CN112946861A - 一种红外镜头以及红外成像模组 - Google Patents

一种红外镜头以及红外成像模组 Download PDF

Info

Publication number
CN112946861A
CN112946861A CN202110160156.6A CN202110160156A CN112946861A CN 112946861 A CN112946861 A CN 112946861A CN 202110160156 A CN202110160156 A CN 202110160156A CN 112946861 A CN112946861 A CN 112946861A
Authority
CN
China
Prior art keywords
lens
infrared
image
lens element
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110160156.6A
Other languages
English (en)
Other versions
CN112946861B (zh
Inventor
王�锋
周明明
马庆鸿
万良伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Xingjuyu Optical Co ltd
Original Assignee
Huizhou Xingjuyu Optical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Xingjuyu Optical Co ltd filed Critical Huizhou Xingjuyu Optical Co ltd
Priority to CN202110160156.6A priority Critical patent/CN112946861B/zh
Publication of CN112946861A publication Critical patent/CN112946861A/zh
Application granted granted Critical
Publication of CN112946861B publication Critical patent/CN112946861B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

本发明提供了一种红外成像系统以及红外成像模组,该红外成像系统自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜以及第四透镜,第二透镜的像侧表面为凸面,所述第三透镜的物侧表面为凸面,所述第三透镜的像侧表面为凸面,其中,光圈为Fno,对角线对应的视场角为DFOV,且满足下列关系式:0.9<Fno×sin(DFOV)<1.2。第三透镜的物侧面以及像侧面均为凸面,再根据所满足的光圈与对角线对应的视场角的关系,实现了红外成像以及深度感知、大光圈、大视场角,并具有中心成像质量好、生产成本较低等优点。

Description

一种红外镜头以及红外成像模组
【技术领域】
本发明涉及光学成像技术领域,特别是涉及一种可应用于手机、电视机、体感游戏机等诸多领域的红外光学系统以及红外成像模组。
【背景技术】
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化红外镜头俨然成为目前市场上的主流。
在相关技术中,为获得较佳的成像品质,传统搭载于手机相机、电视、体感游戏机等上的镜头多采用多片式透镜结构,但是,随着镜片的增多,造成镜头体积笨重,生产成本增加,且成像质量降低。
【发明内容】
本发明的目的是克服现有技术中的不足之处,提供一种提高图像清晰度的红外光学系统以及红外成像模组。
本发明的目的是通过以下技术方案来实现的:
一种红外成像系统,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜以及第四透镜,第二透镜的像侧表面为凸面,所述第三透镜的物侧表面为凸面,所述第三透镜的像侧表面为凸面,其中,光圈为Fno,对角线对应的视场角为DFOV,且满足下列关系式:0.9<Fno×sin(DFOV)<1.2。
在其中一个实施例中,所述第一透镜物侧面的曲率半径为R11,所述第三透镜像侧面的曲率半径为R32,且满足下列关系式:0<R11/R32<5。
在其中一个实施例中,所述红外成像系统的焦距为f,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,且满足下列关系式:0.8<|f/f2|+|f/f4|<1.4。
在其中一个实施例中,所述第三透镜物侧面的曲率半径为R31,所述第三透镜的焦距为f3,且满足下列关系式:0<R31/f3<2。
在其中一个实施例中,所述第二透镜和第三透镜在光轴上的空气间隔为AG23,所述第三透镜在光轴上的中心厚度为CT3,且满足下列关系式:0<AG23/CT3<0.11。
在其中一个实施例中,所述红外成像系统的光学总长为TTL,所述红外成像系统的后焦距为BFL,且满足下列关系式:9<TTL/BFL<15。
一种红外成像模组,包括感光件以及上述中任一实施例所述的红外光学系统,所述感光件位于所述红外光学系统的像侧。
与现有技术相比,本发明具有以下优点:
通过选取数量较少的透镜,并且,通过对第三透镜的物侧面以及像侧面的形状进行限定,即第三透镜的物侧面以及像侧面均为凸面,再根据所满足的光圈与对角线对应的视场角的关系,实现了红外成像以及深度感知、大光圈、大视场角,并具有中心成像质量好、生产成本较低等优点。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施例1的红外镜头的结构示意图;
图2是实施例1的红外镜头的球差曲线图;
图3是实施例1的红外镜头的像散曲线图;
图4是实施例1的红外镜头的畸变曲线图;
图5是本发明实施例2的红外镜头的结构示意图;
图6是实施例2的红外镜头的球差曲线图;
图7是实施例2的红外镜头的像散曲线图;
图8是实施例2的红外镜头的畸变曲线图;
图9是本发明实施例3的红外镜头的结构示意图;
图10是实施例3的红外镜头的球差曲线图;
图11是实施例3的红外镜头的像散曲线图;
图12是实施例3的红外镜头的畸变曲线图;
图13是本发明实施例4的红外镜头的结构示意图;
图14是实施例4的红外镜头的球差曲线图;
图15是实施例4的红外镜头的像散曲线图;
图16是实施例4的红外镜头的畸变曲线图;
图17是本发明实施例5的红外镜头的结构示意图;
图18是实施例5的红外镜头的球差曲线图;
图19是实施例5的红外镜头的像散曲线图;
图20是实施例5的红外镜头的畸变曲线图;
图21是本发明实施例6的红外镜头的结构示意图;
图22是实施例6的红外镜头的球差曲线图;
图23是实施例6的红外镜头的像散曲线图;
图24是实施例6的红外镜头的畸变曲线图;
图25是本发明实施例7的红外镜头的结构示意图;
图26是实施例7的红外镜头的球差曲线图;
图27是实施例7的红外镜头的像散曲线图;
图28是实施例7的红外镜头的畸变曲线图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
在本说明书中,物体相对于光学元件所处的一侧空间称为该光学元件的物侧,对应的,物体所成的像相对于光学元件所处的一侧空间称为该光学元件的像侧。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。并定义物侧至像侧为距离的正向。
另外,在下文的描述中,若出现透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少近光轴处为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少近光轴处为凹面。此处近光轴处是指光轴附近的区域。
以下将对本申请的特征、原理和其他方面进行详细描述。
请一并参阅图1、图5、图9、图13、图17、图21以及图25,其为本发明实施例的红外光学系统的结构示意图,所述的红外光学系统包括四片具有光焦度的透镜,即第一透镜、第二透镜、第三透镜以及第四透镜,四片透镜沿光轴从物侧至像侧依次;所述红外光学系统还包括红外滤光片,所述红外滤光片用于将可见光滤除,确保红外光线透过。其中,虚线为光轴所在直线。
所述第二透镜的像侧表面为凸面,所述第三透镜的物侧表面为凸面,所述第三透镜的像侧表面为凸面。通过将所述第三透镜的物侧面以及像侧面设置为凸面,使得所述第三透镜具有正光焦度,便于帮助光线更好地在红外光学系统中进行传播,同时,还便于在红外光学系统的结构紧凑的情况下,即红外光学系统的总长较小,保证良好的成像质量。
在本实施例中,所述红外光学系统满足下列关系式:0.9<Fno×sin(DFOV)<1.2;其中,Fno表示光圈,DFOV表示对角线对应的视场角。Fno×sin(DFOV)可以是1.184、1.280、0.936、1.190、1.169、1.168或者1.146。通过选取数量较少的透镜,使得红外光学系统的体积减小,并且,通过对第三透镜的物侧面以及像侧面的形状进行限定,即第三透镜的物侧面以及像侧面均为凸面,再根据所满足的光圈与对角线对应的视场角的关系,实现了红外成像以及深度感知、大光圈、大视场角,并具有中心成像质量好、生产成本较低等优点。
上述红外光学系统用于成像时,被摄物体发出或者反射的光线从物侧方向进入红外光学系统,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜以及红外滤光片,实现了红外成像以及深度感知、大光圈、大视场角,并具有中心成像质量好、生产成本较低等优点。
在其中一个实施例中,所述红外光学系统满足下列关系式:0<R11/R32<5;其中,R11表示所述第一透镜物侧面的曲率半径,R32为所述第三透镜像侧面的曲率半径。在本实施例中,通过调整f/R11的比值,改变R11/R32的数值大小,R11/R32可以是1.743、1.057、1.797、4.962、0.538、1.792或者0.897。
在其中一个实施例中,所述红外光学系统满足下列关系式:0.8<|f/f2|+|f/f4|<1.4;其中,f表示所述红外成像系统的焦距,f2表示所述第二透镜的焦距,f4表示所述第四透镜的焦距。在本实施例中,|f/f2|+|f/f4|可以是0.903、0.900、1.020、0.906、1.373、0.820或者0.919。
在其中一个实施例中,所述红外光学系统满足下列关系式:0<R31/f3<2;其中,R31表示所述第三透镜物侧面的曲率半径,f3表示所述第三透镜的焦距。在本实施例中,R31/f3可以是1.029、0.964、0.862、1.100、0.327、1.956或者1.112。
在其中一个实施例中,所述红外光学系统满足下列关系式:0<AG23/CT3<0.11;其中,AG23表示所述第二透镜和第三透镜在光轴上的空气间隔,CT3表示所述第三透镜在光轴上的中心厚度。在本实施例中,AG23/CT3可以是0.076、0.076、0.093、0.083、0.089、0.107或者0.070。
在其中一个实施例中,所述红外光学系统满足下列关系式:9<TTL/BFL<15;其中,TTL表示所述红外成像系统的光学总长,BFL表示所述红外成像系统的后焦距。在本实施例中,TTL/BFL可以是12.179、11.190、9.597、11.116、10.403、11.644或者14.594。
根据本申请的上述实施方式的红外光学系统可采用多片镜片,例如上文所述的四片。通过优化第三透镜的口径、曲率、形状,并合理分配各透镜焦距、屈折力、面型、厚度以及各透镜之间的轴上间距等,实现了红外成像以及深度感知、大光圈、大视场角,以更好的满足超广角型电子设备的应用需求。可以理解的是,虽然在实施方式中以四个透镜为例进行了描述,但是该光学成像系统不限于包括四个透镜,如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的红外光学系统的具体实施例。
实施例1
以下参照图1至图4描述本申请实施例1的红外光学系统。
图1示出了实施例1的红外光学系统的结构示意图。如图1所示,红外光学系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、红外滤光片L5以及成像面S11。
第一透镜L1的物侧面S1和像侧面S2均为非球面,而且,第一透镜L1的物侧面S1于光轴处为凹面,第一透镜L1的像侧面S2于光轴处为凹面;
第二透镜L2的物侧面S3和像侧面S4均为非球面,而且,第二透镜L2的物侧面S3于光轴处为平面,第二透镜L2的像侧面S4于光轴处为凸面;
第三透镜L3的物侧面S5和像侧面S6均为非球面,而且,第三透镜L3的物侧面S5于光轴处为凸面,第三透镜L3的像侧面S6为凸面;
第四透镜L4的物侧面S7和像侧面S8均为非球面,而且,第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8为凹面;
第一透镜L1与第二透镜L2之间设置有光阑STO,以进一步提高红外光学系统的成像质量。
红外光学系统还包括具有物侧面S9和像侧面S10的红外滤光片L5,第四透镜L4的像侧设置有红外滤光片L5,以便于对红外光线进行过滤,即红外滤光片L5用于将可见光滤除,确保红外光线透过。
表1示出了实施例1的红外光学系统的各透镜的表面类型、曲率半径、厚度、折射率以及圆锥系数,其中,第一透镜L1的物侧面至光学成像系统的成像面S11在光轴上的距离、曲率半径以及厚度的单位均为毫米(mm)。
表1
Figure BDA0002935149050000031
由表1可知,在本实施例中,第一透镜L1至第四透镜L4均采用塑料非球面透镜,各非球面面型x由以下公式限定:
Figure BDA0002935149050000032
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了可用于实施例1中透镜非球面S1至S8的高次项系数A4、A6、A8、A10、A12、A14以及A16。
表2
Figure BDA0002935149050000033
Figure BDA0002935149050000041
结合表1和表2中的数据可知,实施例1中的红外光学系统满足:
Fno×sin(DFOV)=1.184,其中,Fno表示光圈,DFOV表示对角线对应的视场角;
R11/R32=1.743,其中,R11表示所述第一透镜物侧面的曲率半径,R32为所述第三透镜像侧面的曲率半径;
|f/f2|+|f/f4|=0.903,其中,f表示所述红外成像系统的焦距,f2表示所述第二透镜的焦距,f4表示所述第四透镜的焦距;
R31/f3=1.029,其中,R31表示所述第三透镜物侧面的曲率半径,f3表示所述第三透镜的焦距;
AG23/CT3=0.076,其中,AG23表示所述第二透镜和第三透镜在光轴上的空气间隔,CT3表示所述第三透镜在光轴上的中心厚度;
TTL/BFL=12.179,其中,TTL表示所述红外成像系统的光学总长,BFL表示所述红外成像系统的后焦距。
图2示出了实施例1的红外光学系统的球差曲线,其分别表示波长为830nm、850nm以及870nm的光线经由红外光学系统后的会聚焦点偏离;图3示出了实施例1的红外光学系统在850nm波长的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图4示出了实施例1的红外光学系统在850nm波长的畸变曲线,其表示不同像高情况下的畸变率。根据图2至图4可知,对红外光学系统的畸变值进行了有效畸变矫正,即减小了红外光学系统的畸变值,从而提高了红外光学系统的图像清晰度,实施例1给出的红外光学系统能够实现良好的成像品质,同时,还将红外光学系统的视场角增大至110.4°,实现了超广角的图像采集。
实施例2
以下参照图5至图8描述本申请实施例2的红外光学系统。
图5示出了实施例2的红外光学系统的结构示意图。如图5所示,红外光学系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、红外滤光片L5以及成像面S11。
第一透镜L1的物侧面S1和像侧面S2均为非球面,而且,第一透镜L1的物侧面S1于光轴处为凹面,第一透镜L1的像侧面S2于光轴处为凹面;
第二透镜L2的物侧面S3和像侧面S4均为非球面,而且,第二透镜L2的物侧面S3于光轴处为平面,第二透镜L2的像侧面S4于光轴处为凸面;
第三透镜L3的物侧面S5和像侧面S6均为非球面,而且,第三透镜L3的物侧面S5于光轴处为凸面,第三透镜L3的像侧面S6为凸面;
第四透镜L4的物侧面S7和像侧面S8均为非球面,而且,第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8为凹面;
第一透镜L1与第二透镜L2之间设置有光阑STO,以进一步提高红外光学系统的成像质量。
红外光学系统还包括具有物侧面S9和像侧面S10的红外滤光片L5,第四透镜L4的像侧设置有红外滤光片L5,以便于对红外光线进行过滤,即红外滤光片L5用于将可见光滤除,确保红外光线透过。
表3示出了实施例2的红外光学系统的各透镜的表面类型、曲率半径、厚度、折射率以及圆锥系数,其中,第一透镜L1的物侧面至光学成像系统的成像面S11在光轴上的距离、曲率半径以及厚度的单位均为毫米(mm)。
表3
Figure BDA0002935149050000042
Figure BDA0002935149050000051
由表3可知,在本实施例中,第一透镜L1至第四透镜L4均采用塑料非球面透镜,各非球面面型x由以下公式限定:
Figure BDA0002935149050000052
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表4给出了可用于实施例2中透镜非球面S1至S8的高次项系数A4、A6、A8、A10、A12、A14以及A16。
表4
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.7628982E-02 -5.3931383E-03 9.7558393E-04 -1.3376140E-04 1.1694795E-05 -6.0853000E-07 1.1920746E-08
S2 9.1674424E-02 8.1428716E-02 -8.3388957E-02 -7.7412316E-03 1.2490886E-01 -9.9974670E-02 2.5933265E-02
S3 1.7369100E-02 -1.4129790E-01 6.1187423E-01 -1.2658631E+00 1.3646938E+00 -7.5179582E-01 1.6544560E-01
S4 -1.4863533E-01 2.9216318E-01 -5.5214793E-01 6.5290391E-01 -4.7169858E-01 1.8566694E-01 -3.1217539E-02
S5 9.5986285E-02 -7.2508893E-02 2.1527255E-02 8.9454602E-03 -1.0181824E-02 3.2775756E-03 -3.7386929E-04
S6 -2.1408688E-01 1.7984909E-01 -8.9369926E-02 2.3482383E-02 -7.7900990E-04 -1.0113318E-03 1.6294944E-04
S7 -2.8967052E-01 1.7507807E-01 -1.1628374E-01 4.5733845E-02 -9.6562368E-03 5.3417892E-04 5.0467178E-05
S8 -9.2249094E-02 1.6112302E-02 -4.5914610E-04 -7.0074097E-04 1.8156983E-04 -2.0236670E-05 8.8331428E-07
结合表3和表4中的数据可知,实施例2中的红外光学系统满足:
Fno×sin(DFOV)=1.280,其中,Fno表示光圈,DFOV表示对角线对应的视场角;
R11/R32=1.057,其中,R11表示所述第一透镜物侧面的曲率半径,R32为所述第三透镜像侧面的曲率半径;
|f/f2|+|f/f4|=0.900,其中,f表示所述红外成像系统的焦距,f2表示所述第二透镜的焦距,f4表示所述第四透镜的焦距;
R31/f3=0.964,其中,R31表示所述第三透镜物侧面的曲率半径,f3表示所述第三透镜的焦距;
AG23/CT3=0.076,其中,AG23表示所述第二透镜和第三透镜在光轴上的空气间隔,CT3表示所述第三透镜在光轴上的中心厚度;
TTL/BFL=11.190,其中,TTL表示所述红外成像系统的光学总长,BFL表示所述红外成像系统的后焦距。
图6示出了实施例2的红外光学系统的球差曲线,其分别表示波长为830nm、850nm以及870nm的光线经由红外光学系统后的会聚焦点偏离;图7示出了实施例2的红外光学系统在850nm波长的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图8示出了实施例2的红外光学系统在850nm波长的畸变曲线,其表示不同像高情况下的畸变率。根据图6至图8可知,对红外光学系统的畸变值进行了有效畸变矫正,即减小了红外光学系统的畸变值,从而提高了红外光学系统的图像清晰度,实施例2给出的红外光学系统能够实现良好的成像品质,同时,还将红外光学系统的视场角增大至104.3°,实现了超广角的图像采集。
实施例3
以下参照图9至图12描述本申请实施例3的红外光学系统。
图9示出了实施例3的红外光学系统的结构示意图。如图9所示,红外光学系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、红外滤光片L5以及成像面S11。
第一透镜L1的物侧面S1和像侧面S2均为非球面,而且,第一透镜L1的物侧面S1于光轴处为凹面,第一透镜L1的像侧面S2于光轴处为凹面;
第二透镜L2的物侧面S3和像侧面S4均为非球面,而且,第二透镜L2的物侧面S3于光轴处为平面,第二透镜L2的像侧面S4于光轴处为凸面;
第三透镜L3的物侧面S5和像侧面S6均为非球面,而且,第三透镜L3的物侧面S5于光轴处为凸面,第三透镜L3的像侧面S6为凸面;
第四透镜L4的物侧面S7和像侧面S8均为非球面,而且,第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8为凹面;
第一透镜L1与第二透镜L2之间设置有光阑STO,以进一步提高红外光学系统的成像质量。
红外光学系统还包括具有物侧面S9和像侧面S10的红外滤光片L5,第四透镜L4的像侧设置有红外滤光片L5,以便于对红外光线进行过滤,即红外滤光片L5用于将可见光滤除,确保红外光线透过。
表5示出了实施例3的红外光学系统的各透镜的表面类型、曲率半径、厚度、折射率以及圆锥系数,其中,第一透镜L1的物侧面至光学成像系统的成像面S11在光轴上的距离、曲率半径以及厚度的单位均为毫米(mm)。
表5
Figure BDA0002935149050000061
由表5可知,在本实施例中,第一透镜L1至第四透镜L4均采用塑料非球面透镜,各非球面面型x由以下公式限定:
Figure BDA0002935149050000062
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表6给出了可用于实施例3中透镜非球面S1至S8的高次项系数A4、A6、A8、A10、A12、A14以及A16。
表6
Figure BDA0002935149050000063
Figure BDA0002935149050000071
结合表5和表6中的数据可知,实施例3中的红外光学系统满足:
Fno×sin(DFOV)=0.936,其中,Fno表示光圈,DFOV表示对角线对应的视场角;
R11/R32=1.797,其中,R11表示所述第一透镜物侧面的曲率半径,R32为所述第三透镜像侧面的曲率半径;
|f/f2|+|f/f4|=1.020,其中,f表示所述红外成像系统的焦距,f2表示所述第二透镜的焦距,f4表示所述第四透镜的焦距;
R31/f3=0.862,其中,R31表示所述第三透镜物侧面的曲率半径,f3表示所述第三透镜的焦距;
AG23/CT3=0.093,其中,AG23表示所述第二透镜和第三透镜在光轴上的空气间隔,CT3表示所述第三透镜在光轴上的中心厚度;
TTL/BFL=9.597,其中,TTL表示所述红外成像系统的光学总长,BFL表示所述红外成像系统的后焦距。
图10示出了实施例3的红外光学系统的球差曲线,其分别表示波长为830nm、850nm以及870nm的光线经由红外光学系统后的会聚焦点偏离;图11示出了实施例3的红外光学系统在850nm波长的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图12示出了实施例3的红外光学系统在850nm波长的畸变曲线,其表示不同像高情况下的畸变率。根据图10至图12可知,对红外光学系统的畸变值进行了有效畸变矫正,即减小了红外光学系统的畸变值,从而提高了红外光学系统的图像清晰度,实施例3给出的红外光学系统能够实现良好的成像品质,同时,还将红外光学系统的视场角增大至127.8°,实现了超广角的图像采集。
实施例4
以下参照图13至图16描述本申请实施例4的红外光学系统。
图13示出了实施例4的红外光学系统的结构示意图。如图13所示,红外光学系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、红外滤光片L5以及成像面S11。
第一透镜L1的物侧面S1和像侧面S2均为非球面,而且,第一透镜L1的物侧面S1于光轴处为凹面,第一透镜L1的像侧面S2于光轴处为凹面;
第二透镜L2的物侧面S3和像侧面S4均为非球面,而且,第二透镜L2的物侧面S3于光轴处为平面,第二透镜L2的像侧面S4于光轴处为凸面;
第三透镜L3的物侧面S5和像侧面S6均为非球面,而且,第三透镜L3的物侧面S5于光轴处为凸面,第三透镜L3的像侧面S6为凸面;
第四透镜L4的物侧面S7和像侧面S8均为非球面,而且,第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8为凹面;
第一透镜L1与第二透镜L2之间设置有光阑STO,以进一步提高红外光学系统的成像质量。
红外光学系统还包括具有物侧面S9和像侧面S10的红外滤光片L5,第四透镜L4的像侧设置有红外滤光片L5,以便于对红外光线进行过滤,即红外滤光片L5用于将可见光滤除,确保红外光线透过。
表7示出了实施例4的红外光学系统的各透镜的表面类型、曲率半径、厚度、折射率以及圆锥系数,其中,第一透镜L1的物侧面至光学成像系统的成像面S11在光轴上的距离、曲率半径以及厚度的单位均为毫米(mm)。
表7
Figure BDA0002935149050000072
Figure BDA0002935149050000081
由表7可知,在本实施例中,第一透镜L1至第四透镜L4均采用塑料非球面透镜,各非球面面型x由以下公式限定:
Figure BDA0002935149050000082
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表8给出了可用于实施例4中透镜非球面S1至S8的高次项系数A4、A6、A8、A10、A12、A14以及A16。
表8
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.2967547E-02 -4.7727173E-03 9.5543145E-04 -1.3709840E-04 1.1428831E-05 -4.9087760E-07 6.0807328E-09
S2 1.0499985E-01 9.3388236E-02 -8.7478222E-02 2.2108498E-02 1.1592954E-01 -1.1838791E-01 4.0118986E-02
S3 4.2945575E-03 -1.5784606E-01 6.2027564E-01 -1.2613500E+00 1.3616846E+00 -7.5510785E-01 1.6757947E-01
S4 -1.6699116E-01 2.9228440E-01 -5.4880141E-01 6.5239843E-01 -4.7279638E-01 1.8586004E-01 -3.0745831E-02
S5 9.8753435E-02 -7.0908805E-02 2.0923120E-02 8.8403958E-03 -1.0156712E-02 3.2947467E-03 -3.8147593E-04
S6 -1.8136897E-01 1.7456939E-01 -8.9421213E-02 2.4205934E-02 -8.2912065E-04 -1.0985539E-03 1.7290689E-04
S7 -2.5811136E-01 1.3810543E-01 -9.7744195E-02 4.2156315E-02 -1.0178791E-02 7.3478298E-04 4.3344085E-05
S8 -9.3745751E-02 1.6336614E-02 -1.6190072E-04 -8.0710801E-04 1.8367416E-04 -1.6653098E-05 5.7976785E-07
结合表7和表8中的数据可知,实施例4中的红外光学系统满足:
Fno×sin(DFOV)=1.190,其中,Fno表示光圈,DFOV表示对角线对应的视场角;
R11/R32=4.962,其中,R11表示所述第一透镜物侧面的曲率半径,R32为所述第三透镜像侧面的曲率半径;
|f/f2|+|f/f4|=0.906,其中,f表示所述红外成像系统的焦距,f2表示所述第二透镜的焦距,f4表示所述第四透镜的焦距;
R31/f3=1.100,其中,R31表示所述第三透镜物侧面的曲率半径,f3表示所述第三透镜的焦距;
AG23/CT3=0.083,其中,AG23表示所述第二透镜和第三透镜在光轴上的空气间隔,CT3表示所述第三透镜在光轴上的中心厚度;
TTL/BFL=11.116,其中,TTL表示所述红外成像系统的光学总长,BFL表示所述红外成像系统的后焦距。
图14示出了实施例4的红外光学系统的球差曲线,其分别表示波长为830nm、850nm以及870nm的光线经由红外光学系统后的会聚焦点偏离;图15示出了实施例4的红外光学系统在850nm波长的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图16示出了实施例4的红外光学系统在850nm波长的畸变曲线,其表示不同像高情况下的畸变率。根据图14至图16可知,对红外光学系统的畸变值进行了有效畸变矫正,即减小了红外光学系统的畸变值,从而提高了红外光学系统的图像清晰度,实施例4给出的红外光学系统能够实现良好的成像品质,同时,还将红外光学系统的视场角增大至110.3°,实现了超广角的图像采集。
实施例5
以下参照图17至图20描述本申请实施例5的红外光学系统。
图17示出了实施例5的红外光学系统的结构示意图。如图17所示,红外光学系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、红外滤光片L5以及成像面S11。
第一透镜L1的物侧面S1和像侧面S2均为非球面,而且,第一透镜L1的物侧面S1于光轴处为凹面,第一透镜L1的像侧面S2于光轴处为凹面;
第二透镜L2的物侧面S3和像侧面S4均为非球面,而且,第二透镜L2的物侧面S3于光轴处为平面,第二透镜L2的像侧面S4于光轴处为凸面;
第三透镜L3的物侧面S5和像侧面S6均为非球面,而且,第三透镜L3的物侧面S5于光轴处为凸面,第三透镜L3的像侧面S6为凸面;
第四透镜L4的物侧面S7和像侧面S8均为非球面,而且,第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8为凹面;
第一透镜L1与第二透镜L2之间设置有光阑STO,以进一步提高红外光学系统的成像质量。
红外光学系统还包括具有物侧面S9和像侧面S10的红外滤光片L5,第四透镜L4的像侧设置有红外滤光片L5,以便于对红外光线进行过滤,即红外滤光片L5用于将可见光滤除,确保红外光线透过。
表9示出了实施例5的红外光学系统的各透镜的表面类型、曲率半径、厚度、折射率以及圆锥系数,其中,第一透镜L1的物侧面至光学成像系统的成像面S11在光轴上的距离、曲率半径以及厚度的单位均为毫米(mm)。
表9
Figure BDA0002935149050000091
由表9可知,在本实施例中,第一透镜L1至第四透镜L4均采用塑料非球面透镜,各非球面面型x由以下公式限定:
Figure BDA0002935149050000092
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表10给出了可用于实施例5中透镜非球面S1至S8的高次项系数A4、A6、A8、A10、A12、A14以及A16。
表10
Figure BDA0002935149050000093
Figure BDA0002935149050000101
结合表9和表10中的数据可知,实施例5中的红外光学系统满足:
Fno×sin(DFOV)=1.169,其中,Fno表示光圈,DFOV表示对角线对应的视场角;
R11/R32=0.538,其中,R11表示所述第一透镜物侧面的曲率半径,R32为所述第三透镜像侧面的曲率半径;
|f/f2|+|f/f4|=1.373,其中,f表示所述红外成像系统的焦距,f2表示所述第二透镜的焦距,f4表示所述第四透镜的焦距;
R31/f3=0.327,其中,R31表示所述第三透镜物侧面的曲率半径,f3表示所述第三透镜的焦距;
AG23/CT3=0.089,其中,AG23表示所述第二透镜和第三透镜在光轴上的空气间隔,CT3表示所述第三透镜在光轴上的中心厚度;
TTL/BFL=10.403,其中,TTL表示所述红外成像系统的光学总长,BFL表示所述红外成像系统的后焦距。
图18示出了实施例5的红外光学系统的球差曲线,其分别表示波长为830nm、850nm以及870nm的光线经由红外光学系统后的会聚焦点偏离;图19示出了实施例5的红外光学系统在850nm波长的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图20示出了实施例5的红外光学系统在850nm波长的畸变曲线,其表示不同像高情况下的畸变率。根据图18至图20可知,对红外光学系统的畸变值进行了有效畸变矫正,即减小了红外光学系统的畸变值,从而提高了红外光学系统的图像清晰度,实施例5给出的红外光学系统能够实现良好的成像品质,同时,还将红外光学系统的视场角增大至114.2°,实现了超广角的图像采集。
实施例6
以下参照图21至图24描述本申请实施例6的红外光学系统。
图21示出了实施例6的红外光学系统的结构示意图。如图21所示,红外光学系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、红外滤光片L5以及成像面S11。
第一透镜L1的物侧面S1和像侧面S2均为非球面,而且,第一透镜L1的物侧面S1于光轴处为凹面,第一透镜L1的像侧面S2于光轴处为凹面;
第二透镜L2的物侧面S3和像侧面S4均为非球面,而且,第二透镜L2的物侧面S3于光轴处为平面,第二透镜L2的像侧面S4于光轴处为凸面;
第三透镜L3的物侧面S5和像侧面S6均为非球面,而且,第三透镜L3的物侧面S5于光轴处为凸面,第三透镜L3的像侧面S6为凸面;
第四透镜L4的物侧面S7和像侧面S8均为非球面,而且,第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8为凹面;
第一透镜L1与第二透镜L2之间设置有光阑STO,以进一步提高红外光学系统的成像质量。
红外光学系统还包括具有物侧面S9和像侧面S10的红外滤光片L5,第四透镜L4的像侧设置有红外滤光片L5,以便于对红外光线进行过滤,即红外滤光片L5用于将可见光滤除,确保红外光线透过。
表11示出了实施例6的红外光学系统的各透镜的表面类型、曲率半径、厚度、折射率以及圆锥系数,其中,第一透镜L1的物侧面至光学成像系统的成像面S11在光轴上的距离、曲率半径以及厚度的单位均为毫米(mm)。
表11
Figure BDA0002935149050000102
Figure BDA0002935149050000111
由表11可知,在本实施例中,第一透镜L1至第四透镜L4均采用塑料非球面透镜,各非球面面型x由以下公式限定:
Figure BDA0002935149050000112
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表12给出了可用于实施例6中透镜非球面S1至S8的高次项系数A4、A6、A8、A10、A12、A14以及A16。
表12
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.4458060E-02 -4.9414870E-03 9.4589887E-04 -1.3430759E-04 1.1520834E-05 -4.9988703E-07 6.2462129E-09
S2 8.6547896E-02 8.8496385E-02 -8.8946740E-02 8.2490659E-03 1.1513298E-01 -1.0294132E-01 2.9221467E-02
S3 1.5129272E-02 -1.4625674E-01 6.1076665E-01 -1.2459046E+00 1.3474618E+00 -7.4655187E-01 1.6552617E-01
S4 -1.4688072E-01 2.9055821E-01 -5.4744816E-01 6.5219169E-01 -4.7298014E-01 1.8700573E-01 -3.1566511E-02
S5 1.0922018E-01 -7.3275119E-02 2.3139370E-02 6.3435760E-03 -8.9139472E-03 3.0388647E-03 -3.6313416E-04
S6 -1.6091224E-01 1.6225401E-01 -8.5216298E-02 2.3801260E-02 -1.4013597E-03 -8.1289611E-04 1.3774898E-04
S7 -2.4414308E-01 1.4283808E-01 -1.0089333E-01 4.2734935E-02 -1.0066614E-02 7.5656871E-04 4.3770148E-05
S8 -1.0247584E-01 1.6641726E-02 -2.7753269E-05 -7.7643809E-04 1.8079884E-04 -1.8393152E-05 7.4733305E-07
结合表11和表12中的数据可知,实施例6中的红外光学系统满足:
Fno×sin(DFOV)=1.168,其中,Fno表示光圈,DFOV表示对角线对应的视场角;
R11/R32=1.792,其中,R11表示所述第一透镜物侧面的曲率半径,R32为所述第三透镜像侧面的曲率半径;
|f/f2|+|f/f4|=0.820,其中,f表示所述红外成像系统的焦距,f2表示所述第二透镜的焦距,f4表示所述第四透镜的焦距;
R31/f3=1.956,其中,R31表示所述第三透镜物侧面的曲率半径,f3表示所述第三透镜的焦距;
AG23/CT3=0.107,其中,AG23表示所述第二透镜和第三透镜在光轴上的空气间隔,CT3表示所述第三透镜在光轴上的中心厚度;
TTL/BFL=11.644,其中,TTL表示所述红外成像系统的光学总长,BFL表示所述红外成像系统的后焦距。
图22示出了实施例6的红外光学系统的球差曲线,其分别表示波长为830nm、850nm以及870nm的光线经由红外光学系统后的会聚焦点偏离;图23示出了实施例6的红外光学系统在850nm波长的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图24示出了实施例6的红外光学系统在850nm波长的畸变曲线,其表示不同像高情况下的畸变率。根据图22至图24可知,对红外光学系统的畸变值进行了有效畸变矫正,即减小了红外光学系统的畸变值,从而提高了红外光学系统的图像清晰度,实施例6给出的红外光学系统能够实现良好的成像品质,同时,还将红外光学系统的视场角增大至111.9°,实现了超广角的图像采集。
实施例7
以下参照图25至图28描述本申请实施例7的红外光学系统。
图25示出了实施例7的红外光学系统的结构示意图。如图25所示,红外光学系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、红外滤光片L5以及成像面S11。
第一透镜L1的物侧面S1和像侧面S2均为非球面,而且,第一透镜L1的物侧面S1于光轴处为凹面,第一透镜L1的像侧面S2于光轴处为凹面;
第二透镜L2的物侧面S3和像侧面S4均为非球面,而且,第二透镜L2的物侧面S3于光轴处为平面,第二透镜L2的像侧面S4于光轴处为凸面;
第三透镜L3的物侧面S5和像侧面S6均为非球面,而且,第三透镜L3的物侧面S5于光轴处为凸面,第三透镜L3的像侧面S6为凸面;
第四透镜L4的物侧面S7和像侧面S8均为非球面,而且,第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8为凹面;
第一透镜L1与第二透镜L2之间设置有光阑STO,以进一步提高红外光学系统的成像质量。
红外光学系统还包括具有物侧面S9和像侧面S10的红外滤光片L5,第四透镜L4的像侧设置有红外滤光片L5,以便于对红外光线进行过滤,即红外滤光片L5用于将可见光滤除,确保红外光线透过。
表13示出了实施例7的红外光学系统的各透镜的表面类型、曲率半径、厚度、折射率以及圆锥系数,其中,第一透镜L1的物侧面至光学成像系统的成像面S11在光轴上的距离、曲率半径以及厚度的单位均为毫米(mm)。
表13
Figure BDA0002935149050000121
由表13可知,在本实施例中,第一透镜L1至第四透镜L4均采用塑料非球面透镜,各非球面面型x由以下公式限定:
Figure BDA0002935149050000122
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表14给出了可用于实施例7中透镜非球面S1至S8的高次项系数A4、A6、A8、A10、A12、A14以及A16。
表14
Figure BDA0002935149050000123
Figure BDA0002935149050000131
结合表13和表14中的数据可知,实施例7中的红外光学系统满足:
Fno×sin(DFOV)=1.146,其中,Fno表示光圈,DFOV表示对角线对应的视场角;
R11/R32=0.897,其中,R11表示所述第一透镜物侧面的曲率半径,R32为所述第三透镜像侧面的曲率半径;
|f/f2|+|f/f4|=0.919,其中,f表示所述红外成像系统的焦距,f2表示所述第二透镜的焦距,f4表示所述第四透镜的焦距;
R31/f3=1.112,其中,R31表示所述第三透镜物侧面的曲率半径,f3表示所述第三透镜的焦距;
AG23/CT3=0.070,其中,AG23表示所述第二透镜和第三透镜在光轴上的空气间隔,CT3表示所述第三透镜在光轴上的中心厚度;
TTL/BFL=14.594,其中,TTL表示所述红外成像系统的光学总长,BFL表示所述红外成像系统的后焦距。
图26示出了实施例7的红外光学系统的球差曲线,其分别表示波长为830nm、850nm以及870nm的光线经由红外光学系统后的会聚焦点偏离;图27示出了实施例7的红外光学系统在850nm波长的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图28示出了实施例7的红外光学系统在850nm波长的畸变曲线,其表示不同像高情况下的畸变率。根据图25至图28可知,对红外光学系统的畸变值进行了有效畸变矫正,即减小了红外光学系统的畸变值,从而提高了红外光学系统的图像清晰度,实施例7给出的红外光学系统能够实现良好的成像品质,同时,还将红外光学系统的视场角增大至116.9°,实现了超广角的图像采集。
本发明还提供了一种红外成像模组,包括感光件以及上述中任一实施例所述的红外光学系统,所述感光件位于所述红外光学系统的像侧。
与现有技术相比,本发明具有以下优点:
通过选取数量较少的透镜,并且,通过对第三透镜的物侧面以及像侧面的形状进行限定,即第三透镜的物侧面以及像侧面均为凸面,再根据所满足的光圈与对角线对应的视场角的关系,实现了红外成像以及深度感知、大光圈、大视场角,并具有中心成像质量好、生产成本较低等优点。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种红外成像系统,其特征在于,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜以及第四透镜,第二透镜的像侧表面为凸面,所述第三透镜的物侧表面为凸面,所述第三透镜的像侧表面为凸面,
其中,光圈为Fno,对角线对应的视场角为DFOV,且满足下列关系式:
0.9<Fno×sin(DFOV)<1.2。
2.根据权利要求1所述的一种红外成像系统,其特征在于,所述第一透镜物侧面的曲率半径为R11,所述第三透镜像侧面的曲率半径为R32,且满足下列关系式:
0<R11/R32<5。
3.根据权利要求1所述的一种红外成像系统,其特征在于,所述红外成像系统的焦距为f,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,且满足下列关系式:
0.8<|f/f2|+|f/f4|<1.4。
4.根据权利要求1所述的一种红外成像系统,其特征在于,所述第三透镜物侧面的曲率半径为R31,所述第三透镜的焦距为f3,且满足下列关系式:
0<R31/f3<2。
5.根据权利要求1所述的一种红外成像系统,其特征在于,所述第二透镜和第三透镜在光轴上的空气间隔为AG23,所述第三透镜在光轴上的中心厚度为CT3,且满足下列关系式:
0<AG23/CT3<0.11。
6.根据权利要求1所述的一种红外成像系统,其特征在于,所述红外成像系统的光学总长为TTL,所述红外成像系统的后焦距为BFL,且满足下列关系式:
9<TTL/BFL<15。
7.一种红外成像模组,其特征在于,包括感光件以及权利要求1-6任意一项所述的红外光学系统,所述感光件位于所述红外光学系统的像侧。
CN202110160156.6A 2021-02-05 2021-02-05 一种红外镜头以及红外成像模组 Active CN112946861B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110160156.6A CN112946861B (zh) 2021-02-05 2021-02-05 一种红外镜头以及红外成像模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110160156.6A CN112946861B (zh) 2021-02-05 2021-02-05 一种红外镜头以及红外成像模组

Publications (2)

Publication Number Publication Date
CN112946861A true CN112946861A (zh) 2021-06-11
CN112946861B CN112946861B (zh) 2023-02-24

Family

ID=76242452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110160156.6A Active CN112946861B (zh) 2021-02-05 2021-02-05 一种红外镜头以及红外成像模组

Country Status (1)

Country Link
CN (1) CN112946861B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321509A (ja) * 1999-05-07 2000-11-24 Nikon Corp 非球面接眼レンズ
US20040257677A1 (en) * 2003-06-19 2004-12-23 Minolta Co., Ltd. Image-taking apparatus, and camera and camera system incorporating it
CN103765292A (zh) * 2011-08-25 2014-04-30 理光光学有限公司 目镜系统及图像观察装置
CN107305280A (zh) * 2016-04-22 2017-10-31 先进光电科技股份有限公司 光学成像系统
JP2018077291A (ja) * 2016-11-07 2018-05-17 京セラオプテック株式会社 撮像レンズ
CN108254858A (zh) * 2016-12-28 2018-07-06 株式会社腾龙 光学系统及拍摄装置
CN208818918U (zh) * 2018-08-06 2019-05-03 中山市众盈光学有限公司 一种新型广角成像镜头光学系统
CN110045488A (zh) * 2019-05-24 2019-07-23 浙江舜宇光学有限公司 光学成像镜头
CN209417405U (zh) * 2019-01-04 2019-09-20 江西特莱斯光学有限公司 一种大光圈近红外无畸变镜头
CN110308544A (zh) * 2018-03-27 2019-10-08 宁波舜宇车载光学技术有限公司 光学镜头
CN110333595A (zh) * 2019-06-24 2019-10-15 江西联益光学有限公司 一种成像透镜系统
CN210155395U (zh) * 2019-08-07 2020-03-17 东莞市宇瞳光学科技股份有限公司 一种定焦镜头
CN111025565A (zh) * 2019-12-26 2020-04-17 辽宁中蓝光电科技有限公司 光学镜头
CN111352216A (zh) * 2018-12-20 2020-06-30 大立光电股份有限公司 成像镜片系统、辨识模块及电子装置
CN111999850A (zh) * 2019-05-27 2020-11-27 宁波舜宇车载光学技术有限公司 光学镜头及成像设备

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321509A (ja) * 1999-05-07 2000-11-24 Nikon Corp 非球面接眼レンズ
US20040257677A1 (en) * 2003-06-19 2004-12-23 Minolta Co., Ltd. Image-taking apparatus, and camera and camera system incorporating it
CN103765292A (zh) * 2011-08-25 2014-04-30 理光光学有限公司 目镜系统及图像观察装置
CN107305280A (zh) * 2016-04-22 2017-10-31 先进光电科技股份有限公司 光学成像系统
JP2018077291A (ja) * 2016-11-07 2018-05-17 京セラオプテック株式会社 撮像レンズ
CN108254858A (zh) * 2016-12-28 2018-07-06 株式会社腾龙 光学系统及拍摄装置
CN110308544A (zh) * 2018-03-27 2019-10-08 宁波舜宇车载光学技术有限公司 光学镜头
CN208818918U (zh) * 2018-08-06 2019-05-03 中山市众盈光学有限公司 一种新型广角成像镜头光学系统
CN111352216A (zh) * 2018-12-20 2020-06-30 大立光电股份有限公司 成像镜片系统、辨识模块及电子装置
CN209417405U (zh) * 2019-01-04 2019-09-20 江西特莱斯光学有限公司 一种大光圈近红外无畸变镜头
CN110045488A (zh) * 2019-05-24 2019-07-23 浙江舜宇光学有限公司 光学成像镜头
CN111999850A (zh) * 2019-05-27 2020-11-27 宁波舜宇车载光学技术有限公司 光学镜头及成像设备
CN110333595A (zh) * 2019-06-24 2019-10-15 江西联益光学有限公司 一种成像透镜系统
CN210155395U (zh) * 2019-08-07 2020-03-17 东莞市宇瞳光学科技股份有限公司 一种定焦镜头
CN111025565A (zh) * 2019-12-26 2020-04-17 辽宁中蓝光电科技有限公司 光学镜头

Also Published As

Publication number Publication date
CN112946861B (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
CN103472568B (zh) 取像光学系统镜组
CN107942476B (zh) 成像光学系统以及取像装置
CN111624738A (zh) 光学系统、镜头模组及终端设备
CN110967811B (zh) 摄像光学镜头
CN108828751B (zh) 影像撷取镜组及取像装置
CN113805310A (zh) 光学系统、取像模组及电子设备
CN113946038A (zh) 光学镜头、摄像模组及电子设备
CN114815181A (zh) 光学系统、镜头模组及电子设备
CN110955022A (zh) 摄像光学镜头
CN112799211B (zh) 光学系统、取像模组及电子设备
CN113156612B (zh) 光学系统、取像模组及电子设备
CN112684586B (zh) 光学系统、摄像头模组及终端设备
CN113625425A (zh) 光学镜头、摄像模组及电子设备
CN113296237A (zh) 光学系统、取像模组及电子设备
CN113189748A (zh) 光学系统、取像模组及电子设备
CN111025557B (zh) 摄像光学镜头
CN114675407B (zh) 光学系统、镜头模组及电子设备
CN113391429B (zh) 光学系统、摄像头模组及电子设备
CN212543902U (zh) 一种光学镜头、摄像模组及电子设备
CN213903931U (zh) 光学镜头、摄像模组及电子设备
CN213023743U (zh) 光学成像系统以及具有其的取像装置
CN112946861B (zh) 一种红外镜头以及红外成像模组
CN113568143A (zh) 光学系统、取像模组及电子设备
CN114326019A (zh) 光学系统、取像模组及电子设备
CN112764203A (zh) 光学镜头、摄像头模组及电子装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 516000 hanyabei section, Ganpi village, Zhenlong Town, Huiyang District, Huizhou City, Guangdong Province

Patentee after: Guangdong Xingjuyu Optical Co.,Ltd.

Address before: 516200 hanyabei section, longganpo village, Huiyang District, Huizhou City, Guangdong Province

Patentee before: HUIZHOU XINGJUYU OPTICAL CO.,LTD.

CP03 Change of name, title or address