 112953278A CN 202110263286 A CN202110263286 A CN 202110263286A CN 112953278 A CN112953278 A CN 112953278A
Authority
CN
China
Prior art keywords
voltage
vector
apf
switching
vectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110263286.2A
Other languages
English (en)
Inventor
范建华
曹乾磊
尹怀强
邱慧冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Topscomm Communication Co Ltd
Original Assignee
Qingdao Topscomm Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Topscomm Communication Co Ltd filed Critical Qingdao Topscomm Communication Co Ltd
Priority to CN202110263286.2A priority Critical patent/CN112953278A/zh
Publication of CN112953278A publication Critical patent/CN112953278A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种应用于APF的SVPWM调制方法,包括:APF装置确定开关状态,开关状态对应电压空间矢量;将全部矢量空间划分为二十四个扇区,定义其中每四个扇区组成一个区间;根据电压空间矢量幅值大小将电压矢量分成四类;选择三个符合与指令电压矢量最近的要求的矢量,通过三个矢量合成指令电压矢量;求解三个电压矢量作用时间,该作用时间对应开关管开通时间。本发明对电压利用率可达到100%,实现对三电平APF钳位二极管中点电位平衡的控制,从而实现对直流侧电压更加稳定的控制,提升了电网整体的电能质量,同时相较于SPWM方法,本方法在每个小区间虽有多次开关切换,但每次开关切换只涉及一个开关管,开关损耗较小,节约了资源。

Description

一种应用于APF的SVPWM调制方法
技术领域
本发明涉及电力电子调制技术领域,尤其涉及一种应用于APF的SVPWM调制方法。
背景技术
随着线路中非线性负载的不断增加,电网的谐波污染问题已成为影响电能质量的主要因素之一。作为治理谐波最有效的手段,对有源电力滤波器(APF)的研究已经成为电气工程学科的热点。由于功率器件耐压水平的限制,传统两电平拓扑结构有源电力滤波器难以实现对中高压非线性负载的谐波补偿。而具有降低开关管耐压值、减小开关管电压应力、改善输出波形质量、提高系统电压和功率等级等优点的多电平技术在高电压大功率场景得到越来越广泛的应用,特别是在谐波降低和无功补偿方面有着非常好的应用前景。在所有的多电平拓扑中,三相二极管钳位型三电平变换器是当前应用较多的拓扑结构。
一直以来,常见的SPWM调制法电压利用率在调制比为1时电压利用率仅为85%左右,且调制时涉及多个开关管的切换,开关损耗也较大。
发明内容
本发明针对现有技术存在的不足和缺陷,提供了一种应用于APF的SVPWM调制方法,SVPWM调制法电压利用率可达到100%,实现对三电平APF钳位二极管中点电位平衡的控制,同时相较于SPWM,SVPWM在每个小区间虽有多次开关切换,但每次开关切换只涉及一个开关管,开关损耗较小。
本发明的目的可以通过以下技术方案来实现:
一种应用于APF的SVPWM调制方法,其特征在于,包括以下步骤:
步骤1:APF装置确定二十七种开关状态,二十七种开关状态对应十九个电压空间矢量;
步骤2:将全部矢量空间划分为二十四个扇区,定义其中每四个扇区组成一个区间,共定义出六个区间;
步骤3:根据电压空间矢量幅值的大小,将电压矢量分成四类:零电压矢量、小电压矢量、中电压矢量、大电压矢量;
步骤4:选择三个电压矢量,该三个矢量必须符合与指令电压矢量最近的要求,通过三个矢量合成指令电压矢量;
步骤5:求解三个电压矢量作用时间,该作用时间对应开关管开通时间。
进一步地,所述步骤1中的二十七种开关状态由APF装置的十二组IGBT和六个钳位二极管产生。
进一步地,所述步骤3中的零电压矢量有三个冗余开关状态,小矢量有两个冗余开关状态。
进一步地,所述步骤4中每次选择电压矢量时,只有一个对应开关管发生变化。
进一步地,所述步骤5中三个电压矢量的作用时间分别为Tx、Ty、Tz,且满足Tx+Ty+Tz=Ts,Ts为开关周期。
本发明的有益技术效果:本调制法电压利用率可达到100%,实现对三电平APF钳位二极管中点电位平衡的控制,从而实现对直流侧电压更加稳定的控制,提升了电网整体的电能质量,同时相较于SPWM,SVPWM在每个小区间虽有多次开关切换,但每次开关切换只涉及一个开关管,开关损耗较小,节约了资源。
附图说明
图1是本发明的调制流程图。
图2是本发明实施例所述二极管钳位型三电平APF装置调制所生成的调制波。
图3是本发明实施例所述二极管钳位性三电平APF装置对线路进行补偿的结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不限定本发明。
如图1所示,一种应用于APF的SVPWM调制方法,该方法采用圆形磁场的SVPWM控制方法,获得理想三次谐波注入,得到理想的马鞍形波形如图2所示,马鞍形波形作为调制波与载波对比,进而得出PWM控制波形,最终可获得电网电压波形如图3所示。实现步骤如下所示:
步骤1:APF装置共有3组桥臂,每一组桥臂有4个开关管,对应三种开关状态,三项装置可确定27种开关状态,由于其中有8个冗余矢量,27种开关状态对应19个电压空间矢量;其中27种开关状态由APF装置的十二组IGBT和六个钳位二极管产生。
步骤2:将全部矢量空间划分为24个扇区,定义其中每4个扇区组成1个区间,共定义出6个区间。
步骤3:根据电压空间矢量幅值的大小,将电压矢量分成四类:零电压矢量、小电压矢量、中电压矢量、大电压矢量;其中零电压矢量有三个冗余开关状态,小矢量有两个冗余开关状态。
步骤4:判断合成电压矢量所在扇区,根据扇区选择3个电压矢量,该3个矢量必须符合与指令电压矢量最近的要求,通过3个矢量合成指令电压矢量。其中每次选择电压矢量时,只有一个对应开关管发生变化。
步骤5:求解三个电压矢量作用时间,该作用时间对应开关管开通时间;其中三个电压矢量的作用时间分别为Tx、Ty、Tz,且满足Tx+Ty+Tz=Ts,Ts为开关周期。
上述实施例是对本发明的具体实施方式的说明,而非对本发明的限制,有关技术领域的技术人员在不脱离本发明的精神和范围的情况下,还可做出各种变换和变化以得到相对应的等同的技术方案,因此所有等同的技术方案均应归入本发明的专利保护范围。

Claims (5)

1.一种应用于APF的SVPWM调制方法,其特征在于,包括以下步骤:
步骤1:APF装置确定二十七种开关状态,二十七种开关状态对应十九个电压空间矢量;
步骤2:将全部矢量空间划分为二十四个扇区,定义其中每四个扇区组成一个区间,共定义出六个区间;
步骤3:根据电压空间矢量幅值的大小,将电压矢量分成四类:零电压矢量、小电压矢量、中电压矢量、大电压矢量;
步骤4:选择三个电压矢量,该三个矢量必须符合与指令电压矢量最近的要求,通过三个矢量合成指令电压矢量;
步骤5:求解三个电压矢量作用时间,该作用时间对应开关管开通时间。
2.根据权利要求1所述的一种应用于APF的SVPWM调制方法,其特征在于,所述步骤1中的二十七种开关状态由APF装置的十二组IGBT和六个钳位二极管产生。
3.根据权利要求1所述的一种应用于APF的SVPWM调制方法,其特征在于,所述步骤3中的零电压矢量有三个冗余开关状态,小矢量有两个冗余开关状态。
4.根据权利要求1所述的一种应用于APF的SVPWM调制方法,其特征在于,所述步骤4中每次选择电压矢量时,只有一个对应开关管发生变化。
5.根据权利要求1所述的一种应用于APF的SVPWM调制方法,其特征在于,所述步骤5中三个电压矢量的作用时间分别为Tx、Ty、Tz,且满足Tx+Ty+Tz=Ts,Ts为开关周期。
CN202110263286.2A 2021-03-11 2021-03-11 一种应用于apf的svpwm调制方法 Withdrawn CN112953278A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110263286.2A CN112953278A (zh) 2021-03-11 2021-03-11 一种应用于apf的svpwm调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110263286.2A CN112953278A (zh) 2021-03-11 2021-03-11 一种应用于apf的svpwm调制方法

Publications (1)

Publication Number Publication Date
CN112953278A true CN112953278A (zh) 2021-06-11

Family

ID=76229206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110263286.2A Withdrawn CN112953278A (zh) 2021-03-11 2021-03-11 一种应用于apf的svpwm调制方法

Country Status (1)

Country Link
CN (1) CN112953278A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787888A (zh) * 2016-12-26 2017-05-31 安徽大学 一种三电平anpc变换器中点电压平衡控制方法
CN107017793A (zh) * 2017-05-02 2017-08-04 广东电网有限责任公司云浮供电局 一种三相三电平逆变电路的空间矢量调制方法和系统
CN108173443A (zh) * 2017-12-19 2018-06-15 西安翌飞核能装备股份有限公司 一种三电平svg不连续svpwm调制方法
CN109347347A (zh) * 2018-10-11 2019-02-15 南京航空航天大学 不平衡负载下三相四线制三电平逆变器通用型3d-svpwm控制方法及控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787888A (zh) * 2016-12-26 2017-05-31 安徽大学 一种三电平anpc变换器中点电压平衡控制方法
CN107017793A (zh) * 2017-05-02 2017-08-04 广东电网有限责任公司云浮供电局 一种三相三电平逆变电路的空间矢量调制方法和系统
CN108173443A (zh) * 2017-12-19 2018-06-15 西安翌飞核能装备股份有限公司 一种三电平svg不连续svpwm调制方法
CN109347347A (zh) * 2018-10-11 2019-02-15 南京航空航天大学 不平衡负载下三相四线制三电平逆变器通用型3d-svpwm控制方法及控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李耀荣: "基于SVPWM的多电平逆变器冗余控制技术的研究", 《中国优秀硕士论文全文数据库》 *

Similar Documents

Publication Publication Date Title
Yu et al. Hybrid seven-level converter based on T-type converter and H-bridge cascaded under SPWM and SVM
Xu et al. A novel hybrid five-level voltage-source converter based on T-type topology for high-efficiency applications
Zaragoza et al. A comprehensive study of a hybrid modulation technique for the neutral-point-clamped converter
Song et al. Cascaded multilevel inverter employing three-phase transformers and single DC input
Pulikanti et al. Hybrid flying-capacitor-based active-neutral-point-clamped five-level converter operated with SHE-PWM
WO2019029694A1 (zh) 一种变换电路、控制方法和供电设备
Taghvaie et al. A new step-up switched-capacitor voltage balancing converter for NPC multilevel inverter-based solar PV system
Shehu et al. A review of multilevel inverter topology and control techniques
Xing et al. An optimized zero-sequence voltage injection method for eliminating circulating current and reducing common mode voltage of parallel-connected three-level converters
Jin et al. Topology, Efficiency Analysis, and Control of a Four-Level $\pi $-Type Converter
Meraj et al. Novel level-shifted PWM technique for equal power sharing among quasi-Z-source modules in cascaded multilevel inverter
CN110138005B (zh) 一种级联多模态光伏并网逆变器及其调制方法
CN104821734B (zh) 一种用于模块组合多电平变换器的子模块电路
CN105356778A (zh) 一种模块化多电平逆变器及其无差拍控制方法
Samanbakhsh et al. A new asymmetric cascaded multilevel converter topology with reduced voltage stress and number of switches
Liu et al. Coupled-inductor L-source inverter
Kim et al. Minimum loss discontinuous pulse-width modulation per phase method for three-phase four-leg inverter
CN101753053A (zh) 混合级联多电平变换器
CN109347335B (zh) 一种适用于电流源控制的模块化多电平换流器桥臂拓扑
CN114744898A (zh) 基于Si和SiC器件的混合型多电平并网变换器及其控制方法
CN111327220B (zh) 一种提高直流电压利用率的多电平逆变器及电能变换设备
Shi et al. Improved double line voltage synthesis strategies of matrix converter for input/output quality enhancement
CN112953278A (zh) 一种应用于apf的svpwm调制方法
Bifaretti et al. A modulation technique for high power AC/DC multilevel converters for power system integration
Lin et al. Multilevel inverter with series connection of H-bridge cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210611

WW01 Invention patent application withdrawn after publication