CN1129353A - 高强度导电性聚噻吩薄膜、薄膜二极管及其制备方法 - Google Patents

高强度导电性聚噻吩薄膜、薄膜二极管及其制备方法 Download PDF

Info

Publication number
CN1129353A
CN1129353A CN95110939.1A CN95110939A CN1129353A CN 1129353 A CN1129353 A CN 1129353A CN 95110939 A CN95110939 A CN 95110939A CN 1129353 A CN1129353 A CN 1129353A
Authority
CN
China
Prior art keywords
electrode
film
polythiophene
thin film
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN95110939.1A
Other languages
English (en)
Inventor
薛奇
石高全
金士
于波
吉敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN95110939.1A priority Critical patent/CN1129353A/zh
Publication of CN1129353A publication Critical patent/CN1129353A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

高强度导电性聚噻吩、聚噻吩二极管及其在非贵金属基质上的制备方法,属于导电高分子领域。将噻吩溶于重蒸过的三氟化硼乙醚中,加入微量水,Ag/AgCl为参比电极,工作电极和对电极都可为下述金属或合金的一种或两种(不锈钢、铝、锌、铅、镍、铂、金),电解在惰性气氛下进行。电解电位为1.1-1.4伏,或恒电流法电流密度为0.1-5毫安/平方厘米,电极时间为600秒到30000秒,制得高强度、高致密度、高电导率的聚噻吩薄膜,并可制成聚噻吩二极管。该膜的沿膜平面方向上的电导率为50-200西门子/厘米,抗拉强度大于1000公斤/平方厘米,可用于电子器件、可充电池、电色器件、化学传感器。

Description

高强度导电性聚噻吩薄膜、薄膜二极管及其制备方法
属导电高分子领域
共轭聚合物在可充电池、电色器件、电光器件等领域中有着广泛的应用前景。聚噻吩是共轭导电聚合物的一种。目前,无论是化学合成还是电化学方法制得的聚噻吩都是粉末状或强度很差的固体(抗拉强度小于50公斤/平方厘米)。在电化学聚合制备聚噻吩时,所用电解质溶液通常是含有支持电解质的非水溶剂如:乙腈、硝基苯、苯甲腈、碳酸丙烯酯或一定浓度的高氯酸(5M)溶液。在这些非水溶液中,噻吩的氧化电位高达1.65伏(对甘汞电极),因而在这些非水溶剂中,只能以贵金属作为工作基质,而且由于聚噻吩在此电位下的降解,无法得到高质量(高强度、高致密性)的膜;而在高氯酸溶液中,噻吩的氧化电位虽然已降至0.9伏(对甘汞电极),但由于在如此强的质子酸溶液中,大部分的常见金属都很不稳定,所以也需要以贵金属作为工作电极,而且得到的聚合物的强度及电导率皆不高。
参考文献:(1)R.J.Wattman;J.Bargon;A.F.Diaz,J.Phys.Chem.,87,1459,(1983)(2)K.Kaneto,Y.Kohno,K.Yoshino,Y.Inuishi,J.Chem.soc.,Chem.Commun,382,1983(3)S.Tanaka,M.Sato,K.Kaeriyama,Makromol.Chem.185,1295,1984(4)M.sato,S.Tanaka,K.Kaeriyama,Synth.Met.14,279,1986(5)E.-A.Bazzaoui,S.Aeiyach and P.C.Lac,J.Electroanal.Chem.364,63,(1994)
本发明的目的是用纯的三氟化硼乙醚作为单一组份电解质,在有微量水存在时,用非贵金属或贵金属作工作电极电化学聚合噻吩得到高强度、高电导率聚噻吩膜,该膜具有极好的致密性,可以用控制电位电解的方法制成有机PN结二极管。本发明是这样实现的:
电化学系统是由经典的三电极电解池连接与电化学分析仪上组成的。所有的电解过程都在惰性气氛下进行。工作电极为不锈钢片(或铝、锌、镍、铅或者贵金属如铂、金等),参比电极为Ag/AgCl电极。化学纯的三氟化硼乙醚重蒸后使用,噻吩在惰性气氛下重蒸后使用。将噻吩溶于三氟化硼乙醚中,加入微量水,然后在恒电位1.1-1.4伏,恒电流0.1毫安/平方厘米电解聚合约600-30000秒得聚噻吩膜。
①聚合物剥离电极表面后,以乙醚洗去残留的三氟化硼乙醚,在50℃下真空干燥5小时进行电导率及抗拉强度测试。所得薄膜电导率测试是以常规四探针技术进行的(ASTM B19 3-78)。
②为制备薄膜二极管,以乙腈洗去电极及末剥离聚合物膜上残留的三氟化硼乙醚,在含有0.1摩尔/升高氯酸锂的乙腈溶液中,惰性气氛下,Ag/AgCl为参比电极,金属铂为对电极,于-2.2伏电解1分钟后,得到聚噻吩薄膜二极管,在50℃下真空干燥5小时进行电压一电流关系测定。本发明具有的优点:
本发明使用电解质为三氟化硼乙醚,不加任何支持电解质,电流效率高(可达97%);使用非贵金属作为电极,使大规模的工业生产成为可能;制出的聚噻吩膜非常致密,可制成PN结二极管,并具有高的电导率和极高的抗拉强度。机械抗拉强度超过金属铝。
实现本发明的最佳方案举例如下:
例一:0.1毫升的噻吩溶于30毫升三氟化硼乙醚中,加入0.01毫升水,以不锈钢为工作电极,在1.2伏(对Ag/AgCl电极)电解8000秒,在电极上生成棕色的薄膜,将薄膜剥离电极,以乙醚洗涤以后,在50℃下真空干燥5小时,以直流四探针方法测得在薄膜平面方向上的电导率为不小于150西门子/平方厘米,该膜的抗拉强度不低于1400公斤/平方厘米,大于铝的抗拉强度(1050公斤/平方厘米)
例二:0.1毫升噻吩溶于30毫升三氟化硼乙醚中,加入0.01毫升水,在1毫安/平方厘米的电流密度下恒电流电解约6000秒(不锈钢为工作电极和对电极,Ag/AgCl为参比电极)后,以乙腈洗去电极和薄膜上残留的三氟化硼乙醚,然后以金属铂作为对电极,含有0.1摩尔/升高氯酸锂的乙腈为电解液,与-2.2伏(对Ag/AgCl电极)电解1分钟,将薄膜剥离电极,在50℃下真空干燥5小时后,测得其电压一电流曲线符合二极管特性(反向电流极小,导通电压约为0.7伏)
本发明可能应用:在非贵金属表面制备导电性聚噻吩薄膜使工业化成为可能。高强度聚噻吩可用于电子器件、可充电池、电色器件、化学传感器等,聚噻吩PN结薄膜二极管可用于微电子器件。

Claims (2)

  1. 高强度导电性聚噻吩薄膜、薄膜二极管及其在非贵金属表面的制备方法,属导电高分子材料领域。
    1.高强度聚噻吩薄膜。其平面方向的电导率不低于150西门子/厘米,抗拉强度不低于1400公斤/平方厘米。表面非常致密,可制成薄膜二极管。
  2. 2.高强度导电聚噻吩薄膜的制备方法。在惰性气氛下,将噻吩溶于三氟化硼乙醚中,工作电极及对电极均可为不锈钢、铝、锌、铅、镍、铂、金中的一种或两种,参比电极为Ag/AgCl电极,以恒电流(0.1毫安/平方厘米)和恒电位(1.1-1.4伏)方式进行,电解时间为600到30000秒。
CN95110939.1A 1995-02-16 1995-02-16 高强度导电性聚噻吩薄膜、薄膜二极管及其制备方法 Pending CN1129353A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN95110939.1A CN1129353A (zh) 1995-02-16 1995-02-16 高强度导电性聚噻吩薄膜、薄膜二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN95110939.1A CN1129353A (zh) 1995-02-16 1995-02-16 高强度导电性聚噻吩薄膜、薄膜二极管及其制备方法

Publications (1)

Publication Number Publication Date
CN1129353A true CN1129353A (zh) 1996-08-21

Family

ID=5078266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95110939.1A Pending CN1129353A (zh) 1995-02-16 1995-02-16 高强度导电性聚噻吩薄膜、薄膜二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN1129353A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100489020C (zh) * 2006-11-16 2009-05-20 中国科学院长春应用化学研究所 一种高有序聚噻吩薄膜及其制备方法
CN100533806C (zh) * 2007-08-21 2009-08-26 中国科学院长春应用化学研究所 一种聚合物太阳能电池的制备方法
CN101452842B (zh) * 2007-11-30 2010-10-20 中芯国际集成电路制造(上海)有限公司 一种可减小器件漏电流的金属电极制造方法
CN101235258B (zh) * 2008-02-28 2011-03-30 清华大学 干性粘结聚噻吩微米管阵列复合膜及制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100489020C (zh) * 2006-11-16 2009-05-20 中国科学院长春应用化学研究所 一种高有序聚噻吩薄膜及其制备方法
CN100533806C (zh) * 2007-08-21 2009-08-26 中国科学院长春应用化学研究所 一种聚合物太阳能电池的制备方法
CN101452842B (zh) * 2007-11-30 2010-10-20 中芯国际集成电路制造(上海)有限公司 一种可减小器件漏电流的金属电极制造方法
CN101235258B (zh) * 2008-02-28 2011-03-30 清华大学 干性粘结聚噻吩微米管阵列复合膜及制备方法和应用

Similar Documents

Publication Publication Date Title
Tallman et al. Direct electrodeposition of polypyrrole on aluminum and aluminum alloy by electron transfer mediation
Honda et al. Prussian Blue containing nafion composite film as rechargeable battery
Jayashree et al. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells
Choi et al. Electrochemistry of conductive polymers. XXVI. Effects of electrolytes and growth methods on polyaniline morphology
He et al. Conjugated polymers for corrosion control: scanning vibrating electrode studies of polypyrrole-aluminum alloy interactions
Akundy et al. Polypyrrole coatings on aluminum—synthesis and characterization
Prasad et al. Potentiodynamically deposited polyaniline on stainless steel: inexpensive, high-performance electrodes for electrochemical supercapacitors
Osaka et al. Effect of PF 6− Anion on the Properties of Lithium‐Polypyrrole Battery during Polypyrrole Film Formation
Liao et al. Electroless deposition of polyaniline film via autocatalytic polymerization of aniline
JP2001514331A (ja) 複合ポリマー−酸化金属の電気化学的付着
Tsai et al. Copper nanoparticles with copper hexacyanoferrate and poly (3, 4-ethylenedioxythiophene) hybrid film modified electrode for hydrogen peroxide detection
Neves et al. Influence of template synthesis on the performance of polyaniline cathodes
Saterlay et al. Lead dioxide deposition and electrocatalysis at highly boron-doped diamond electrodes in the presence of ultrasound
Jurevičiūtė et al. Polyaniline-modified electrode as an amperometric ascorbate sensor
Ghaemi et al. New advances on bipolar rechargeable alkaline manganese dioxide–zinc batteries
CN1129353A (zh) 高强度导电性聚噻吩薄膜、薄膜二极管及其制备方法
Grgur et al. Polyaniline as possible anode materials for the lead acid batteries
Asnavandi et al. Controlled electrodeposition of nanostructured Pd thin films from protic ionic liquids for electrocatalytic oxygen reduction reactions
Paddon et al. Underpotential deposition of lithium on platinum single crystal electrodes in tetrahydrofuran
Jiang Fabrication of uniform nanoparticulate gold through potential-modulated electrochemical deposition and dissolution of silver in ionic liquids
Cheraghi et al. Chemical and electrochemical deposition of conducting polyaniline on lead
Istakova et al. Efficiency of pyrrole electropolymerization under various conditions
Ashley et al. Properties of electrochemically generated poly (p-phenylene)
Tsakova et al. Nucleation of silver on a polyaniline-coated platinum electrode
Matveeva et al. Direct involvement of acid centers of polyaniline in charge transfer on organic acceptor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication