CN112952551B - Surface emitting laser element with mixed grating structure and its making process - Google Patents
Surface emitting laser element with mixed grating structure and its making process Download PDFInfo
- Publication number
- CN112952551B CN112952551B CN201911166887.0A CN201911166887A CN112952551B CN 112952551 B CN112952551 B CN 112952551B CN 201911166887 A CN201911166887 A CN 201911166887A CN 112952551 B CN112952551 B CN 112952551B
- Authority
- CN
- China
- Prior art keywords
- grating
- horizontal direction
- layer
- photonic crystal
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 19
- 230000008569 process Effects 0.000 title claims description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 103
- 239000004038 photonic crystal Substances 0.000 claims description 143
- 238000005253 cladding Methods 0.000 claims description 31
- 230000003287 optical effect Effects 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 238000000407 epitaxy Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000000206 photolithography Methods 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 238000007639 printing Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 162
- 230000008878 coupling Effects 0.000 description 15
- 238000010168 coupling process Methods 0.000 description 15
- 238000005859 coupling reaction Methods 0.000 description 15
- 238000013461 design Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1228—DFB lasers with a complex coupled grating, e.g. gain or loss coupling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
技术领域technical field
本发明系相关于一种具混合光栅结构的面发射激光元件与制法,尤指一种藉由在光栅层中设置由第一阶光栅结构区与第二阶光栅结构区所构成的混合光栅结构的一种面发射激光元件与制法。The present invention relates to a surface-emitting laser element with a hybrid grating structure and its manufacturing method, especially to a hybrid grating composed of a first-order grating structure area and a second-order grating structure area in the grating layer. A surface-emitting laser element and its manufacturing method.
背景技术Background technique
半导体激光(semiconductor laser)或称激光二极体(laser diode)具有体积小、消耗功率低、反应快、耐冲击、寿命长、效率高及价格低等优点,因此被广泛的应用于光电系统产品中,例如:光波通信、资讯系统、家用电器、精密测量及光纤通信等。其中,分布反馈激光(Distributed Feedback Laser:简称DFB激光)因具有制程简易、单模输出与适合长距传输等特性,由分布反馈激光产生的激光讯号在经过长距离传输后仍可维持良好的讯号杂讯比,故已成为现今光波通信及光纤通信系统中广泛使用的光源。Semiconductor laser (semiconductor laser) or laser diode (laser diode) has the advantages of small size, low power consumption, fast response, impact resistance, long life, high efficiency and low price, so it is widely used in optoelectronic system products Among them, for example: light wave communication, information system, household appliances, precision measurement and optical fiber communication, etc. Among them, Distributed Feedback Laser (DFB Laser) has the characteristics of simple manufacturing process, single-mode output and suitable for long-distance transmission. The laser signal generated by distributed feedback laser can still maintain a good signal after long-distance transmission. Therefore, it has become a widely used light source in today's light wave communication and optical fiber communication systems.
请参阅图1,为一典型的面发射分布反馈激光(Surface Emitting DistributedFeedback Laser:简称SE-DFB激光)剖面示意图,其由下而上依序包含了:半导体基板91、下披覆层(cladding layer)、下光局限(Separated Confinement Hetero-Structure;简称SCH)层、主动层92(active region layer)、上光局限层、间隔层、光栅层93、上披覆层94、及接触层等结构。而依据其光栅层中所包含多数微光栅结构之周期的设计差异,SE-DFB激光一般可被区分为采用第一阶光栅结构设计、或是采用第二阶光栅结构设计。所谓的第一阶或第二阶的光栅结构设计,乃是依据以下公式来决定:Please refer to FIG. 1 , which is a schematic cross-sectional view of a typical surface emitting distributed feedback laser (Surface Emitting Distributed Feedback Laser: SE-DFB laser for short), which sequentially includes from bottom to top: a
其中,∧是相邻两微光栅结构的周期(grating period)长度,λ是SE-DFB激光所发出之激光的波长(wavelength),neff是半导体波导的等效折射率(effective refractiveindex),而m则是所谓的「阶(order)」值。由此可知,当m=1时,微光栅结构之周期值∧大体上对应于激光波长λ的二分之一(也就是λ/2),且光栅层所包含的该些微光栅结构可称为第一阶光栅结构(First order grating)。而当m=2时,微光栅结构之周期值∧大体上对应于激光波长λ(也就是λ),且光栅层所包含的该些微光栅结构是称为第二阶光栅结构(Secondorder grating)。此时,会有第一阶与第二阶绕射,分别对应耦合常数(couplingconstant)K1(与面出光效率相关)与K2(与形成面内共振腔in-plane cavity效率相关)。Among them, ∧ is the period (grating period) length of two adjacent micro-grating structures, λ is the wavelength (wavelength) of the laser light emitted by the SE-DFB laser, n eff is the equivalent refractive index of the semiconductor waveguide (effective refractive index), and m is the so-called "order" value. It can be seen that when m=1, the period value ∧ of the micro-grating structure roughly corresponds to one-half of the laser wavelength λ (that is, λ/2), and the micro-grating structures included in the grating layer can be called First order grating structure (First order grating). When m=2, the period value ∧ of the micro-grating structure roughly corresponds to the laser wavelength λ (that is, λ), and the micro-grating structures contained in the grating layer are called second-order grating structures. At this time, there will be first-order and second-order diffraction, corresponding to the coupling constant (coupling constant) K1 (related to the surface light emission efficiency) and K2 (related to the in-plane cavity efficiency).
假设微光栅结构是齿状(teeth like)的形状(如图1),不同阶的光栅结构设计所得到的面内共振腔耦合常数(Km),Km正比于Sin[π*m*ratio]/(π*m)。其中,m是「阶(order)」值;ratio(比值)是指光栅的工作周期(duty cycle),亦即,如图1所示之ratio=a/∧;其中a是两相邻微光栅结构的间隙值。请参阅图2,为比较m=1与m=2时ratio值与面内共振腔耦合常数(Km)值的关系曲线图。由图2可知,比较m=1(第一阶光栅结构)与m=2(第二阶光栅结构)的曲线,可知一般由第二阶光栅结构形成面内共振腔的效率较第一阶光栅结构来得低。Assuming that the micro-grating structure is a teeth-like shape (as shown in Figure 1), the in-plane resonant cavity coupling constant (K m ) obtained by designing the grating structure of different orders, K m is proportional to Sin[π*m*ratio ]/(π*m). Among them, m is the "order (order)"value; ratio (ratio) refers to the duty cycle of the grating, that is, ratio=a/∧ as shown in Figure 1; where a is two adjacent micro-gratings The gap value of the structure. Please refer to FIG. 2 , which is a graph comparing the relationship between the ratio value and the in-plane resonant cavity coupling constant (K m ) value when m=1 and m=2. It can be seen from Figure 2 that comparing the curves of m=1 (first-order grating structure) and m=2 (second-order grating structure), it can be seen that the efficiency of the in-plane resonant cavity formed by the second-order grating structure is generally higher than that of the first-order grating structure. The structure comes low.
依据第二阶光栅结构设计所形成的SE-DFB激光具有许多优点,例如出射角度小、以及可以进行在晶圆状态下的测试与预烧机(on wafer test and burn-in)。并且,不像一般边射型(edge emitting)DFB激光需要镜面劈裂与镀膜,依据第二阶光栅结构设计所形成的SE-DFB激光的原理是制作微光栅结构周期值为λ/neff,如此在面内(in-plane)上利用微光栅结构第二阶绕射(diffraction),将波导(waveguide)内往前与往后的模(mode)偶合在一起形成共振腔(cavity)而发射激光(lasing),并将激光从SE-DFB激光的顶面耦合射出。The SE-DFB laser formed according to the second-order grating structure design has many advantages, such as a small exit angle, and can be tested and burn-in in the wafer state. Moreover, unlike general edge emitting DFB lasers that require mirror splitting and coating, the principle of the SE-DFB laser formed according to the second-order grating structure design is to make a micro-grating structure with a period value of λ/n eff , In this way, the second-order diffraction of the micro-grating structure is used on the in-plane to couple the forward and backward modes in the waveguide to form a resonant cavity to emit Laser (lasing), and the laser is coupled out from the top surface of the SE-DFB laser.
由于第二阶光栅结构设计所形成的SE-DFB激光运作时第一阶与第二阶是同时发生在光模态(optical mode)上,除了上述效率较低的第二阶绕射作为共振腔反馈(cavityfeedback),还有额外第一阶绕射光输出耦合损失(light output coupling loss),使得此类元件往往需要较大的面积与较大的临界电流值(threshold current;简称Ith)来操作,此为其缺点。Due to the SE-DFB laser formed by the design of the second-order grating structure, the first-order and second-order occur simultaneously in the optical mode (optical mode), except for the above-mentioned low-efficiency second-order diffraction as a resonant cavity Feedback (cavity feedback), and additional first-order diffracted light output coupling loss (light output coupling loss), so that such components often require a larger area and a larger threshold current (Ith) to operate, This is its shortcoming.
缘此,本发明提供一种面发射分布反馈激光的新颖设计,其整合第一阶与第二阶之光栅结构设计在同一光栅层。利用低损耗的第一阶光栅结构设计来充当高效率的反射反馈(feedback)区放置在激光端面,只有在接近中间激光面出光区才使用第二阶光栅结构设计。如此,才能够在追求高斜率效率(slope efficiency)(意味这较大的第二阶光栅结构区域)与低临界电流值Ith(意味这较小的第二阶光栅结构区域)之间取得想要的平衡。在第二阶光栅结构区域的中央还可以引入λ/4-Shift的相位差光栅结构,使激光场能够模态稳定与提升出光耦光效率。For this reason, the present invention provides a novel design of surface emitting distributed feedback laser, which integrates the first-order and second-order grating structures in the same grating layer. The low-loss first-order grating structure design is used to serve as a high-efficiency reflection feedback (feedback) area placed on the laser end face, and the second-order grating structure design is used only in the light-emitting area near the middle laser surface. In this way, it is possible to achieve the desired value between the pursuit of high slope efficiency (meaning a larger second-order grating structure area) and low critical current value Ith (meaning a smaller second-order grating structure area) balance. In the center of the second-order grating structure region, a λ/4-Shift phase difference grating structure can also be introduced, so that the laser field can be modal stabilized and the light efficiency of the optocoupler can be improved.
发明内容Contents of the invention
本发明之主要目的系在提供一种具混合光栅结构的面发射激光元件及其制法,藉由在光栅层中设置由第一阶光栅结构区与第二阶光栅结构区所构成的混合光栅结构,可在追求高斜率效率(slope efficiency)与低临界电流值Ith之间取得想要的平衡。并且,在第二阶光栅结构区的中央还可以引入λ/4-Shift的相位差光栅结构,使激光场能够模态稳定与提升出光耦光效率。The main purpose of the present invention is to provide a surface-emitting laser element with a hybrid grating structure and its manufacturing method, by setting a hybrid grating composed of a first-order grating structure region and a second-order grating structure region in the grating layer The structure can achieve a desired balance between pursuing high slope efficiency (slope efficiency) and low critical current value Ith. Moreover, a λ/4-Shift phase difference grating structure can also be introduced in the center of the second-order grating structure region, so that the laser field can be modal stabilized and the optical efficiency of the optocoupler can be improved.
本发明之另一目的系在提供一种面发射激光元件,将前述主要目的的同样概念从一维的光栅结构转换到二维的光子晶体面发射激光器(photonic crystal surfaceemitting laser;简称PCSEL)。在激光元件的四周布署第一阶的光子晶体(photoniccrystal),只有在中间出光处布署第二阶的光子晶体,并适当的引入相位差结构来操作模态。也有可能同时布署数个出光处(亦即,只在出光处布署第二阶光子晶体)达到类似多光源二维阵列相位锁(2D array phase lock)的效果。Another object of the present invention is to provide a surface emitting laser element, which converts the same concept of the aforementioned main object from a one-dimensional grating structure to a two-dimensional photonic crystal surface emitting laser (PCSEL for short). The first-order photonic crystals are deployed around the laser element, and the second-order photonic crystals are only deployed in the middle of the light output, and a phase difference structure is properly introduced to operate the mode. It is also possible to deploy several light outlets at the same time (that is, only deploy the second-order photonic crystals at the light outlets) to achieve an effect similar to that of a 2D array phase lock with multiple light sources.
为达上述目的,本发明系提供一种具混合光栅结构的面发射激光元件,可产生具有一激光波长的激光;该面发射激光元件包括:To achieve the above object, the present invention provides a surface-emitting laser element with a hybrid grating structure, which can produce laser light with a laser wavelength; the surface-emitting laser element includes:
一半导体堆叠结构,可在接受一电流时产生具有该激光波长的该激光,并使该激光自该半导体堆叠结构的一出光面射出,且该出光面是位于该半导体堆叠结构的一顶面;A semiconductor stack structure, capable of generating the laser light with the laser wavelength when receiving an electric current, and causing the laser light to emit from a light-emitting surface of the semiconductor stack structure, and the light-emitting surface is located on a top surface of the semiconductor stack structure;
一光栅层,位于该半导体堆叠结构上,该光栅层具有包括沿着至少一第一水平方向分布排列的多个微光栅结构;A grating layer, located on the semiconductor stack structure, the grating layer has a plurality of micro-grating structures distributed and arranged along at least one first horizontal direction;
其中,该光栅层至少在该第一水平方向上被区分为包括:至少一第一光栅区及至少一第二光栅区,于各该第一光栅区及该第二光栅区内分别包含多个该微光栅结构;其中,该第一光栅区内的多个该微光栅结构的光栅周期是符合以下数学式:并且,该第二光栅区内的多个该微光栅结构的光栅周期是符合以下数学式:/>其中,∧是光栅周期长度,λ是该激光的该激光波长,neff是半导体波导的等效折射率,m和o都是正整数,m和o不相等,且o为m的偶数倍;Wherein, the grating layer is distinguished at least in the first horizontal direction to include: at least one first grating area and at least one second grating area, and each of the first grating area and the second grating area contains a plurality of The micro-grating structure; wherein, the grating period of the plurality of micro-grating structures in the first grating area is in accordance with the following mathematical formula: In addition, the grating period of the plurality of micro-grating structures in the second grating area is in accordance with the following mathematical formula: /> Wherein, ∧ is the period length of the grating, λ is the laser wavelength of the laser, n eff is the equivalent refractive index of the semiconductor waveguide, m and o are both positive integers, m and o are not equal, and o is an even multiple of m;
其中,该出光面是由该第二光栅区所定义。Wherein, the light emitting surface is defined by the second grating area.
于一实施例中,m=1且o=2;因此,该第一光栅区又被称为第一阶光栅结构区、且该第二光栅区又被称为第二阶光栅结构区,藉以在该光栅层形成一混合光栅结构;其中,该激光是由该第二光栅区所定义的该出光面垂直射出。In one embodiment, m=1 and o=2; therefore, the first grating area is also called a first-level grating structure area, and the second grating area is also called a second-level grating structure area, whereby A hybrid grating structure is formed on the grating layer; wherein, the laser light is emitted vertically from the light-emitting surface defined by the second grating area.
于一实施例中,于该光栅层中更包含一相位差光栅结构;该相位差光栅结构是位于该第二光栅区内于该第一水平方向上的中间处附近,且该相位差光栅结构的宽度可提供一相位差距离,使得在该第一水平方向上位于该相位差光栅结构两侧的多个微光栅结构两者间具有一相位差;该相位差光栅结构的所提供的该相位差距离是四分之一该激光波长。In one embodiment, the grating layer further includes a phase difference grating structure; the phase difference grating structure is located near the middle of the second grating region in the first horizontal direction, and the phase difference grating structure The width can provide a phase difference distance, so that there is a phase difference between the plurality of micro-grating structures located on both sides of the phase difference grating structure in the first horizontal direction; the phase difference provided by the phase difference grating structure The difference distance is a quarter of the laser wavelength.
于一实施例中,该第二光栅区的数量为一个且是位于该光栅层在该第一水平方向上的一中间区域,使得该第一光栅区实质上是被位于中间的该第二光栅区在该第一水平方向上分隔成左、右两部分;其中,该第二光栅区于该第一水平方向上的宽度是介于六分之一至二分之一的该光栅层的总宽度;该第一光栅区被分隔的该左、右两部分的宽度大致上相等。In one embodiment, the number of the second grating area is one and is located in a middle area of the grating layer in the first horizontal direction, so that the first grating area is substantially surrounded by the second grating located in the middle The area is divided into left and right parts in the first horizontal direction; wherein, the width of the second grating area in the first horizontal direction is between one-sixth and one-half of the total width of the grating layer Width; the widths of the left and right parts separated by the first grating area are substantially equal.
于一实施例中,该光栅层在沿着一第二水平方向上也具有多个该微光栅结构,该第二水平方向与该第一水平方向垂直;该光栅层在该第二水平方向上也被区分为至少一该第一光栅区及至少一该第二光栅区,于各该第一光栅区及该第二光栅区内分别各包含多个该微光栅结构;藉此,当由垂直于该半导体堆叠结构的该顶面方向观之,该多个该微光栅结构在该光栅层上是呈现点状阵列排列,且由该第一水平方向上的该第二光栅区及该第二水平方向上的该第二光栅区两者协同定义出一矩形的至少一该出光面。In one embodiment, the grating layer also has a plurality of micro-grating structures along a second horizontal direction, the second horizontal direction is perpendicular to the first horizontal direction; the grating layer is in the second horizontal direction It is also divided into at least one of the first grating area and at least one of the second grating area, and each of the first grating area and the second grating area contains a plurality of the micro-grating structures; thereby, when the vertical Viewed in the direction of the top surface of the semiconductor stack structure, the plurality of micro-grating structures are arranged in a dot-like array on the grating layer, and the second grating region and the second grating in the first horizontal direction Both the second grating regions in the horizontal direction cooperate to define a rectangular at least one light-emitting surface.
于一实施例中,于该光栅层中更包含两相位差光栅结构;其中之一该相位差光栅结构是位于该第二光栅区内于该第一水平方向上的中间处附近、另一该相位差光栅结构则是位于该第二光栅区内于该第二水平方向上的中间处附近;且该相位差光栅结构的宽度可提供一相位差距离,使得分别在该第一水平方向与该第二水平方向上位于该相位差光栅结构两侧的多个微光栅结构两者间具有一相位差;该相位差光栅结构的所提供的该相位差距离是四分之一该激光波长。In one embodiment, the grating layer further includes two phase difference grating structures; one of the phase difference grating structures is located near the middle of the second grating region in the first horizontal direction, and the other is the phase difference grating structure. The phase difference grating structure is located near the middle of the second grating area in the second horizontal direction; and the width of the phase difference grating structure can provide a phase difference distance, so that the first horizontal direction and the There is a phase difference between the micro-grating structures located on both sides of the phase difference grating structure in the second horizontal direction; the phase difference distance provided by the phase difference grating structure is a quarter of the laser wavelength.
于一实施例中,该第二光栅区是位于该光栅层在该第一水平方向与该第二水平方向上的一中间区域;当由垂直于该半导体堆叠结构的该顶面方向观之时,该第二光栅区是位在该半导体堆叠结构的该顶面的一中央区域,且该第一光栅区实质上是环绕位该第二光栅区的外周围区域;其中,该第二光栅区于该第一水平方向及该第二水平方向上的宽度分别都是介于六分之一至二分之一的该光栅层于该第一水平方向及该第二水平方向上的总宽度。In one embodiment, the second grating region is located in an intermediate region of the grating layer in the first horizontal direction and the second horizontal direction; when viewed from a direction perpendicular to the top surface of the semiconductor stack structure , the second grating region is located in a central region of the top surface of the semiconductor stack structure, and the first grating region substantially surrounds the outer peripheral region of the second grating region; wherein, the second grating region The widths in the first horizontal direction and the second horizontal direction are respectively between one-sixth and one-half of the total width of the grating layer in the first horizontal direction and the second horizontal direction.
于一实施例中,于该半导体堆叠结构的该顶面是包含多个呈阵列排列且独立存在的该出光面,该光栅层于每一个该出光面处无论是于该第一水平方向或该第二水平方向上都是设置该第二光栅区,且该光栅层除了多个该出光面之外的其他区域无论是于该第一水平方向或该第二水平方向上都是设置该第一光栅区;藉此可在该半导体堆叠结构的该顶面定义出各自独立且呈阵列排列的多个小出光面。In one embodiment, the top surface of the semiconductor stack structure includes a plurality of independent light-emitting surfaces arranged in an array, and the grating layer is located on each of the light-emitting surfaces whether in the first horizontal direction or the The second grating area is set in the second horizontal direction, and the other areas of the grating layer except for the plurality of light-emitting surfaces are set in the first horizontal direction or in the second horizontal direction. A grating area; whereby a plurality of small light-emitting surfaces that are independent and arranged in an array can be defined on the top surface of the semiconductor stack structure.
为达上述目的,本发明系提供一种具混合光栅结构的面发射激光元件的制法,包括下列步骤:In order to achieve the above object, the present invention provides a method for preparing a surface-emitting laser element with a hybrid grating structure, comprising the following steps:
步骤(A):藉由半导体磊晶制程,于一半导体基板上形成一半导体堆叠结构;该半导体堆叠结构可在接受一电流时产生具有一激光波长的一激光,并使该激光自该半导体堆叠结构的一出光面射出,且该出光面是位于该半导体堆叠结构的一顶面;Step (A): A semiconductor stack structure is formed on a semiconductor substrate by a semiconductor epitaxy process; the semiconductor stack structure can generate a laser with a laser wavelength when receiving an electric current, and the laser light is emitted from the semiconductor stack A light-emitting surface of the structure is emitted, and the light-emitting surface is located on a top surface of the semiconductor stack structure;
步骤(B):藉由电子束列印及纳米压印制程,在该半导体堆叠结构上形成一光栅层,位于该半导体堆叠结构上;该光栅层具有包括沿着至少一第一水平方向排列的多个微光栅结构;Step (B): forming a grating layer on the semiconductor stacked structure by electron beam printing and nanoimprinting process, and is located on the semiconductor stacked structure; the grating layer has elements arranged along at least one first horizontal direction Multiple micro-grating structures;
步骤(C):藉由半导体磊晶制程及黄光制程,于该光栅层上形成一上披覆层及一接触层,位于该光栅层的上方;Step (C): forming an upper cladding layer and a contact layer on the grating layer by semiconductor epitaxy process and photolithography process, and are located above the grating layer;
其中,该光栅层至少在该第一水平方向上被区分为包括:至少一第一光栅区及至少一第二光栅区,于各该第一光栅区及该第二光栅区内分别包含多个该微光栅结构;其中,该第一光栅区内的多个该微光栅结构的光栅周期是符合以下数学式:并且,该第二光栅区内的多个该微光栅结构的光栅周期是符合以下数学式:/>其中,∧是光栅周期长度,λ是该激光的该激光波长,neff是半导体波导的等效折射率,m和o都是正整数,m和o不相等,且o为m的偶数倍;Wherein, the grating layer is distinguished at least in the first horizontal direction to include: at least one first grating area and at least one second grating area, and each of the first grating area and the second grating area contains a plurality of The micro-grating structure; wherein, the grating period of the plurality of micro-grating structures in the first grating area is in accordance with the following mathematical formula: In addition, the grating period of the plurality of micro-grating structures in the second grating area is in accordance with the following mathematical formula: /> Wherein, ∧ is the period length of the grating, λ is the laser wavelength of the laser, n eff is the equivalent refractive index of the semiconductor waveguide, m and o are both positive integers, m and o are not equal, and o is an even multiple of m;
其中,该出光面是由该第二光栅区所定义。Wherein, the light emitting surface is defined by the second grating area.
为达上述目的,本发明系提供一种面发射激光元件,可产生具有一激光波长的激光,该面发射激光元件包括:To achieve the above object, the present invention provides a surface-emitting laser element that can produce laser light with a laser wavelength, and the surface-emitting laser element includes:
一半导体堆叠结构,可在接受一电流时产生具有该激光波长的该激光,并使该激光自该半导体堆叠结构的一出光面射出,且该出光面是位于该半导体堆叠结构的一顶面;A semiconductor stack structure, capable of generating the laser light with the laser wavelength when receiving an electric current, and causing the laser light to emit from a light-emitting surface of the semiconductor stack structure, and the light-emitting surface is located on a top surface of the semiconductor stack structure;
一光子晶体层,位于该半导体堆叠结构上,该光子晶体层具有包括沿着一第一水平方向及一第二水平方向分布排列的多个微光子晶体结构,该第二水平方向与该第一水平方向垂直;其中,该光子晶体层在该第一水平方向及该第二水平方向上分别被区分为包括:至少一第一光子晶体区及至少一第二光子晶体区,于各该第一光子晶体区及该第二光子晶体区内分别包含多个该微光子晶体结构;其中,该第一光子晶体区内的多个该微光子晶体结构的光子晶体周期是符合以下数学式:并且,该第二光子晶体区内的多个该微光子晶体结构的光子晶体周期是符合以下数学式:/>其中,∧是光子晶体周期长度,λ是该激光的该激光波长,neff是半导体波导的等效折射率,m和o都是正整数,m和o不相等,且o为m的偶数倍;A photonic crystal layer located on the semiconductor stack structure, the photonic crystal layer has a plurality of micro-photonic crystal structures distributed and arranged along a first horizontal direction and a second horizontal direction, the second horizontal direction and the first horizontal direction The horizontal direction is vertical; wherein, the photonic crystal layer is divided in the first horizontal direction and the second horizontal direction to include: at least one first photonic crystal region and at least one second photonic crystal region, in each of the first The photonic crystal region and the second photonic crystal region respectively contain a plurality of the micro-photonic crystal structures; wherein, the photonic crystal periods of the plurality of micro-photonic crystal structures in the first photonic crystal region conform to the following mathematical formula: Moreover, the photonic crystal periods of the plurality of micro-photonic crystal structures in the second photonic crystal region conform to the following mathematical formula: /> Wherein, ∧ is the period length of the photonic crystal, λ is the laser wavelength of the laser, n eff is the equivalent refractive index of the semiconductor waveguide, m and o are both positive integers, m and o are not equal, and o is an even multiple of m;
其中,该出光面是由该第二光子晶体区所定义。Wherein, the light emitting surface is defined by the second photonic crystal region.
于一实施例中,于该光子晶体层中更包含两相位差光子晶体结构;其中之一该相位差光子晶体结构是位于该第二光子晶体区内于该第一水平方向上的中间处附近、另一该相位差光子晶体结构则是位于该第二光子晶体区内于该第二水平方向上的中间处附近;且该相位差光子晶体结构的宽度可提供一相位差距离,使得分别在该第一水平方向与该第二水平方向上位于该相位差光子晶体结构两侧的多个微光子晶体结构两者间具有一相位差;该相位差光子晶体结构的所提供的该相位差距离是四分之一该激光波长。In one embodiment, the photonic crystal layer further includes two phase-difference photonic crystal structures; one of the phase-difference photonic crystal structures is located near the middle of the second photonic crystal region in the first horizontal direction , another phase difference photonic crystal structure is located near the middle of the second photonic crystal region in the second horizontal direction; and the width of the phase difference photonic crystal structure can provide a phase difference distance, so that There is a phase difference between the multiple micro-photonic crystal structures located on both sides of the phase difference photonic crystal structure in the first horizontal direction and the second horizontal direction; the phase difference distance provided by the phase difference photonic crystal structure is a quarter of the laser wavelength.
于一实施例中,于该半导体堆叠结构的该顶面是包含多个呈阵列排列且独立存在的该出光面,该光子晶体层于每一个该出光面处无论是于该第一水平方向或该第二水平方向上都是设置该第二光子晶体区,且该光子晶体层除了多个该出光面之外的其他区域无论是于该第一水平方向或该第二水平方向上都是设置该第一光子晶体区;藉此可在该半导体堆叠结构的该顶面定义出各自独立且呈阵列排列的多个小出光面。In one embodiment, the top surface of the semiconductor stack structure includes a plurality of independent light-emitting surfaces arranged in an array, and the photonic crystal layer is located on each of the light-emitting surfaces whether in the first horizontal direction or The second photonic crystal region is arranged in the second horizontal direction, and other regions of the photonic crystal layer except for the plurality of light-emitting surfaces are arranged in the first horizontal direction or the second horizontal direction The first photonic crystal region; thereby, a plurality of small light-emitting surfaces that are independent and arranged in an array can be defined on the top surface of the semiconductor stack structure.
附图说明Description of drawings
图1为一典型的面发射分布反馈激光(Surface Emitting Distributed FeedbackLaser:简称SE-DFB激光)剖面示意图。FIG. 1 is a schematic cross-sectional view of a typical Surface Emitting Distributed Feedback Laser (Surface Emitting Distributed Feedback Laser: SE-DFB laser for short).
图2为比较m=1与m=2时ratio值(比值)与面内共振腔耦合常数(Km)值的关系曲线图。FIG. 2 is a graph comparing the relationship between the ratio value (ratio) and the coupling constant (K m ) of the in-plane resonant cavity when m=1 and m=2.
图3A、图3B及图3C分别为本发明之具混合光栅结构的面发射分布反馈激光元件(Surface Emitting Distributed Feedback Laser,简称SE-DFB Laser)的第一实施例的立体示意图、剖面示意图与光栅层俯视示意图。Fig. 3A, Fig. 3B and Fig. 3C are respectively the three-dimensional schematic diagram, the cross-sectional schematic diagram and the grating of the first embodiment of the Surface Emitting Distributed Feedback Laser element (Surface Emitting Distributed Feedback Laser, referred to as SE-DFB Laser) with a hybrid grating structure of the present invention Layer top view diagram.
图4为典型的边射型DFB激光元件的光栅层示意图。Fig. 4 is a schematic diagram of the grating layer of a typical edge-firing DFB laser element.
图5A至图5D所示分别为以L2长度变化从0μm、50μm、100μm到150μm共四种结构变化来模拟本发明第一实施例的激光元件所得到的激光引导模式沿脊的强度分布曲线图;其中,L2为第二光栅区的长度。Fig. 5A to Fig. 5D show the intensity distribution curves of the laser guided mode along the ridge obtained by simulating the laser element according to the first embodiment of the present invention by changing the length of L2 from 0 μm, 50 μm, 100 μm to 150 μm, respectively. ; Wherein, L2 is the length of the second grating area.
图6A至图6D所示分别为以L2长度变化从0μm、50μm、100μm到150μm共四种结构变化来模拟本发明第一实施例的激光元件所得到的归一化增益(g*L)和失谐关系(δL)关系曲线图。Figures 6A to 6D show the normalized gain (g*L) and Detuning relationship (δL) relationship curve.
图7为以L2长度变化从0μm、50μm、100μm到150μm共四种结构变化来模拟本发明第一实施例的激光元件所得到的临界增益(Threshold gain)与不同L2长度之间的关系曲线图。Fig. 7 is a graph showing the relationship between the critical gain (Threshold gain) and different L2 lengths obtained by simulating the laser element of the first embodiment of the present invention by changing the L2 length from 0 μm, 50 μm, 100 μm to 150 μm in four structural changes .
图8及图9分别为本发明之面发射激光元件的第二实施例的立体示意图与光栅层俯视示意图。8 and 9 are a perspective view and a top view of a grating layer, respectively, of a second embodiment of a surface-emitting laser device of the present invention.
图10为本发明之具混合光栅(或光子晶体)结构的面发射激光元件的第三实施例的光栅(或光子晶体)层俯视示意图。FIG. 10 is a schematic top view of the grating (or photonic crystal) layer of the third embodiment of the surface-emitting laser element with the hybrid grating (or photonic crystal) structure of the present invention.
图11为本发明之具混合光栅(或光子晶体)结构的面发射激光元件的第四实施例的光栅层俯视示意图。FIG. 11 is a schematic top view of the grating layer of the fourth embodiment of the surface-emitting laser device with a hybrid grating (or photonic crystal) structure according to the present invention.
图12A与图12B分别为传统纯第一阶光栅结构的分布反馈激光元件与本发明具第一阶与第二阶混合光栅结构的面发射激光元件的微光栅结构示意图。12A and 12B are schematic diagrams of micro-grating structures of a conventional distributed feedback laser device with a pure first-order grating structure and a surface-emitting laser device with a first-order and second-order hybrid grating structure according to the present invention, respectively.
图13A至图13C分别为本发明之具混合光栅结构的面发射激光元件的制法的数个步骤的示意图。13A to 13C are schematic diagrams of several steps in the manufacturing method of the surface-emitting laser device with a hybrid grating structure according to the present invention.
图14为本发明之具混合光栅结构的面发射激光元件的第五实施例的立体示意图。FIG. 14 is a schematic perspective view of a fifth embodiment of a surface-emitting laser device with a hybrid grating structure according to the present invention.
附图标记列表:List of reference signs:
10~基板 11~下披覆层10~
12~下光局限层 13~主动层12~low
14~上光局限层14~glazing limited layer
16~光栅层 162~第一光栅区16 ~ grating
163~第二光栅区 164~相位差光栅结构163~second
17~上披覆层 18~接触层17~
191、192~金属层 21~出光面191, 192~
具体实施方式Detailed ways
为了能更清楚地描述本发明所提出之具混合光栅结构的面发射激光元件及In order to more clearly describe the surface-emitting laser element with a hybrid grating structure proposed by the present invention and
制法,以下将配合图式详细说明之。The manufacturing method will be described in detail below in conjunction with the drawings.
请参阅图3A、图3B及图3C,分别为本发明之具混合光栅结构的面发射分布反馈激光元件(Surface Emitting Distributed Feedback Laser,简称SE-DFB Laser)的第一实施例的立体示意图、剖面示意图与光栅层俯视示意图。如图3A、图3B及图3C所示,于本第一实施例中,本发明的面发射分布反馈(SE-DFB)激光元件于结构上大致可被区分为包括:一半导体堆叠结构、一光栅层(Grating)16、以及两金属层191、192。其中,该半导体堆叠结构可在接受一预定电流时产生激光波长为λ的激光,并使该激光自该半导体堆叠结构的一出光面21垂直向上射出,且该出光面21是位于该半导体堆叠结构的一顶面,所以是符合一般面发射激光二极体元件的结构。该光栅层16是位于该半导体堆叠结构上,且该光栅层16具有包括沿着至少一第一水平方向分布排列的多个微光栅结构。Please refer to Fig. 3A, Fig. 3B and Fig. 3C, which are respectively the three-dimensional schematic diagram and cross-section of the first embodiment of the Surface Emitting Distributed Feedback Laser (Surface Emitting Distributed Feedback Laser, referred to as SE-DFB Laser) with a hybrid grating structure of the present invention Schematic and top view of the grating layer. As shown in FIG. 3A, FIG. 3B and FIG. 3C, in the first embodiment, the surface emitting distributed feedback (SE-DFB) laser element of the present invention can be roughly divided into structures including: a semiconductor stack structure, a A grating layer (Grating) 16 , and two
于本实施例中,该半导体堆叠结构包括了:一半导体基板10、一下披覆层11(cladding layer)位于该半导体基板10上、一下光局限层12(Separated ConfinementHetero-Structure;简称SCH)位于该下披覆层11上、一主动层13(active region layer)位于该下光局限层12上、一上光局限层14位于该主动层13上、及一间隔层(Spacer;图中未示)位于该上光局限层14上。其中,该光栅层16是位于该间隔层上;并且,半导体堆叠结构更包括有:一上披覆层17位于该光栅层16上、以及一接触层18(Contact)位于该上披覆层17上。上金属层192是位于该接触层18上方,下金属层191是位于基板10下方。In this embodiment, the semiconductor stack structure includes: a
一般分布反馈激光二极体元件的操作原理,电子与电洞等载子会注入到主动层,被载子屏障(Barrier)所局限在量子井(Quantum Well)复合发光产生材料增益。局限原理为屏障层比量子井层有较高的材料能隙,因此在量子井会形成较低的量子能阶,一旦捕捉载子后即使其不易逃脱。而激光场则被上、下披覆层局限在上、下SCH层与主动层所构成的一矩形狭长共振腔中。局限原理为上、下披覆层有比上、下SCH层与主动层较低的光折射率系数n值(Low Refractive Index),光场会藉由全反射的原理在n值比较高的材料中形成模态并进行传播。光场与主动层的量子井耦合的程度决定了模态增益(Modal Gain),模态增益越高则越容易克服光学损耗(Optical Loss)而达到激光化(Lasing),也越容易降低产生激光的门槛电流值(或称为抽运阈值电流;Threshold Current)。The operating principle of the general distributed feedback laser diode element is that carriers such as electrons and holes are injected into the active layer, and are confined by the carrier barrier (Barrier) in the quantum well (Quantum Well) to recombine and emit light to generate material gain. The limiting principle is that the barrier layer has a higher material energy gap than the quantum well layer, so a lower quantum energy level will be formed in the quantum well, and once the carrier is captured, it will not be easy to escape. The laser field is confined by the upper and lower cladding layers in a rectangular narrow resonant cavity formed by the upper and lower SCH layers and the active layer. The limiting principle is that the upper and lower cladding layers have a lower optical refractive index n value (Low Refractive Index) than the upper, lower SCH layer and active layer, and the light field will use the principle of total reflection in materials with relatively high n values Modes are formed and propagated. The degree of coupling between the optical field and the quantum well of the active layer determines the modal gain (Modal Gain). The higher the modal gain, the easier it is to overcome the optical loss (Optical Loss) to achieve lasing (Lasing), and the easier it is to reduce the generation of laser The threshold current value (or called pumping threshold current; Threshold Current).
于本发明的一实施例中,该半导体基板10可以是一磷化铟(InP)基板,并在该InP基板10上以磊晶制程由下而上依序形成该下披覆层11、该下光局限层12、该主动层13、该上光局限层14、以及该上披覆层17。其中,该InP基板10、该下披覆层11、该下光局限层12都具有n型掺杂(n-typed doping)。该上披覆层17及该接触层18都具有p型掺杂(p-typeddoping)。该下披覆层11与该上披覆层17的材料为InP。该主动层13的材料可以是In1-x- yAlxGayAs,其中,x及y为介于0与1之间的实数。该接触层18的材料可以是InGaAs。该下光局限层12及该上光局限层14的材料可以是In1-zAlzAs,其中,z为介于0与1之间的实数。由于此所述之本发明的半导体堆叠结构中各层的材质组成、结构厚度、掺杂浓度等参数,可以自一般习知分布反馈激光的已知参数中选用,且非本发明的技术特征,所以不赘述其细节,且本发明之半导体堆叠结构中各层的材质组成、结构厚度、掺杂浓度等参数也不局限于此段落所述的实施例。In an embodiment of the present invention, the
于本实施例中,本发明的光栅层16是位于该半导体堆叠结构的该上披覆层17中,该光栅层16具有包括沿着至少第一水平方向排列的多个微光栅结构。该光栅层16至少在该第一水平方向上被区分为包括:至少一第一光栅区162及至少一第二光栅区163,于各该第一光栅区162及该第二光栅区163内分别包含多个该微光栅结构。其中,该第一光栅区162内的多个该微光栅结构的光栅周期是符合以下数学式:并且,该第二光栅区163内的多个该微光栅结构的光栅周期是符合以下数学式:/>其中,∧是光栅周期长度,λ是该激光的该激光波长,neff是半导体波导的等效折射率,m和o都是正整数,m和o不相等,且o为m的偶数倍。其中,该出光面21是由该第二光栅区163所定义。于第一实施例中,m=1且o=2;因此,该第一光栅区162又被称为第一阶光栅结构区、且该第二光栅区163又被称为第二阶光栅结构区,藉以在该光栅层16形成一混合光栅结构;其中,该激光是由该第二光栅区163所定义的该出光面21垂直向上射出。In this embodiment, the
于本实施例中,于该光栅层16中更包含一相位差光栅结构164。该相位差光栅结构164是位于该第二光栅区163内于该第一水平方向上的中间处附近,且该相位差光栅结构164的宽度可提供一相位差距离,使得在该第一水平方向上位于该相位差光栅结构164两侧的多个微光栅结构两者间具有一相位差;该相位差光栅结构164的所提供的该相位差距离是四分之一该激光波长(亦即λ/4-Shift)。藉由在第二阶光栅结构区域的中央设置λ/4-Shift的相位差光栅结构,使本发明激光元件的的激光场能够模态稳定与提升出光耦光效率。并且,该第二光栅区163的数量为一个且是位于该光栅层16在该第一水平方向上的一中间区域,使得该第一光栅区162实质上是被位于中间的该第二光栅区163在该第一水平方向上分隔成左、右两部分。其中,该第二光栅区163于该第一水平方向上的宽度是介于六分之一至二分之一的该光栅层16的总宽度;该第一光栅区162被分隔的该左、右两部分的宽度大致上相等。藉此,本发明的面发射激光元件整合了第一阶与第二阶之光栅结构在同一光栅层16中。利用低损耗的第一阶光栅结构设计来充当高效率的反射反馈(feedback)区放置在激光端面,只有在接近中间激光面出光区才使用第二阶光栅结构设计。如此,才能够在追求高斜率效率(slope efficiency)(意味这较大的第二阶光栅结构区域)与低临界电流值Ith(意味这较小的第二阶光栅结构区域)之间取得想要的平衡。In this embodiment, the
以如图4所示的典型的边射型DFB激光元件为例,采用转移矩阵(TransferMatrix)的方法(参考书籍:半导体雷射技术,卢廷昌王兴宗著,五南出版社),其相关数学运算式包括:以及σ2=K2-δ2。其中:λ、neff、∧、i分别是激光波长、模态等效折射率、光栅周期、i多个;K为耦合常数与结构中光场与光栅耦合相关;A(或称R)与B(或称S)为向右向左前进的电场强度。若以图3A至图3C所示本发明第一实施例的激光元件来进行模拟,计算的条件及结果如下:Taking the typical edge-firing DFB laser element as shown in Figure 4 as an example, the method of transfer matrix (TransferMatrix) is adopted (reference books: semiconductor laser technology, written by Lu Tingchang and Wang Xingzong, Wunan Publishing House), and its related mathematical formula include: And σ 2 =K 2 −δ 2 . Among them: λ, n eff , ∧, i are laser wavelength, modal equivalent refractive index, grating period, and multiple i; K is the coupling constant related to the coupling between the light field and the grating in the structure; A (or called R) and B (or called S) is the electric field strength going from right to left. If the simulation is performed with the laser element of the first embodiment of the present invention shown in FIGS. 3A to 3C , the calculation conditions and results are as follows:
激光元件的总长度L=L1+L2=250μm。其中,L为激光元件于第一水平方向上的总长度,L2是位于中间第二阶光栅结构区的长度,L1是位于L2左右两旁侧的两第一阶光栅结构区的长度总和。以L2长度变化从0μm、50μm、100μm到150μm共四种结构变化来分别进行模拟。第一阶光栅结构区的耦合常数(coupling constant)K1为12cm-1,第二阶光栅结构区的耦合常数(coupling constant)K2为5cm-1。激光元件前后端面为抗反射(Anti-Reflection;简称AR)设计其反射率为0.1%。模拟所得到的激光引导模式沿脊的强度分布曲线图如图5A至图5D所示(R2->(right propagation)+S2<-(left propagation));其中,于曲线图中,X轴为L(纵向归一化位置Longitudinal Normalized Position),Y轴为|E|2(任意单位Arb.Unit);L2为第二阶光栅结构区的长度。模拟所得到的归一化增益(g*L)和失谐关系(δL)关系曲线图则如图6A至图6D所示。模拟所得到的临界增益(Threshold gain)与不同L2长度之间的关系曲线图如图7所示。由前述图5A至图5D、图6A至图6D与图7内容可知,通常L2区域(第二阶光栅结构区)越大则出光效率越高,且由图7可知当L2区域(第二阶光栅结构区)越大时Ith(临界电流)也越高。因此,藉由上述设计,可以在低临界值与高输出功率之间进行取舍,进而经由调整L2区域(第二阶光栅结构区)的适当长度比例来达到想要的值,例如但不局限于:当该L2区域(第二阶光栅结构区)于该第一水平方向上的宽度L2是介于1/6至1/2的该光栅层的总宽度L时可以获得在高斜率效率(slope efficiency)与低临界电流值Ith两者间的最佳平衡,而这点是习知技术(纯第二阶光栅结构之DFB激光元件)较难达成的事。The total length of the laser element L=L1+L2=250 μm. Wherein, L is the total length of the laser element in the first horizontal direction, L2 is the length of the second-level grating structure area in the middle, and L1 is the sum of the lengths of the two first-level grating structure areas located on the left and right sides of L2. The simulations were carried out with four structural changes of L2 length changes from 0 μm, 50 μm, 100 μm to 150 μm. The coupling constant (coupling constant) K1 of the first-order grating structure region is 12 cm -1 , and the coupling constant (coupling constant) K2 of the second-order grating structure region is 5 cm -1 . The front and rear end faces of the laser element are designed for Anti-Reflection (AR for short), and the reflectance is 0.1%. The simulated intensity distribution curves of the laser-guided mode along the ridge are shown in Figure 5A to Figure 5D (R 2 ->(right propagation)+S 2 <-(left propagation)); where, in the graph, X The axis is L (Longitudinal Normalized Position), and the Y axis is |E| 2 (arbitrary unit Arb.Unit); L2 is the length of the second-order grating structure area. The relationship curves of normalized gain (g*L) and detuning relationship (δL) obtained by simulation are shown in FIGS. 6A to 6D . The relationship curve between the threshold gain (Threshold gain) obtained by simulation and different L2 lengths is shown in FIG. 7 . It can be known from the aforementioned Figures 5A to 5D, Figures 6A to 6D, and Figure 7 that the larger the L2 area (second-order grating structure area), the higher the light extraction efficiency, and it can be seen from Figure 7 that when the L2 area (second-order grating structure area) The larger the grating structure area), the higher the Ith (critical current). Therefore, with the above design, a trade-off can be made between low critical value and high output power, and then the desired value can be achieved by adjusting the appropriate length ratio of the L2 region (second-order grating structure region), such as but not limited to : When the width L2 of the L2 region (second-order grating structure region) in the first horizontal direction is between 1/6 to 1/2 of the total width L of the grating layer, it can be obtained at a high slope efficiency (slope The best balance between efficiency) and low critical current value Ith, which is difficult to achieve in the conventional technology (DFB laser element with pure second-order grating structure).
同样的概念从一维的光栅结构可以转换到二维的光子晶体面发射激光器(photonic crystal surface emitting laser;简称PCSEL)。在激光元件的四周布署第一阶的光子晶体(photonic crystal),只有在中间出光处布署第二阶的光子晶体,并适当的引入相位差结构来操作模态。也有可能同时布署数个出光处(亦即,只在出光处布署第二阶光子晶体)达到类似多光源二维阵列相位锁(2D array phase lock)的效果。The same concept can be converted from a one-dimensional grating structure to a two-dimensional photonic crystal surface emitting laser (PCSEL for short). The first-order photonic crystals are deployed around the laser element, and the second-order photonic crystals are only deployed in the middle of the light output, and a phase difference structure is properly introduced to operate the mode. It is also possible to deploy several light outlets at the same time (that is, only deploy the second-order photonic crystals at the light outlets) to achieve an effect similar to that of a 2D array phase lock with multiple light sources.
由于以下所述本发明的其他实施例中,大部分元件的结构或功能都和前述实施例相同或类似,所以,相同或类似的元件将直接给予相同的名称与编号,且不再赘述其细节。Since in other embodiments of the present invention described below, the structures or functions of most of the components are the same or similar to those of the foregoing embodiments, the same or similar components will be directly given the same names and numbers, and the details will not be repeated. .
请参阅图8及图9,分别为本发明之面发射激光元件的第二实施例的立体示意图与光栅层俯视示意图。于第二实施例中,面发射激光元件可以是面发射DFB激光元件或是光子晶体面发射激光元件(PCSEL),其结构上大致包括一半导体堆叠结构以及位于该半导体堆叠结构上的一光栅层16(或光子晶体层)。该半导体堆叠结构可在接受一预定电流时产生激光波长为λ的激光,并使该激光自该半导体堆叠结构顶面的一出光面21垂直向上射出。该半导体堆叠结构由下向上依序包括了:一半导体基板10、一下披覆层11、一下光局限层(SCH)12、一主动层13、一上光局限层14、该光栅层16(或光子晶体层)、一上披覆层17、一接触层(本图未示)、以及金属层(本图未示)等。Please refer to FIG. 8 and FIG. 9 , which are a three-dimensional schematic view and a top view schematic view of a grating layer, respectively, of a second embodiment of a surface-emitting laser device of the present invention. In the second embodiment, the surface-emitting laser device may be a surface-emitting DFB laser device or a photonic crystal surface-emitting laser device (PCSEL), which generally includes a semiconductor stack structure and a grating layer on the semiconductor stack structure. 16 (or photonic crystal layer). The semiconductor stack structure can generate laser light with a laser wavelength λ when receiving a predetermined current, and the laser light is emitted vertically upward from a light-emitting
于本实施例中,该光栅层16(或光子晶体层)不仅具有沿着至少一第一水平方向分布排列的多个微光栅(或光子晶体)结构,并且,该光栅层16(或光子晶体层)在沿着一第二水平方向上也具有多个该微光栅(或光子晶体)结构。该第二水平方向与该第一水平方向垂直,且该第二水平方向与该第一水平方向都和激光的出射方向垂直。该光栅层16(或光子晶体层)在该第一水平方向上被区分为包括:至少一第一光栅(或光子晶体)区162及至少一第二光栅(或光子晶体)区163,于各该第一光栅(或光子晶体)区162及该第二光栅(或光子晶体)区163内分别包含多个该微光栅(或微光子晶体)结构。并且,该光栅层16(或光子晶体层)在该第二水平方向上也同样被区分为包括:至少一第一光栅(或光子晶体)区162及至少一第二光栅(或光子晶体)区163,于各该第一光栅(或光子晶体)区162及该第二光栅(或光子晶体)区163内同样分别包含多个该微光栅(或微光子晶体)结构。其中,无论是在第一水平方向或是在第二水平方向,该第一光栅(或光子晶体)区162内的多个该微光栅(或微光子晶体)结构的光栅(或光子晶体)周期都是符合以下数学式:并且,该第二光栅(或光子晶体)区163内的多个该微光栅(或微光子晶体)结构的光栅(或光子晶体)周期是符合以下数学式:/>其中,∧是光栅(或光子晶体)周期长度,λ是该激光的该激光波长,neff是半导体波导的等效折射率,m=1且o=2。因此,该第一光栅(或光子晶体)区162又被称为第一阶光栅(或光子晶体)结构区、且该第二光栅(或光子晶体)区163又被称为第二阶光栅(或光子晶体)结构区,藉以在该光栅层16(或光子晶体层)形成一混合光栅结构(或混合光子晶体结构)。其中,该激光是由该第二光栅(或光子晶体)区163所定义的出光面21垂直向上射出。藉此,当由垂直于该半导体堆叠结构的该顶面方向俯视观之(如图9所示),该多个该微光栅(或微光子晶体)结构在该光栅(或光子晶体)层16上是呈现点状阵列排列,且由该第一水平方向上的该第二光栅(或光子晶体)区163及该第二水平方向上的该第二光栅(或光子晶体)区163两者协同定义出一矩形的至少一该出光面21。In this embodiment, the grating layer 16 (or photonic crystal layer) not only has a plurality of micro-grating (or photonic crystal) structures distributed and arranged along at least one first horizontal direction, and the grating layer 16 (or photonic crystal layer) layer) also has a plurality of micro-grating (or photonic crystal) structures along a second horizontal direction. The second horizontal direction is perpendicular to the first horizontal direction, and both the second horizontal direction and the first horizontal direction are perpendicular to the emitting direction of the laser light. The grating layer 16 (or photonic crystal layer) is divided in the first horizontal direction to include: at least one first grating (or photonic crystal)
此外,于本实施例中,该第二光栅(或光子晶体)区163是位于该光栅(或光子晶体)层16在该第一水平方向与该第二水平方向上的一中间区域。换句话说,当由垂直于该半导体堆叠结构的该顶面方向观之时,该第二光栅(或光子晶体)区163是位在该半导体堆叠结构的该顶面的一中央区域,且该第一光栅(或光子晶体)区162实质上是环绕位该第二光栅(或光子晶体)区163的外周围区域。其中,该第二光栅(或光子晶体)区163于该第一水平方向及该第二水平方向上的宽度分别都是介于六分之一至二分之一的该光栅(或光子晶体)层16于该第一水平方向及该第二水平方向上的总宽度。In addition, in this embodiment, the second grating (or photonic crystal)
请参阅图10,为本发明之具混合光栅(或光子晶体)结构的面发射激光元件的第三实施例的光栅(或光子晶体)层俯视示意图。本第三实施例的激光元件结构大部分都和图8与图9所示之第二实施例相同,其唯一的不同点在于,于图10所示的第三实施例中,于该光栅(或光子晶体)层中包含两相位差光栅(或光子晶体)结构164。其中之一相位差光栅(或光子晶体)结构164是位于该第二光栅(或光子晶体)区163内于该第一水平方向上的中间处附近、另一该相位差光栅(或光子晶体)结构164则是位于该第二光栅(或光子晶体)区163内于该第二水平方向上的中间处附近。该相位差光栅(或光子晶体)结构164的宽度可提供一相位差距离,使得分别在该第一水平方向与该第二水平方向上位于该相位差光栅(或光子晶体)结构164两侧的多个微光栅(或微光子晶体)结构两者间具有一相位差。于本实施例中,该相位差光栅(或光子晶体)结构164的所提供的该相位差距离是四分之一该激光波长。Please refer to FIG. 10 , which is a schematic top view of the grating (or photonic crystal) layer of the third embodiment of the surface-emitting laser element with the hybrid grating (or photonic crystal) structure of the present invention. Most of the structure of the laser element of the third embodiment is the same as that of the second embodiment shown in Fig. 8 and Fig. 9, the only difference is that in the third embodiment shown in Fig. 10, the grating ( or photonic crystal) layer contains two phase difference grating (or photonic crystal)
请参阅图11,为本发明之具混合光栅(或光子晶体)结构的面发射激光元件的第四实施例的光栅层俯视示意图。本第四实施例的激光元件结构大部分都和图8与图9所示之第二实施例相同,其唯一的不同点在于,于图11所示的第四实施例中,于该半导体堆叠结构的该顶面是包含多个呈阵列排列且独立存在的该出光面21,该光栅(或光子晶体)层于每一个该出光面21处无论是于该第一水平方向或该第二水平方向上都是设置该第二光栅(或光子晶体)区163,且该光栅(或光子晶体)层除了多个该出光面21之外的其他区域无论是于该第一水平方向或该第二水平方向上都是设置该第一光栅(或光子晶体)区162;藉此可在该半导体堆叠结构的该顶面定义出各自独立且呈阵列排列的多个小出光面21,达到类似多数激光小光源阵列的发光效果。Please refer to FIG. 11 , which is a schematic plan view of the grating layer of the fourth embodiment of the surface-emitting laser device with a hybrid grating (or photonic crystal) structure according to the present invention. Most of the structure of the laser element of the fourth embodiment is the same as that of the second embodiment shown in FIG. 8 and FIG. 9. The only difference is that in the fourth embodiment shown in FIG. The top surface of the structure includes a plurality of independently existing light-emitting
请参阅图12A与图12B,分别为传统纯第一阶光栅结构的分布反馈激光元件与本发明具第一阶与第二阶混合光栅结构的面发射激光元件的微光栅结构示意图。如图12B所示,本发明具第一阶与第二阶混合光栅结构的面发射激光元件的设计特征就是能将第一阶光栅结构与第二阶光栅结构的区域162、163无缝的整合在一起,并在中间出光的区域(出光面21)引入相位差光栅结构164。整合的手法可以从第一阶光栅结构出发,在特定的区域去除掉奇数或偶数的光栅以形成周期为两倍的第二阶光栅结构的区域。以此相同概念更可以发展在二维的光子晶体面发射激光器(photonic crystal surface emitting laser;简称PCSEL)上,外缘是第一阶的光子晶体(photonic crystal)能自由安排内部区域第二阶光子晶体的出光位置。Please refer to FIG. 12A and FIG. 12B , which are schematic diagrams of the micro-grating structure of a traditional distributed feedback laser device with a pure first-order grating structure and a surface-emitting laser device with a first-order and second-order hybrid grating structure according to the present invention, respectively. As shown in FIG. 12B , the design feature of the surface-emitting laser device with the first-order and second-order hybrid grating structures of the present invention is that the
请参阅图13A至图13C,分别为本发明之具混合光栅结构的面发射激光元件的制法的数个步骤的示意图。本发明具混合光栅结构的面发射激光元件的制法的一较佳实施例可包括下列步骤:Please refer to FIG. 13A to FIG. 13C , which are schematic diagrams of several steps in the manufacturing method of the surface-emitting laser device with a hybrid grating structure according to the present invention. A preferred embodiment of the manufacturing method of the surface-emitting laser device with a hybrid grating structure in the present invention may include the following steps:
步骤(A):如图13A所示,藉由有机金属化学气相沈积法(MOCVD)或其他习知的半导体磊晶制程,于一半导体基板上依序形成一半导体堆叠结构、一光栅层16、以及一保护层。该半导体堆叠结构可在接受一电流时产生具有一激光波长的一激光,并使该激光自该半导体堆叠结构的一出光面射出,且该出光面是位于该半导体堆叠结构的一顶面。该半导体堆叠结构由下而上依序包括了:该半导体基板10、一下披覆层11、一下光局限层12、一主动层13、一上光局限层14、以及一间隔层。Step (A): As shown in FIG. 13A, a semiconductor stack structure, a
步骤(B):如图13B所示,藉由电子束列印(E-Beam Writer)及纳米压印(NanoImprint)制程,将该半导体堆叠结上的该光栅层16进行加工以形成具有包括沿着至少一第一水平方向排列的多个微光栅结构。其中,该光栅层至少在该第一水平方向上被区分为包括:位于两旁侧的至少一第一光栅区162及位于中间区域的至少一第二光栅区163,于各该第一光栅区162及该第二光栅区163内分别包含多个该微光栅结构。并且,于第二光栅区163的中央处附近设置一相位差光栅结构164。其中,该第一光栅区162内的多个该微光栅结构的光栅周期是符合以下数学式:并且,该第二光栅区163内的多个该微光栅结构的光栅周期是符合以下数学式:/>其中,∧是光栅周期长度,λ是该激光的该激光波长,neff是半导体波导的等效折射率,m和o都是正整数,m和o不相等,且o为m的偶数倍。其中,该出光面是由该第二光栅区163所定义。Step (B): As shown in FIG. 13B , process the
步骤(C):如图13C所示,藉由习知的半导体磊晶制程及黄光制程,于该光栅层16上形成一上披覆层17及一接触层18,位于该光栅层16的上方。Step (C): As shown in FIG. 13C , an
请参阅图14,为本发明之面发射激光元件的第五实施例的立体示意图。本第五实施例的激光元件结构大部分都和图3A所示之第一实施例相同,其唯一的不同点在于,于图14所示的第五实施例中,光栅(或光子晶体)层16是位于下批覆层11内,以构成P面朝下(p-side down)的面发射激光元件。Please refer to FIG. 14 , which is a schematic perspective view of a fifth embodiment of the surface-emitting laser device of the present invention. Most of the structure of the laser element of the fifth embodiment is the same as that of the first embodiment shown in Figure 3A, the only difference is that in the fifth embodiment shown in Figure 14, the grating (or photonic crystal)
唯以上所述之实施例不应用于限制本发明之可应用范围,本发明之保护范围应以本发明之申请专利范围内容所界定技术精神及其均等变化所含括之范围为主者。即大凡依本发明申请专利范围所做之均等变化及修饰,仍将不失本发明之要义所在,亦不脱离本发明之精神和范围,故都应视为本发明的进一步实施状况。However, the above-mentioned embodiments should not be used to limit the scope of application of the present invention. The scope of protection of the present invention should be based on the technical spirit defined in the content of the patent application of the present invention and the range included in equivalent changes. That is, all equivalent changes and modifications made according to the patent scope of the present invention will still not lose the gist of the present invention, nor depart from the spirit and scope of the present invention, so all should be regarded as further implementation status of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911166887.0A CN112952551B (en) | 2019-11-25 | 2019-11-25 | Surface emitting laser element with mixed grating structure and its making process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911166887.0A CN112952551B (en) | 2019-11-25 | 2019-11-25 | Surface emitting laser element with mixed grating structure and its making process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112952551A CN112952551A (en) | 2021-06-11 |
CN112952551B true CN112952551B (en) | 2023-06-27 |
Family
ID=76224995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911166887.0A Active CN112952551B (en) | 2019-11-25 | 2019-11-25 | Surface emitting laser element with mixed grating structure and its making process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112952551B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330268B1 (en) * | 1998-08-27 | 2001-12-11 | Nec Corporation | Distributed feedback semiconductor laser |
JP2004259924A (en) * | 2003-02-26 | 2004-09-16 | Nippon Telegr & Teleph Corp <Ntt> | Complex-coupled distributed feedback semiconductor laser |
JP2010098200A (en) * | 2008-10-20 | 2010-04-30 | Opnext Japan Inc | Distribution feedback type semiconductor laser element and manufacturing method thereof |
CN109672083A (en) * | 2017-10-17 | 2019-04-23 | 光环科技股份有限公司 | Distributed feedback laser structure and production method |
CN110247300A (en) * | 2018-03-07 | 2019-09-17 | 弗劳恩霍夫应用研究促进协会 | Laser device |
CN110247302A (en) * | 2019-07-09 | 2019-09-17 | 华中科技大学 | A kind of surface-emitting laser based on surface grating |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6807643B2 (en) * | 2016-01-08 | 2021-01-06 | 浜松ホトニクス株式会社 | Distribution feedback type semiconductor laser device |
-
2019
- 2019-11-25 CN CN201911166887.0A patent/CN112952551B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330268B1 (en) * | 1998-08-27 | 2001-12-11 | Nec Corporation | Distributed feedback semiconductor laser |
JP2004259924A (en) * | 2003-02-26 | 2004-09-16 | Nippon Telegr & Teleph Corp <Ntt> | Complex-coupled distributed feedback semiconductor laser |
JP2010098200A (en) * | 2008-10-20 | 2010-04-30 | Opnext Japan Inc | Distribution feedback type semiconductor laser element and manufacturing method thereof |
CN109672083A (en) * | 2017-10-17 | 2019-04-23 | 光环科技股份有限公司 | Distributed feedback laser structure and production method |
CN110247300A (en) * | 2018-03-07 | 2019-09-17 | 弗劳恩霍夫应用研究促进协会 | Laser device |
CN110247302A (en) * | 2019-07-09 | 2019-09-17 | 华中科技大学 | A kind of surface-emitting laser based on surface grating |
Also Published As
Publication number | Publication date |
---|---|
CN112952551A (en) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI850279B (en) | Surface emitting laser with hybrid grating structure | |
US9054489B2 (en) | Hybrid vertical cavity laser for photonic integrated circuit | |
US9995876B2 (en) | Configurable compact photonic platforms | |
JPWO2009116140A1 (en) | Optical semiconductor device and manufacturing method thereof | |
Arefin et al. | III-N/Si₃N₄ Integrated Photonics Platform for Blue Wavelengths | |
US7889776B2 (en) | High-power semiconductor laser | |
CN104201566A (en) | Ridge waveguide distributed feedback semiconductor laser with high single longitudinal mode yield | |
CN115882339A (en) | Semiconductor Laser Diode Containing Multiple Active Layers and Grating Layers | |
CN112952551B (en) | Surface emitting laser element with mixed grating structure and its making process | |
JP6588858B2 (en) | Semiconductor laser | |
CN109672083B (en) | Distributed feedback laser structure and fabrication method | |
CN117317802A (en) | Multi-wavelength semiconductor laser and laser generation method | |
CN216850743U (en) | Grating surface emitting semiconductor laser | |
US9099840B2 (en) | Distributed feedback (DFB) laser with slab waveguide | |
CN113508502B (en) | Double-cavity DFB laser chip, light emitting assembly, optical module and optical network device | |
JP3595677B2 (en) | Optical isolator, distributed feedback laser and optical integrated device | |
Fallahi et al. | Design and fabrication of circular grating coupled distributed Bragg reflector lasers | |
CN114284866A (en) | Grating surface emitting semiconductor laser | |
JP6019522B2 (en) | Surface emitting laser device | |
JP2003218462A (en) | Distributed feedback semiconductor laser device | |
Ledentsov et al. | Novel approaches to semiconductor lasers | |
TWI838888B (en) | A semiconductor laser diode including multiple junctions and grating layer | |
Armistead et al. | DFB ridge waveguide lasers at λ= 1.5 μm with first-order gratings fabricated using electron beam lithography | |
Suhara et al. | Broad-area and MOPA lasers with integrated grating components for beam shaping and novel functions | |
US10209445B2 (en) | Method of fabricating a compact photonics platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |