CN112947294A - 一种基于数字孪生的汽车装配车间监控仿真系统 - Google Patents

一种基于数字孪生的汽车装配车间监控仿真系统 Download PDF

Info

Publication number
CN112947294A
CN112947294A CN202110197986.6A CN202110197986A CN112947294A CN 112947294 A CN112947294 A CN 112947294A CN 202110197986 A CN202110197986 A CN 202110197986A CN 112947294 A CN112947294 A CN 112947294A
Authority
CN
China
Prior art keywords
assembly
automobile
data
model
shop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110197986.6A
Other languages
English (en)
Other versions
CN112947294B (zh
Inventor
刘治满
胡正乙
刘英明
梁法辉
杨延丽
刘旭东
孙畅
郝睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Automobile Industry Institute
Original Assignee
Changchun Automobile Industry Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Automobile Industry Institute filed Critical Changchun Automobile Industry Institute
Priority to CN202110197986.6A priority Critical patent/CN112947294B/zh
Publication of CN112947294A publication Critical patent/CN112947294A/zh
Application granted granted Critical
Publication of CN112947294B publication Critical patent/CN112947294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35349Display part, programmed locus and tool path, traject, dynamic locus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于数字孪生的汽车装配车间监控仿真系统,所述系统包括装配车间静态模型建立模块、双向通道数据采集模块、装配车间动态模型建立模块、生产运行同步校正模块、装配车间实体控制模块,所述装配车间静态模型建立模块用于初步建立装配车间实体的静态模型,所述双向通道数据采集模块用于通过双向通讯通道采集静态模型子项的实时运行数据,所述装配车间动态模型建立模块用于结合装配车间静态模型以及采集的静态模型子项实时运行数据建立装配车间的动态模型,所述生产运行同步校正模块用于监测装配车间的动态模型、计算校正、同步装配车间运行流程并输出校正同步信号,所述装配车间控制模块用于通过校正同步信号控制装配车间实体,本发明由以上模块具备实时监控、优化汽车装配车间运行的效果。

Description

一种基于数字孪生的汽车装配车间监控仿真系统
技术领域
本发明涉及数字孪生技术领域,具体为一种基于数字孪生的汽车装配车间监控仿真系统。
背景技术
数字孪生(Digital Twin)又被称为数字映射、数字镜像、数字双胞胎,它的官方定义为:一种充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程,在实际运用中可以理解为数字孪生在一个设备或者一个系统的实体基础上,进行计算处理,获得一个虚拟话的数字克隆体,此数字克隆体的创造依据设备或者系统的物理设计模型。
数字孪生技术广泛应用于工业界,因其可以建立本体和孪生体之间的实时联系,使得孪生体可以实时向本体发出反馈信息,由此反馈信息有利于改善本体的运行特性。
当前车辆制造行业的汽车的装配已成为目前国内外研究的热点,如何保持汽车装配车间的正常运行以及如何优化汽车装配车间的运行成为当前车辆制造行业的关注点之一,结合当前数字孪生技术或许可以为车辆制造商提供一种新的实施方法,从而达到提高经济效益、优化车辆制造流程的目的。
发明内容
本发明的目的在于提供一种基于数字孪生的汽车装配车间监控仿真系统,以解决上述背景技术中提出的问题。
为了解决上述技术问题,本发明提供如下技术方案:一种基于数字孪生的汽车装配车间监控仿真系统,包括装配车间静态模型建立模块、双向通道数据采集模块、装配车间动态模型建立模块、生产运行同步校正模块、装配车间实体控制模块,其特征在于:所述装配车间静态模型建立模块用于初步建立装配车间实体的静态模型,所述双向通道数据采集模块用于通过双向通讯通道采集静态模型子项的实时运行数据,所述装配车间动态模型建立模块用于结合装配车间静态模型以及采集的静态模型子项实时运行数据建立装配车间的动态模型,所述生产运行同步校正模块用于监测装配车间的动态模型、计算校正、同步装配车间运行流程并输出校正同步信号,所述装配车间控制模块用于通过校正同步信号控制装配车间实体。
进一步的,所述装配车间静态模型建立模块与双向通道数据采集模块通讯连接,所述双向通道数据采集模块与装配车间动态模型建立模块通讯连接,所述装配车间动态模型建立模块与生产运行同步校正模块通讯连接,所述生产运行同步校正模块与装配车间控制模块通讯连接。
进一步的,所述装配车间静态模型建立模块包括汽车装配零件单元、汽车零件夹持工具单元、汽车零件锻压工具单元、汽车装配车间环境单元,所述车辆装配零件单元用于采集车辆装配过程中装配零件移动轨迹数据并使用零件ID对数据进行标记,所述汽车零件夹持工具单元用于采集夹持类型工具的转动速度、进给速度、移动轨迹数据以及电气、气动、液压数据并使用汽车零件夹持工具ID对数据进行标记,所述汽车零件锻压工具单元用于采集锻压类型工具的转动速度、进给速度、移动轨迹数据以及电气、气动、液压数据并使用汽车零件锻压工具ID对数据进行标记,所述汽车装配车间环境单元用于采集温湿度、粉尘浓度、噪声分贝、二氧化碳浓度数据。
进一步的,所述装配车间动态模型建立模块包括装配车间角色类建模单元、装配车间接口类建模单元、装配车间系统类建模单元,所述装配车间角色类建模单元用于定义抽象角色,所述抽象角色指定对象为装配车间实体的结构与行为,所述装配车间接口类建模单元用于指定双向通道数据采集模块对象之间的接口,所述接口表示装配车间实体与传感器之间的连接关系以及装配车间实体与外部信息之间的连接关系,所述装配车间系统类建模单元用于定义装配车间实体的实例化模板,所述实例化模板表示装配车间实体运行的规则。
进一步的,所述生产运行同步校正模块用于在装配车间动态模型中对装配车间运行状态进行实时仿真,计算实际生产运行过程中的时间进度偏差Δt和动作进度偏差Δl,并分别调用汽车零件夹持工具算法以及汽车零件锻压工具算法预测并改变下一道工序的转动速度、进给速度、移动轨迹数据或者电气、气动、液压数据,输出同步校正信号至装配车间实体控制模块以此迭代改变下一道工序的动作,最终完成装配车间运行过程中所有工序的同步校正,所述装配车间实体控制模块用于对同步校正信号进行动作解析,并以数字信号命令的形式通过双向数据传输通道下达至装配车间实体,装配车间实体由数字信号命令执行对应的动作。
进一步的,所述汽车零件夹持工具算法以及汽车零件锻压工具算法中使用隐马尔可夫模型方法对工序的转动速度、进给速度、移动轨迹数据以及电气、气动、液压数据进行建模,采用前向学习算法对以上数据的历史数据进行学习,得出用于汽车装配车间工序同步校正的隐马尔可夫模型参数,由所述隐马尔可夫模型,将当前时间进度偏差为t以及动作进度偏差为l的工序作为模型输入进行求解,再采用viterbi算法递推输出下一道工序的最佳运行动作。
进一步的,所述汽车零件夹持工具单元以及汽车零件锻压工具单元使用ANSYS软件工具分别对夹持工具以及锻压工具进行网格划分,并对夹持工具以及锻压工具所受最大应力以及最小应力进行模拟仿真,由工序的转动速度、进给速度、移动轨迹数据对夹持工具以及锻压工具进行运行规则定义,再由电气、气动、液压数据对夹持工具以及锻压工具进行条件限制。
进一步的,所述汽车零件夹持工具以及汽车零件锻压工具的电气、气动、液压数据模型可表示为E(a,b,c),其中a为电气类型控制强度,b为气动类型控制强度,c为液压类型控制强度,所述汽车零件夹持工具以及汽车零件锻压工具的转动速度、进给速度、所受应力数据模型可表示为
Figure BDA0002946634050000031
其中vr为转动速度,vg为进给速度,f为所受应力,所述汽车零件夹持工具以及汽车零件锻压工具的移动轨迹数据模型可表示为M(x,y,z),其中x为运动轨迹横向位移,y为运动轨迹纵向位移,z为运动轨迹上下位移,由E(a,b,c)模型以及
Figure BDA0002946634050000032
模型结合运行时间t建立控制-响应三维函数,生成控制-响应历史三维函数曲线,由此控制-响应历史三维函数曲线预测获得E(a,b,c)模型与
Figure BDA0002946634050000033
模型对应关系函数fE-G,由
Figure BDA0002946634050000034
模型以及M(x,y,z)模型结合运行时间t建立响应-移动三维函数,生成响应-移动历史三维函数曲线,由此响应-移动历史三维函数曲线预测获得
Figure BDA0002946634050000035
模型与M(x,y,z)模型对应关系函数fG-M,计算统计关系函数fE-G与关系函数fG-M的控制-响应-移动的进度偏差分别获得当前对应工具时间进度偏差Δt以及动作进度偏差Δl,根据公式1:
Figure BDA0002946634050000036
其中ty为预测的汽车装配车间工序间隔时间,tz为时间转换系数,ta为设定的工序间隔时间最小值;
根据公式2:
Figure BDA0002946634050000037
其中T为汽车装配车间所有工序间隔时间总量,n为汽车装配车间所有工序的总数量;根据公式3:
Figure BDA0002946634050000041
其中P为汽车装配车间所有工序的能耗总量,a’为电气类型控制能耗系数,b’为气动类型控制能耗系数,c’为液压类型控制能耗系数;
根据公式4:
O=P*T
其中O为能耗-时间总量。
进一步的,所述双向通道数据采集模块的数据交换模式为AutonationML,所述AutonationML分别引入CAEX表示汽车装配车间生产系统结构信息的主要格式、引入COLLADA用于表示汽车装配车间生产系统的几何尺寸特性和运动轨迹特性、引用PLCopen-XML表示汽车装配车间生产系统的行为信息,所述CAEX为一种基于可扩展标记语言的元格式,所述COLLADA用于对汽车装配车间生产系统的几何尺寸特性与运动轨迹特性进行模块化或者分层建模,所述PLCopen-XML用于汽车装配车间中可编程程序控制器的数据交换。
与现有技术相比,本发明所达到的有益效果是:
1、结合数字孪生技术对汽车装配车间进行全方面的仿真和监控;
2、对装配车间运行过程中所有工序进出同步校正,优化汽车装配车间的运行流程,缩短汽车装配车间工序间隔时间,减少汽车装配车间工序的能耗总量,大幅度提高汽车装配车间的经济效益;
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明的模块、单元结构示意图;
图2是本发明的模块通讯流程结构示意图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-2,本发明提供技术方案:
一种基于数字孪生的汽车装配车间监控仿真系统,包括装配车间静态模型建立模块、双向通道数据采集模块、装配车间动态模型建立模块、生产运行同步校正模块、装配车间实体控制模块,其特征在于:所述装配车间静态模型建立模块用于初步建立装配车间实体的静态模型,所述双向通道数据采集模块用于通过双向通讯通道采集静态模型子项的实时运行数据,所述装配车间动态模型建立模块用于结合装配车间静态模型以及采集的静态模型子项实时运行数据建立装配车间的动态模型,所述生产运行同步校正模块用于监测装配车间的动态模型、计算校正、同步装配车间运行流程并输出校正同步信号,所述装配车间控制模块用于通过校正同步信号控制装配车间实体。
所述装配车间静态模型建立模块与双向通道数据采集模块通讯连接,所述双向通道数据采集模块与装配车间动态模型建立模块通讯连接,所述装配车间动态模型建立模块与生产运行同步校正模块通讯连接,所述生产运行同步校正模块与装配车间控制模块通讯连接。
所述装配车间静态模型建立模块包括汽车装配零件单元、汽车零件夹持工具单元、汽车零件锻压工具单元、汽车装配车间环境单元,所述车辆装配零件单元用于采集车辆装配过程中装配零件移动轨迹数据并使用零件ID对数据进行标记,所述汽车零件夹持工具单元用于采集夹持类型工具的转动速度、进给速度、移动轨迹数据以及电气、气动、液压数据并使用汽车零件夹持工具ID对数据进行标记,所述汽车零件锻压工具单元用于采集锻压类型工具的转动速度、进给速度、移动轨迹数据以及电气、气动、液压数据并使用汽车零件锻压工具ID对数据进行标记,所述汽车装配车间环境单元用于采集温湿度、粉尘浓度、噪声分贝、二氧化碳浓度数据。
所述装配车间动态模型建立模块包括装配车间角色类建模单元、装配车间接口类建模单元、装配车间系统类建模单元,所述装配车间角色类建模单元用于定义抽象角色,所述抽象角色指定对象为装配车间实体的结构与行为,所述装配车间接口类建模单元用于指定双向通道数据采集模块对象之间的接口,所述接口表示装配车间实体与传感器之间的连接关系以及装配车间实体与外部信息之间的连接关系,所述装配车间系统类建模单元用于定义装配车间实体的实例化模板,所述实例化模板表示装配车间实体运行的规则。
所述生产运行同步校正模块用于在装配车间动态模型中对装配车间运行状态进行实时仿真,计算实际生产运行过程中的时间进度偏差Δt和动作进度偏差Δl,并分别调用汽车零件夹持工具算法以及汽车零件锻压工具算法预测并改变下一道工序的转动速度、进给速度、移动轨迹数据或者电气、气动、液压数据,输出同步校正信号至装配车间实体控制模块以此迭代改变下一道工序的动作,最终完成装配车间运行过程中所有工序的同步校正,所述装配车间实体控制模块用于对同步校正信号进行动作解析,并以数字信号命令的形式通过双向数据传输通道下达至装配车间实体,装配车间实体由数字信号命令执行对应的动作。
以上模块与单元的结构如图1所示,其通讯流程结构如图2所示。
所述汽车零件夹持工具算法以及汽车零件锻压工具算法中使用隐马尔可夫模型方法对工序的转动速度、进给速度、移动轨迹数据以及电气、气动、液压数据进行建模,采用前向学习算法对以上数据的历史数据进行学习,得出用于汽车装配车间工序同步校正的隐马尔可夫模型参数,由所述隐马尔可夫模型,将当前时间进度偏差为Δt以及动作进度偏差为Δl的工序作为模型输入进行求解,再采用viterbi算法递推输出下一道工序的最佳运行动作。
所述汽车零件夹持工具单元以及汽车零件锻压工具单元使用ANSYS软件工具分别对夹持工具以及锻压工具进行网格划分,并对夹持工具以及锻压工具所受最大应力以及最小应力进行模拟仿真,由工序的转动速度、进给速度、移动轨迹数据对夹持工具以及锻压工具进行运行规则定义,再由电气、气动、液压数据对夹持工具以及锻压工具进行条件限制。
所述汽车零件夹持工具以及汽车零件锻压工具的电气、气动、液压数据模型可表示为E(a,b,c),其中a为电气类型控制强度,b为气动类型控制强度,c为液压类型控制强度,所述汽车零件夹持工具以及汽车零件锻压工具的转动速度、进给速度、所受应力数据模型可表示为
Figure BDA0002946634050000061
其中vr为转动速度,vg为进给速度,f为所受应力,所述汽车零件夹持工具以及汽车零件锻压工具的移动轨迹数据模型可表示为M(x,y,z),其中x为运动轨迹横向位移,y为运动轨迹纵向位移,z为运动轨迹上下位移,由E(a,b,c)模型以及
Figure BDA0002946634050000062
模型结合运行时间t建立控制-响应三维函数,生成控制-响应历史三维函数曲线,由此控制-响应历史三维函数曲线预测获得E(a,b,c)模型与
Figure BDA0002946634050000063
模型对应关系函数fE-G,由
Figure BDA0002946634050000064
模型以及M(x,y,z)模型结合运行时间t建立响应-移动三维函数,生成响应-移动历史三维函数曲线,由此响应-移动历史三维函数曲线预测获得
Figure BDA0002946634050000065
模型与M(x,y,z)模型对应关系函数fG-M,计算统计关系函数fE-G与关系函数fG-M的控制-响应-移动的进度偏差分别获得当前对应工具时间进度偏差Δt以及动作进度偏差Δl,根据公式1:
Figure BDA0002946634050000071
其中ty为预测的汽车装配车间工序间隔时间,tz为时间转换系数,ta为设定的工序间隔时间最小值;
公式1中
Figure BDA0002946634050000072
用于量化E(a,b,c)模型至
Figure BDA0002946634050000073
模型的转化效率,
Figure BDA0002946634050000074
用于量化
Figure BDA0002946634050000075
模型至M(x,y,z)模型的转化效率,由公式1中
Figure BDA0002946634050000076
量化整个工序的控制质量,从而预测的实际汽车装配车间工序间隔时间。
根据公式2:
Figure BDA0002946634050000077
其中T为汽车装配车间所有工序间隔时间总量,n为汽车装配车间所有工序的总数量,由公式1和公式2取汽车装配车间所有工序间隔时间总量T为最小值,即可获得使汽车装配车间工序同步校正的方法,由此同步校正方法对汽车零件夹持工具以及汽车零件锻压工具的电气、气动、液压数据模型进行相应的控制即可达到效果,其中公式1中设定的工序间隔时间最小值ta由人工根据工序的危险等级进行确认,危险等级越高,此数值越大;
根据公式3:
Figure BDA0002946634050000078
其中P为汽车装配车间所有工序的能耗总量,a’为电气类型控制能耗系数,b’为气动类型控制能耗系数,c’为液压类型控制能耗系数,为汽车装配车间所有工序的总数量;
根据公式4:
O=P*T
其中O为能耗-时间总量。
由公式1至公式4,取能耗-时间总量O为最小值,即可获得能耗最小的控制方法,由此控制方法对汽车零件夹持工具以及汽车零件锻压工具的电气、气动、液压数据模型进行相应的控制即可达到效果。
所述双向通道数据采集模块的数据交换模式为AutonationML,所述AutonationML分别引入CAEX表示汽车装配车间生产系统结构信息的主要格式、引入COLLADA用于表示汽车装配车间生产系统的几何尺寸特性和运动轨迹特性、引用PLCopen-XML表示汽车装配车间生产系统的行为信息,所述CAEX为一种基于可扩展标记语言的元格式,所述COLLADA用于对汽车装配车间生产系统的几何尺寸特性与运动轨迹特性进行模块化或者分层建模,所述PLCopen-XML用于汽车装配车间中可编程程序控制器的数据交换。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于数字孪生的汽车装配车间监控仿真系统,包括装配车间静态模型建立模块、双向通道数据采集模块、装配车间动态模型建立模块、生产运行同步校正模块、装配车间实体控制模块,其特征在于:所述装配车间静态模型建立模块用于初步建立装配车间实体的静态模型,所述双向通道数据采集模块用于通过双向通讯通道采集静态模型子项的实时运行数据,所述装配车间动态模型建立模块用于结合装配车间静态模型以及采集的静态模型子项实时运行数据建立装配车间的动态模型,所述生产运行同步校正模块用于监测装配车间的动态模型、计算校正、同步装配车间运行流程并输出校正同步信号,所述装配车间控制模块用于通过校正同步信号控制装配车间实体。
2.根据权利要求1所述的一种基于数字孪生的汽车装配车间监控仿真系统,其特征在于:所述装配车间静态模型建立模块与双向通道数据采集模块通讯连接,所述双向通道数据采集模块与装配车间动态模型建立模块通讯连接,所述装配车间动态模型建立模块与生产运行同步校正模块通讯连接,所述生产运行同步校正模块与装配车间控制模块通讯连接。
3.根据权利要求1所述的一种汽车装配车间监控仿真系统,其特征在于:所述装配车间静态模型建立模块包括汽车装配零件单元、汽车零件夹持工具单元、汽车零件锻压工具单元、汽车装配车间环境单元,所述车辆装配零件单元用于采集车辆装配过程中装配零件移动轨迹数据并使用零件ID对数据进行标记,所述汽车零件夹持工具单元用于采集夹持类型工具的转动速度、进给速度、移动轨迹数据以及电气、气动、液压数据并使用汽车零件夹持工具ID对数据进行标记,所述汽车零件锻压工具单元用于采集锻压类型工具的转动速度、进给速度、移动轨迹数据以及电气、气动、液压数据并使用汽车零件锻压工具ID对数据进行标记,所述汽车装配车间环境单元用于采集温湿度、粉尘浓度、噪声分贝、二氧化碳浓度数据。
4.根据权利要求1所述的一种汽车装配车间监控仿真系统,其特征在于:所述装配车间动态模型建立模块包括装配车间角色类建模单元、装配车间接口类建模单元、装配车间系统类建模单元,所述装配车间角色类建模单元用于定义抽象角色,所述抽象角色指定对象为装配车间实体的结构与行为,所述装配车间接口类建模单元用于指定双向通道数据采集模块对象之间的接口,所述接口表示装配车间实体与传感器之间的连接关系以及装配车间实体与外部信息之间的连接关系,所述装配车间系统类建模单元用于定义装配车间实体的实例化模板,所述实例化模板表示装配车间实体运行的规则。
5.根据权利要求1所述的一种汽车装配车间监控仿真系统,其特征在于:所述生产运行同步校正模块用于在装配车间动态模型中对装配车间运行状态进行实时仿真,计算实际生产运行过程中的时间进度偏差Δt和动作进度偏差Δl,并分别调用汽车零件夹持工具算法以及汽车零件锻压工具算法预测并改变下一道工序的转动速度、进给速度、移动轨迹数据或者电气、气动、液压数据,输出同步校正信号至装配车间实体控制模块以此迭代改变下一道工序的动作,最终完成装配车间运行过程中所有工序的同步校正,所述装配车间实体控制模块用于对同步校正信号进行动作解析,并以数字信号命令的形式通过双向数据传输通道下达至装配车间实体,装配车间实体由数字信号命令执行对应的动作。
6.根据权利要求5所述的一种汽车装配车间监控仿真系统,其特征在于:所述汽车零件夹持工具算法以及汽车零件锻压工具算法中使用隐马尔可夫模型方法对工序的转动速度、进给速度、移动轨迹数据以及电气、气动、液压数据进行建模,采用前向学习算法对以上数据的历史数据进行学习,得出用于汽车装配车间工序同步校正的隐马尔可夫模型参数,由所述隐马尔可夫模型,将当前时间进度偏差为Δt以及动作进度偏差为Δl的工序作为模型输入进行求解,再采用viterbi算法递推输出下一道工序的最佳运行动作。
7.根据权利要求3所述的一种汽车装配车间监控仿真系统,其特征在于:所述汽车零件夹持工具单元以及汽车零件锻压工具单元使用ANSYS软件工具分别对夹持工具以及锻压工具进行网格划分,并对夹持工具以及锻压工具所受最大应力以及最小应力进行模拟仿真,由工序的转动速度、进给速度、移动轨迹数据对夹持工具以及锻压工具进行运行规则定义,再由电气、气动、液压数据对夹持工具以及锻压工具进行条件限制。
8.根据权利要求6或7所述的一种汽车装配车间监控仿真系统,其特征在于:所述汽车零件夹持工具以及汽车零件锻压工具的电气、气动、液压数据模型可表示为E(a,b,c),其中a为电气类型控制强度,b为气动类型控制强度,c为液压类型控制强度,所述汽车零件夹持工具以及汽车零件锻压工具的转动速度、进给速度、所受应力数据模型可表示为
Figure FDA0002946634040000021
其中vr为转动速度,vg为进给速度,f为所受应力,所述汽车零件夹持工具以及汽车零件锻压工具的移动轨迹数据模型可表示为M(x,y,z),其中x为运动轨迹横向位移,y为运动轨迹纵向位移,z为运动轨迹上下位移,由E(a,b,c)模型以及
Figure FDA0002946634040000022
模型结合运行时间t建立控制-响应三维函数,生成控制-响应历史三维函数曲线,由此控制-响应历史三维函数曲线预测获得E(a,b,c)模型与
Figure FDA0002946634040000031
模型对应关系函数fE-G,由
Figure FDA0002946634040000032
模型以及M(x,y,z)模型结合运行时间t建立响应-移动三维函数,生成响应-移动历史三维函数曲线,由此响应-移动历史三维函数曲线预测获得
Figure FDA0002946634040000033
模型与M(x,y,z)模型对应关系函数fG-M,计算统计关系函数fE-G与关系函数fG-M的控制-响应-移动的进度偏差分别获得当前对应工具时间进度偏差Δt以及动作进度偏差Δl,根据公式1:
Figure FDA0002946634040000034
其中ty为预测的汽车装配车间工序间隔时间,tz为时间转换系数,ta为设定的工序间隔时间最小值;
根据公式2:
Figure FDA0002946634040000035
其中T为汽车装配车间所有工序间隔时间总量,n为汽车装配车间所有工序的总数量;
根据公式3:
Figure FDA0002946634040000036
其中P为汽车装配车间所有工序的能耗总量,a’为电气类型控制能耗系数,b’为气动类型控制能耗系数,c’为液压类型控制能耗系数;
根据公式4:
O=P*T
其中O为能耗-时间总量。
9.根据权利要求1所述的一种汽车装配车间监控仿真系统,其特征在于:所述双向通道数据采集模块的数据交换模式为AutonationML,所述AutonationML分别引入CAEX表示汽车装配车间生产系统结构信息的主要格式、引入COLLADA用于表示汽车装配车间生产系统的几何尺寸特性和运动轨迹特性、引用PLCopen-XML表示汽车装配车间生产系统的行为信息,所述CAEX为一种基于可扩展标记语言的元格式,所述COLLADA用于对汽车装配车间生产系统的几何尺寸特性与运动轨迹特性进行模块化或者分层建模,所述PLCopen-XML用于汽车装配车间中可编程程序控制器的数据交换。
CN202110197986.6A 2021-02-22 2021-02-22 一种基于数字孪生的汽车装配车间监控仿真系统 Active CN112947294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110197986.6A CN112947294B (zh) 2021-02-22 2021-02-22 一种基于数字孪生的汽车装配车间监控仿真系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110197986.6A CN112947294B (zh) 2021-02-22 2021-02-22 一种基于数字孪生的汽车装配车间监控仿真系统

Publications (2)

Publication Number Publication Date
CN112947294A true CN112947294A (zh) 2021-06-11
CN112947294B CN112947294B (zh) 2023-10-20

Family

ID=76245314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110197986.6A Active CN112947294B (zh) 2021-02-22 2021-02-22 一种基于数字孪生的汽车装配车间监控仿真系统

Country Status (1)

Country Link
CN (1) CN112947294B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113554757A (zh) * 2021-07-01 2021-10-26 新疆大学 基于数字孪生的工件轨迹三维重构方法及系统
CN114035521A (zh) * 2021-11-09 2022-02-11 中机寰宇(江苏)智能制造认证检测有限公司 一种基于数字孪生的汽车分段建造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149843A (zh) * 2007-10-10 2008-03-26 深圳先进技术研究院 一种数字城市的继承式自动生成及实时更新方法
WO2013037987A1 (de) * 2011-09-16 2013-03-21 Siemens Aktiengesellschaft Identifikation wiederverwendbarer mechatronischer komponenten in der fabrikautomation
CN107046676A (zh) * 2016-02-05 2017-08-15 谷歌公司 用于为移动设备提供目标位置提醒的方法和装置
CN107870600A (zh) * 2017-10-17 2018-04-03 广东工业大学 一种智能车间透明监控方法及系统
WO2018151275A1 (ja) * 2017-02-17 2018-08-23 ヤンマー株式会社 油圧機械の制御装置
CN108919760A (zh) * 2018-07-05 2018-11-30 长安大学 一种基于数字孪生的智能车间自治生产过程动态联动控制方法
WO2019076233A1 (zh) * 2017-10-17 2019-04-25 广东工业大学 一种智能车间快速定制设计方法及系统
CN109808707A (zh) * 2019-02-19 2019-05-28 武汉理工大学 一种基于随机模型预测的汽车转向控制方法及控制器
US20190287079A1 (en) * 2018-03-19 2019-09-19 Toyota Jidosha Kabushiki Kaisha Sensor-based digital twin system for vehicular analysis
CN110765589A (zh) * 2019-09-10 2020-02-07 上海大学 一种基于数字孪生的智能车间虚实同步监测系统及方法
CN111177942A (zh) * 2020-01-06 2020-05-19 中国矿业大学(北京) 矿井无人化综掘工作面数字孪生智能监控系统
CN111208759A (zh) * 2019-12-30 2020-05-29 中国矿业大学(北京) 矿井无人化综采工作面数字孪生智能监控系统
EP3709227A1 (en) * 2019-03-11 2020-09-16 ABB Schweiz AG System and method for interoperable communication of an automation system component with multiple information sources
CN112016737A (zh) * 2020-08-05 2020-12-01 东北大学秦皇岛分校 一种基于数字孪生的复杂产品装配车间管控方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149843A (zh) * 2007-10-10 2008-03-26 深圳先进技术研究院 一种数字城市的继承式自动生成及实时更新方法
WO2013037987A1 (de) * 2011-09-16 2013-03-21 Siemens Aktiengesellschaft Identifikation wiederverwendbarer mechatronischer komponenten in der fabrikautomation
CN107046676A (zh) * 2016-02-05 2017-08-15 谷歌公司 用于为移动设备提供目标位置提醒的方法和装置
WO2018151275A1 (ja) * 2017-02-17 2018-08-23 ヤンマー株式会社 油圧機械の制御装置
WO2019076233A1 (zh) * 2017-10-17 2019-04-25 广东工业大学 一种智能车间快速定制设计方法及系统
CN107870600A (zh) * 2017-10-17 2018-04-03 广东工业大学 一种智能车间透明监控方法及系统
US20190287079A1 (en) * 2018-03-19 2019-09-19 Toyota Jidosha Kabushiki Kaisha Sensor-based digital twin system for vehicular analysis
CN108919760A (zh) * 2018-07-05 2018-11-30 长安大学 一种基于数字孪生的智能车间自治生产过程动态联动控制方法
WO2020007016A1 (zh) * 2018-07-05 2020-01-09 长安大学 一种基于数字孪生的智能车间自治生产过程动态联动控制方法
CN109808707A (zh) * 2019-02-19 2019-05-28 武汉理工大学 一种基于随机模型预测的汽车转向控制方法及控制器
EP3709227A1 (en) * 2019-03-11 2020-09-16 ABB Schweiz AG System and method for interoperable communication of an automation system component with multiple information sources
CN110765589A (zh) * 2019-09-10 2020-02-07 上海大学 一种基于数字孪生的智能车间虚实同步监测系统及方法
CN111208759A (zh) * 2019-12-30 2020-05-29 中国矿业大学(北京) 矿井无人化综采工作面数字孪生智能监控系统
CN111177942A (zh) * 2020-01-06 2020-05-19 中国矿业大学(北京) 矿井无人化综掘工作面数字孪生智能监控系统
CN112016737A (zh) * 2020-08-05 2020-12-01 东北大学秦皇岛分校 一种基于数字孪生的复杂产品装配车间管控方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
王伟;张鹏;刘庆云;: "基于CATIA的装配车间生产系统的静态仿真分析", 现代制造工程, no. 12 *
耿琦琦: "基于数字孪生仿真建模的机器人状态监测技术研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》, no. 01 *
谢坤: "基于新能源汽车制动器总成的智能制造工厂设计", 《汽车工艺与材料》, no. 10 *
邹律龙;侯东亮;: "摩托车装配车间的生产系统仿真", 现代机械, no. 01 *
陶飞 等: "数字孪生车间信息物理融合理论与技术", 《计算机集成制造系统》, vol. 23, no. 8 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113554757A (zh) * 2021-07-01 2021-10-26 新疆大学 基于数字孪生的工件轨迹三维重构方法及系统
CN114035521A (zh) * 2021-11-09 2022-02-11 中机寰宇(江苏)智能制造认证检测有限公司 一种基于数字孪生的汽车分段建造方法

Also Published As

Publication number Publication date
CN112947294B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN112947294A (zh) 一种基于数字孪生的汽车装配车间监控仿真系统
CN110530638B (zh) 基于数字孪生的航空发动机主轴承损伤检测与诊断方法
CN112487584A (zh) 一种基于动力学的滚动轴承数字孪生建模方法
CN110704974A (zh) 基于数字孪生驱动的工艺模型的建模与使用方法
CN108919760A (zh) 一种基于数字孪生的智能车间自治生产过程动态联动控制方法
CN103753534B (zh) 一种移动机器人控制器及其控制方法
CN110083160B (zh) 一种基于深度学习的机器人轨迹规划方法
CN112433507B (zh) 基于lso-lssvm的五轴数控机床热误差综合建模方法
CN112085261A (zh) 基于云端融合和数字孪生技术的企业生产现状诊断方法
Du et al. An error-bounded B-spline curve approximation scheme using dominant points for CNC interpolation of micro-line toolpath
CN109766597B (zh) 一种考虑几何误差的装配位姿高精度线性化求解方法
CN111752151A (zh) 一种工业叶片磨抛加工自适应力跟踪与补偿方法及系统
CN114022021A (zh) 一种基于集成学习的在线机组负荷预测方法
CN115576267B (zh) 一种基于数字孪生的轮毂机加工尺寸误差修正方法
CN113485498A (zh) 一种基于深度学习的室内环境舒适度调节方法及系统
CN113609672B (zh) 一种基于增量模型的数字孪生系统协同进化方法
CN111594996A (zh) 一种基于深度置信神经网络的变风量空调送风量的预测方法
CN113496064B (zh) 一种数控机床直线度的补偿调整方法
CN110244658B (zh) 一种基于改进bp神经网络提高裁床插补位置精度的方法
CN111626476A (zh) 一种风电场风力发电量预测方法
CN101598927B (zh) 一种基于神经网络的纯碱碳化工艺控制系统及其控制方法
CN110967042A (zh) 一种工业机器人定位精度标定方法、装置及系统
CN109352649B (zh) 一种基于深度学习的机械手控制方法及系统
CN110815244A (zh) 一种喷涂机器人工作站控制系统
CN104181864A (zh) 智能雕刻机及全自动数控雕刻方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant