CN112933293B - 一种治疗中枢神经损伤的可注射水凝胶及其制备方法 - Google Patents

一种治疗中枢神经损伤的可注射水凝胶及其制备方法 Download PDF

Info

Publication number
CN112933293B
CN112933293B CN202011228988.9A CN202011228988A CN112933293B CN 112933293 B CN112933293 B CN 112933293B CN 202011228988 A CN202011228988 A CN 202011228988A CN 112933293 B CN112933293 B CN 112933293B
Authority
CN
China
Prior art keywords
polyethylene glycol
hydrogel
growth factor
arm polyethylene
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011228988.9A
Other languages
English (en)
Other versions
CN112933293A (zh
Inventor
王绪化
陈作兵
叶婧佳
靳爽
蔡万雄
张天芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011228988.9A priority Critical patent/CN112933293B/zh
Priority to PCT/CN2020/131330 priority patent/WO2022095151A1/zh
Publication of CN112933293A publication Critical patent/CN112933293A/zh
Application granted granted Critical
Publication of CN112933293B publication Critical patent/CN112933293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/426Immunomodulating agents, i.e. cytokines, interleukins, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/32Materials or treatment for tissue regeneration for nerve reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种治疗中枢神经损伤的可原位注射水凝胶及其制备方法,所述水凝胶以精氨酸‑甘氨酸‑天冬氨酸修饰过的多臂聚乙二醇‑X与多臂聚乙二醇‑Y通过官能团对X‑Y点击化学偶联而形成,所述水凝胶内包覆有通过化学偶联反应负载在其上的缓释免疫调节和/或抗氧化药物的纳米/微米粒子与生长因子。本发明注射水凝胶在损伤部位局部精确缓释免疫调节和/或抗氧化药物与生长因子,阻止了脊髓损伤后囊性空腔的形成,减轻了神经炎症导致的二次损伤,保护了残留的脊髓神经组织和轴突,减少了胶质瘢痕组织的形成,为本体神经轴突的再生提供了一种可穿透性的细胞外基质环境,进而促进电生理和运动功能的恢复,可用于脊髓等软组织损伤的修复。

Description

一种治疗中枢神经损伤的可注射水凝胶及其制备方法
技术领域
本发明涉及软组织修复工程技术领域,具体涉及一种治疗脊髓损伤的可注射水凝胶 的制备及应用。
背景技术
脊髓损伤(SCI)是一种严重致残性疾病,往往导致损伤节段以下肢体严重的生理功能障碍。据统计分析每年世界范围内SCI的发生概率是40-50人每百万人,目前全世 界有超过2700万患者遭受瘫痪等后遗症的折磨,其中中国约有400万患者,并以每年 12万左右的速度增加。
SCI导致的严重神经炎症反应会诱导损伤部位神经元的凋亡产生有毒的细胞残体, 进而破坏那些病灶附近未受物理损伤的脊髓组织,这些病理改变最终破坏了连接大脑和 脊髓的神经环路,导致患者永久性的感觉和运动功能障碍,甚至出现致命的并发症,从而极大地影响患者的生命及其生活质量(Young et al.,1993,J Emerg Med)。最近的治疗SCI的临床试验发现,全身性的甲基强的松龙激素冲击疗法没有显示任何显著的好处, 甚至有一些是有害的(Liu et al.,2019,Neurology;Fehlings et al.,2014,Neurosurgery;Hurlbert et al.,2000,J Neurosurg)。最近的研究发现,急性期的神经炎症信号也可能是有益的,因为它能促进坏死细胞碎片的清除,维持组织稳态,并限制进一步的组织/轴突 损伤(Bellver-Lndete et al.,2019,Nat Comm;Anderson et al.,2016,Nature;Aguzzi etal.2013,Science;Donnelly et al.,2008,Exp Neurol)。实验证明中枢神经创伤导致的神经炎症信号随着疾病的进展是一个动态的过程。急性SCI期(1-3天)神经炎症信号介 导坏死细胞碎片的清除,帮助脊髓组织的修复,在3-7天时神经炎症反应在达到高峰, 引起神经元和胶质细胞凋亡,进而导致后急性期(1-2周)抑制神经再生的囊腔空腔及 星形胶质瘢痕形成(David et al,2011,Nat Rev Neurol;Simon et al.,2017,Nat Rev Neurol)。因此,如何通过组织工程技术在精确的时间节点调节过度的神经炎性反应,既 不影响坏死细胞碎片的清除,组织的修复,又保护残存的神经组织免受过度炎症反应的 侵害及减少抑制神经再生的囊性空腔和胶质瘢痕的形成是一个世界性的难题(Donnelly et al.,2008,ExpNeurol;Simon et al.,2017,Nat Rev Neurol)。
最近,人们致力于开发人工脊髓样移植物,通过这种人工脊髓移植,损伤的脊髓神经可通过这种移植再生和介导功能恢复。例如,开发了以神经祖细胞为种子的三维打印 仿生水凝胶脊髓支架,以支持SCI后的神经再生(Koffler et al.,2019/02,Nat.Med.)。目前,以干细胞为种子的方法在细胞资源可得性和安全性方面还存在很大争议(Sing etal., 2013/07,US 8,475,788B2;Abbot et al.,2012/06,US 2012/0156230A1;Wirth IIIet al., 2019/08,US 2019/0262405A1),硬性植入移植物的外科手术容易损伤残存的组织/轴突, 加重功能缺陷(Langer et al,2015/04,US9,440,008B2;Dai et al,2020/05,CN1111109424 A;Dai et al,2019/11,CN 110404078 A;Cheng et al,2019/08,CN110101918 A)。另一方面,为了在手术过程中尽量减少组织损伤,注射合成聚合物原 位形成水凝胶被建议为SCI临床治疗的首选。例如,基于持续递送神经营养因子和重建 必须的细胞外基质(ECM)的方法,提出了可注射材料促进SCI动物模型轴突的再生 的策略(Songet al.,2020/10,US10,799,529B2;Wang et al,2012/12,US8,333,962 B2;Criscione etal.,2016/02,US 2016/0045439 A1;Pritchard et al,2013/12,US 2013/0324500 A1)。尽管这些生物材料具有巨大的潜力,但在这些生物材料的临床治疗 方面取得的成功十分有限,主要是没有综合考虑SCI组织愈合过程中神经炎症微环境的 时空特性,精准调节SCI导致的免疫微环境失衡。
发明内容
针对现有技术存在的问题,本发明提供了一种治疗中枢神经损伤的可注射水凝胶及 其制备方法。根据疾病的进展,该水凝胶能在正确的时间节点,在病灶部位精确缓释免疫调控药物抑制过度的炎症反应,保护残留神经组织或轴突,抑制囊性空腔和瘢痕组织 的形成,并长时间地缓释细胞生长因子,促进神经的再生,从而达到一种无瘢痕的组织 愈合。水凝胶注射可以让脊髓受损后的动物运动功能恢复达到一个较高的水平,而且皮 层电刺激和肌电图记录实验证实脑到肌肉的神经回路的重新建立。本发明开发了一种精 确缓释药物及生长因子的可注射水凝胶体系,有望用于中枢神经损伤的临床治疗。
为解决上述技术问题,本发明采用了以下技术方案:一种治疗中枢神经损伤的可注 射水凝胶,以精氨酸-甘氨酸-天冬氨酸修饰过的多臂聚乙二醇-X与多臂聚乙二醇-Y通过 点击化学反应得到用于病灶原位形成水凝胶支架的聚合物,所述聚合物还负载有纳米/微米粒子和细胞生长因子,所述纳米/微米颗粒负载有免疫调控药物和/或抗氧化药物;
所述多臂聚乙二醇-X和多臂聚乙二醇-Y中发生点击化学反应的官能团对X与Y选自:巯基与马来酰胺基、巯基与烯、叠氮与炔环、共轭双烯与取代烯烃、醛与酰肼、四 嗪与降冰片烯、四嗪与异腈;
所述多臂聚乙二醇-X为4-臂聚乙二醇-X或3-臂聚乙二醇-X;所述多臂聚乙二醇-Y为4-臂聚乙二醇-Y或3-臂聚乙二醇-Y;
所诉多臂聚乙二醇-X与多臂聚乙二醇-Y中聚乙二醇的聚合度n为1-1000。
作为优选方案,所述纳米/微米粒子选自反应基团修饰过的高分子微米/纳米粒子和/ 或脂质体中一种或多种的混合。
作为优选方案,所述纳米/微米粒子采用聚乙烯、明胶、胶原聚乳酸或脂质体粒子中 的一种或多种的混合。
作为优选方案,所述免疫调控类/抗氧化类药物选自甲基强的松龙琥珀酸钠(MPSS)、 异丙嗪、地塞米松、氢化可的松、布洛芬、羟基保泰松、环孢菌素A、藤霉素、硫唑嘌呤、6-巯基嘌呤、环磷酰胺、他克莫司(KF506)、雷帕霉素、霉酚酸脂、茶多酚(TP)、 生育酚、丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)和/或叔丁基对苯二酚(TBHQ) 中一种或多种的混合。
作为优选方案,所述细胞生长因子选自:碱性成纤维生长因子(bFGF)、脑源性神经营养因子(BDNF)、血管内皮生长因子(VEGF)、酸性成纤维生长因子(aFGF)、肝细 胞生长因子(HGF)、睫状神经营养因子(CNTF)、胶质细胞衍生神经营养因子(GDNF)、 神经营养因子-3(NT-3)、表皮生长因子(EGF)、白介素3(IL-3)、转化生长因子 -α(TGF-α)、血小板衍生的生长因子(PDGF)、胰岛素样生长因子-1(IGF-1)、骨 形态发生蛋白(BMP)、结缔组织生长因子(CTGF)、骨桥蛋白(OPN)和/或生 长激素释放因子(GRF)中一种或多种的混合。
本发明还提供了一种优选的上述治疗中枢神经损伤的可注射水凝胶的制备方法,包 括以下步骤:
步骤1:高分子纳米粒子(NP)的合成:在反应容器中,将DMAEMA、ST、 ACLT-PEG-NHS、NaSS、MBA加入水中,然后加入氧化还原引发剂KPS和SPS,在 温度为50±10℃、氮气保护和搅拌下聚合反应3h以上,通过透析膜去除未反应完的单 体得到纳米粒子NP;
步骤2:在纳米粒子NP的表面修饰马来酰亚胺:继续加入摩尔比为1:1~1.1的MAL-NH2和ACLT-PEG-NHS,在搅拌下进行马来酰亚胺改性反应至少1h,继续通过 透析膜去除未反应完单体并冻干,得到冻干的马来酰亚胺改性纳米粒子NP-MAL;
步骤3:NP-MAL粒子负载MPSS:在MPSS的PBS溶液中,加入上述得到的纳 米粒子NP-MAL并静置过夜,然后经过离心收集处理得到负载MPSS的纳米粒子,并 经过冻干处理得到负载MPSS的纳米粒子MM-NPs;
步骤4:生长因子GFs的马来酰亚胺改性:将生长因子GFs按照1:30~70的摩尔 比与sulfo-SMCC混合反应,得到马来酰亚胺改性的生长因子GF-MAL;
步骤5:将4a-PEG-MAL和RGD-PEG-SH按1:1摩尔比混合,得到RGD修饰过 的4a-PEG-MAL,然后加入步骤3得到MM-NPs纳米粒子与步骤4得到的马来酰亚胺 改性的生长因子GF-MAL并混合均匀形成溶液A;
步骤6:溶液B的制备:将4a-PEG-SH溶于缓冲溶液,混合均匀形成溶液B;
步骤7:将步骤5与步骤6中的溶液A和B按1:1比例混合反应,即得到偶联负载 药物的纳米粒子与生长因子的可注射水凝胶MPG-HD。
作为优选方案,步骤1聚合反应中各反应物浓度为5%(w/v)DMAEMA、10%(w/v)ST、3%(w/v)ACLT-PEG-NHS、0.4%(w/v)NaSS、0.4%(w/v)MBA、0.2%(w/v) KPS和0.1%(w/v)SPS;
作为优选方案,步骤2,4,5,6,7提供一对点击化学偶联的官能团巯基与马来酰 胺基,选自:巯基与马来酰胺基、巯基与烯、叠氮与炔环、共轭双烯与取代烯烃、醛 与酰肼;
作为优选方案,步骤3中作为免疫调节或抗氧化药物的MPSS可由异丙嗪、地塞 米松、氢化可的松、布洛芬、羟基保泰松、环孢菌素A、藤霉素、硫唑嘌呤、6-巯基嘌 呤、环磷酰胺、他克莫司(KF506)、雷帕霉素、霉酚酸脂、茶多酚(TP)、生育酚、丁 基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)和/或叔丁基对苯二酚(TBHQ)中一 种或多种的混合代替。
有益效果:本发明开发了一种可注射的空腔填充和ECM形成支架的用于治疗中枢神经损伤的可注射水凝胶MPG-HD,并具有以下效果:1)MPSS在急性期的快速释放 以抑制炎症;2)长时间持续释放GFs以促进轴突再生;3)有效减少了囊性空腔与瘢 痕组织的形成,促进了神经再生;4)皮层刺激和肌电图记录显示神经元从大脑到肌肉 的神经回路连接。
附图说明
图1a为本发明所述马来酰亚胺改性MPSS负载纳米粒子MM-NPs的合成路线图。
图1b为本发明实施例制备的马来酰亚胺改性前纳米粒子NP的微观形貌图。
图1c为本发明实施例制备的马来酰亚胺改性后纳米粒子NP-MAL的微观形貌图。
图1d为本发明实施例制备的马来酰亚胺改性MPSS负载纳米粒子MM-NPs的电 位变化图。
图1e为本发明实施例制备的MM-NPs的粒径分布图。
图1f为本发明实施例制备的MM-NPs表面马来酰亚胺定量图。
图1g为本发明实施例制备的MM-NPs与4a-PEG-SH反应后的巯基减少定量图。
图2a为本发明所述可注射水凝胶MPG-HD的合成制备机理示意图。
图2b为本发明所述不同浓度可注射水凝胶的弹性模量图。
图2c为本发明所述可注射水凝胶的降解速率图。
图2d为本发明所述可注射水凝胶的溶胀速率图。
图2e为本发明所述可注射水凝胶中MPSS缓释速度图。
图2f为本发明所述可注射水凝胶的生长因子缓释速度图。
图2g为本发明所述可注射水凝胶浸出物用于细胞培养的活细胞指标图。
图3a为本发明实施例大鼠损伤部位注射PBS、G-HD和MPG-HD的试验流程示 意图。
图3b为本发明实施例大鼠损伤部位注射PBS、G-HD和MPG-HD的试验示意图;
图3c为本发明实施例大鼠损伤部位注射PBS、G-HD和MPG-HD后损伤部位的 HE染色图。
图3d为本发明实施例大鼠损伤部位注射PBS、G-HD和MPG-HD后脊髓形状变 化图。
图3e为本发明实施例大鼠损伤部位注射PBS、G-HD和MPG-HD后脊髓三维重 建图。
图3f为本发明实施例大鼠损伤部位注射PBS、G-HD和MPG-HD后各组织和空洞 体积图。
图3g为本发明实施例大鼠损伤部位注射PBS、G-HD和MPG-HD后行为学评分 图。
图4a为本发明所述损伤部位及前后的5-HT轴突再生状况免疫染色图。
图4b为本发明所述损伤部位及前后的本体神经轴突再生状况免疫染色图。
图4c为本发明所述损伤部位及前后的神经纤维再生状况免疫染色图。
图4d为本发明所述损伤前后的5-HT轴突的数量统计图。
图4e为本发明所述损伤前后的本体神经轴突的数量统计图。
图4f为本发明所述损伤前后的神经纤维的数量统计图。
图5a为本发明实施大鼠损伤部位注射PBS、G-HD和MPG-HD后大脑皮层诱发 电位图。
图5b为本发明实施大鼠损伤部位注射PBS、G-HD和MPG-HD后后肢运动和肌 电发放情况图。
具体实施方式
下面结合附图并以具体实施例,进一步阐明本发明。应理解这些实施例仅用于说明 本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。以下是物质英文缩写和中文名称注释:
Figure BDA0002764538210000061
Figure BDA0002764538210000071
一、马来酰亚胺改性MPSS纳米粒子的合成
马来酰亚胺改性MPSS负载纳米粒子MM-NPs的制备:采用无皂乳液一步聚合法。
纳米粒子NP的合成(采用DMAEMA、ST、ACLT-PEG-NHS、NaSS和MBA合 成纳米颗粒的核):将DMAEMA(w/v5%)、ST(w/v10%)、ACLT-PEG-NHS(w/v3%)、 NaSS(w/v0.4%)、MBA(w/v0.4%)和水的混合物加入四颈烧瓶内,烧瓶设有氮气出 口、进口和进料口;然后,将氧化还原引发剂KPS(w/v0.2%)和SPS(w/v0.1%)溶 于水中,在反应混合物溶液和引发剂溶液中分别加入缓慢的氮气流1小时,接着将引发 剂溶液加入反应混合物溶液中,并在160rpm和50±5℃下进行聚合反应,反应5h后, 使用透析膜(MWCO 14kDa)在去离子水中透析反应混合物48h,以去除未反应的单 体。
马来酰亚胺改性:在反应混合物中加入1mg/ml MAL-NH2,摩尔比为1:1的 ACLT-PEG-NHS,室温搅拌4h。然后,使用透析膜(14KDa)对去离子水透析反应混 合物,并冻干,得到冻干的纳米粒子NP-MAL。
马来酰亚胺改性后的MPSS负载:将0.1g冻干纳米粒NP-MAL浸入溶于PBS中 的4ml浓度为5mg/ml的MPSS中过夜,并以30000rpm离心收集60min(美国 Beckman Beckman的Optimal MAX-XP),然后冻干(图1a)。
如图1b和1c分别是马来酰亚胺改性前后纳米粒子的微观形貌,从图可知:马来 酰亚胺改性前观察到边界清晰的粒子(图1b),改性后观察到具有亲水层的粒子(图1c), 纳米颗粒的粒径为110nm,与动态光散射的研究结果接近(图1e)。
用Elleman试验也证实了本发明马来酰亚胺在纳米粒子表面的改性(图1f)以及粒子与4a-PEG-SH中硫醇基的反应(图1g)。计算了纳米颗粒表面马来酰亚胺基团浓 度为0.85mmol/g,加入纳米颗粒后,4a-PEG-SH中巯基含量降低了0.12mmol。
二、马来酰亚胺改性的生长因子及效率评价
生长因子GFs的马来酰亚胺改性:所述生长因子采用浓度为50ng/ml的bFGF、 BDNF和VEGF,生长因子GFs与sulfo-SMCC以1:50的摩尔比反应5min,然后用 3T3、C6和HUVEC细胞检测马来酰亚胺修饰bFGF、BDNF和VEGF的活性。将细胞 分别接种于96孔无生长因子培养基上,孵育24h后,用PBS洗涤细胞。然后,将0.1ml 改性或未改性的含有生长因子的培养基按所示形式加入每个孔中,对照样品加入无生长 因子培养基,将培养板在37℃、含5%CO2的增湿空气中培养24小时,并使用细胞 增殖试剂盒I(MTT)测量细胞活性,在550nm波长下用微板阅读器测定吸光度。
细胞系 NIH 3T3 C6 HUVEC
中等 DMEM DMEM EGM-2
生长因子 bFGF(30ng/ml) BDNF(100ng/ml) VEGF(30ng/ml)
细胞数(细胞/孔) 40000个 60000个 40000个
结果显示:经修饰的GFs与正常GFs培养的细胞活力无明显差异。在所有三种 GFs中,非GFs条件下的存活率低于添加GFs的条件。
三、可注射水凝胶溶液MPG-HD的制备
MPG-HD按以下方法制备:将RGD-PEG-SH以1:1的摩尔比添加到4a-PEG-MAL (5%,wt%)中,然后与MM-NPs(20%,wt%)混合,将马来酰亚胺修饰的VEGF (10ng/μl)、BDNF(50ng/μl)、bFGF(10ng/μl)加入形成溶液A。将4a-PEG-SH溶 于缓冲溶液中形成溶液B(5%,wt%)。将溶液A和B按1:1的比例混合,进行聚合反 应制成MPG-HD(图2a)。巯基马来酰亚胺Michael加成反应可在高浓度(高于2.5%) 下以小于3秒的凝胶速率形成水凝胶,在稀释条件下(1%)未观察到凝胶化。在弹性 模量测试中,测量了浓度2.5%到10%的凝胶,5%的凝胶显示出与脊髓组织相似的模量 (图2b)。
本实施例可注射水凝胶MPG-HD的制备是通过具有反应基团对巯基(-SH)与马 来酰胺基(-MAL)的4-臂聚乙二醇进行点击化学反应耦合而成,因此需要指出的是: 能发生点击化学反应耦合的反应基团对均可以代替,也属于本发明的保护范围。例如: 巯基与烯、叠氮与炔环、共轭双烯与取代烯烃、醛与酰肼、四嗪与降冰片烯、四嗪与异 腈。
另外,本发明可注射水凝胶MPG-HD制备过程通过多臂聚乙二醇-X和多臂聚乙二醇-Y中发生点击化学反应的官能团对X-Y进行耦联,而精氨酸-甘氨酸-天冬氨酸(RGD) 对多臂聚乙二醇-X和/或多臂聚乙二醇-Y进行修饰,目的是用于提高MPG-HD的粘性 和生物亲近性。
本实施例制备的可注射水凝胶MPG-HD负载的免疫调节或抗氧化药物采用的是MPSS,而例举的异丙嗪、地塞米松、氢化可的松、布洛芬、羟基保泰松、环孢菌素A、 藤霉素、硫唑嘌呤、6-巯基嘌呤、环磷酰胺、他克莫司(KF506)、雷帕霉素、霉酚酸 脂、茶多酚(TP)、生育酚、丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)和/或叔 丁基对苯二酚(TBHQ)中一种或多种的混合作为免疫调节或抗氧化药物同样可以替换, 属于本发明的保护范围。
同样的,本实施例制备的可注射水凝胶MPG-HD负载的细胞生长因子GFs可选 用:碱性成纤维生长因子(bFGF)、脑源性神经营养因子(BDNF)、血管内皮生长因子 (VEGF)、酸性成纤维生长因子(aFGF)、肝细胞生长因子(HGF)、睫状神经营养因子 (CNTF)、胶质细胞衍生神经营养因子(GDNF)、神经营养因子-3(NT-3)、表皮生 长因子(EGF)、白介素3(IL-3)、转化生长因子-α(TGF-α)、血小板衍生的生长 因子(PDGF)、胰岛素样生长因子-1(IGF-1)、骨形态发生蛋白(BMP)、结缔组 织生长因子(CTGF)、骨桥蛋白(OPN)和/或生长激素释放因子(GRF)中一种或 多种的混合。
四、可注射水凝胶溶液MPG-HD的在SCI治疗的治疗效果表征
a、可注射水凝胶MPG-HD的物化性质表征
采用万能材料测试机,根据应力-应变曲线的线性部分计算了水凝胶的弹性模量。简单地说,用A溶液和B溶液按1:1的比例混合,制备了厚度为1cm的水凝胶(w/v2.5%, 5%,10%)。采用万能材料试验机(Roell Z020,Wick,Germany)在50N静态称重 传感器下,以0.5mm/min的应变率测量应力-应变曲线。另外,水凝胶的降解和溶胀通 过以下方式测量,将2ml水凝胶(5%)在5ml PBS中37℃孵育60天,以评估水解降 解。在0、0.5、1、3、5、7、15、30、60天,分别测量湿凝胶和冻干凝胶的质量。冻 干前,水凝胶在蒸馏水中清洗,以除去表面可能积聚的残留盐。通过与0天样品的干重 进行比较,确定每个样品的总干聚合物质量损失。溶胀率计算为(Ms-Md)/Md。
在降解实验中,水凝胶在7天内呈线性降解,2周后显著降低,2个月时降解达到80%(图2c),这说明水凝胶可以支持细胞在2个月的慢性期迁移。
溶胀研究表明,在PBS中浸泡1天后,平衡低膨胀率达到31%,然后在7天后保 持不变(图2d)。低溶胀率可避免大体积溶胀造成的组织损伤。因此,本发明制备的水 凝胶具有适合脊髓损伤注射的特性。
b、可注射水凝胶MPG-HD在SCI治疗过程中的MPSS和生长因子的持续释放
通过以下方法研究并验证MPSS和生长因子在水凝胶中的释放动力学。按上述方法制备200μl水凝胶,其中含有上述MPSS和生长因子。在每根试管中加入2ml PBS, 并在37℃下孵育。0、0.5、1、3、5、7、15、30、60天后,提取上清液,并在-80℃ 下保存在Eppendorf管中。根据现有程序使用高效液相色谱法分析0、1、3、5、7天 的MPSS浓度。生长因子浓度的检测则使用bFGF-ELISA试剂盒按说明书测定bFGF 浓度。结果显示:通过马来酰亚胺与硫醇的相互作用,使bFGF缓释1个月。在未改性 条件下,GFs以高速释放,在第7天达到最终浓度(图2f)。与没有纳米颗粒的情况(1 天)相比,包埋在纳米颗粒中的MPSS显示出较慢的释放速率(3天)(图2e)。MPSS 在NPs条件下可以缓释3天,这足够覆盖脊髓损伤的急性期。
c、细胞毒性
细胞毒性评价:采用水凝胶和纳米颗粒复合浸泡培养基。用MTT比色法测定细胞活力,结果显示:水凝胶MPG-HD浸泡悬浮液培养的细胞显示出与非凝胶培养基相似 的细胞活力(图2g),这说明我们使用的材料没有或非常低的细胞毒性,并且在体内不 会引起细胞死亡。
d、MPG-HD减少挫伤性脊髓损伤后的空洞形成
雌性sprague-dawley大鼠(200-250g,二级,证书号:SCXK2008-0033,浙江 省医学科学院实验动物中心,杭州市)撞伤后1周,在损伤部位注射PBS、G-HD或 MPG-HD(图3a,b)。伤后8周,观察注射后脊髓组织空腔大小。
结果显示:
(1)脊髓注射PBS后,其形状严重变形,损伤部位完整组织大量丢失(图3c-e)。
(2)G-HD注射显示出比PBS对照组更小的空腔大小和更完整的脊髓组织(图3c-e)。但是空腔仍然很大,大约20%的脊髓组织消失了。
(3)与其他两种情况相比,注射MPG-HD的脊髓更完整,变形更小(图3c-e),在横 切面图像中,注射MPG-HD使动物囊腔几乎完全消失(图3c,图3f)并充满了ECM组织。
在脊髓三维重建的定量结果中,G-HD和MPG-HD注射后,空腔体积减小, MPG-HD注射使空腔体积减少到总体积的0.8%,约为PBS腔的1/40和G-HD注射的 1/20。G-HD和MPG-HD注射后,脊髓中病理组织体积(定义为无正常组织结构的体 积)显著增加,残存的完整组织(包括白质和灰质)在这些脊髓中也显著增加(图3f)。
在功能和行为方面,我们发现在治疗后的前2-3周内,这些治疗都没有使运动能力有显著改善。然而,与PBS对照组动物(主要表现为后肢瘫痪)相比,接受G-HD 治疗的大鼠在5周时间点首先表现出大范围的踝关节运动,并在注射后8周达到平台, BBB评分为4-5分,这和形态学上比PBS组表现出的更小的空腔大小和更少的脊柱形 状变形是吻合的。而在MPG-HD治疗组中,动物表现出一致的后肢足底位置和负重步 态,在6周的时间点后,10只动物中有6只的BBB得分为8-10(图3g),这表明MPG-HD 在脊髓损伤疾病进展后释放GFs和MPSS可显著改善后肢运动功能恢复,在严重损伤 模型中,负重步行能力被认为是功能恢复的限制步骤。
e、可注射水凝胶MPG-HD抑制囊性空腔与瘢痕组织形成并促进轴突再生
为了进一步评估水凝胶注射诱导的再生,我们收集了损伤部位的脊髓和头、尾侧组织(图4a-c)。取3种神经纤维,用AAV2/9-mCherry注入上胸椎脊髓追踪降支轴突 (脊髓上或长本体脊髓),免疫染色观察5-HT轴突和神经丝阳性轴突(NF轴突)。 结果显示:在注射PBS的对照脊髓中,损伤部位存在向头侧延伸的大空腔,没有任何 组织基质,宿主和移植体之间形成的腔边缘致密的GFAP+瘢痕(图4a,b,c,PBS,箭 头标示),所有动物(n=10)均无轴突伸入腔内(图4a,b,c,PBS)。相反,在MPG-HD 治疗中,囊性空腔被ECM所替代,宿主和移植体之间形成的腔边缘呈现疏松状,没有 致密GFAP+瘢痕(图4a,b,c,MPG-HD,箭头标示),在运动恢复中起重要作用的5- 羟色胺能(5-HT)轴突生长并延伸到纤维化基质中(图4a,MPG-HD线,a’,a”)。此 外,纤维化基质中央区域也观察到mcherry标记的红色固有脊髓轴突(图4b,MPG-HD, b’,b”)。在MPG-HD治疗中,大量NF+的轴突纤维明显地重新长入纤维化基质,穿过 损伤部位并延伸到损伤下方的脊髓节段,这在PBS注射的动物中没有观察到(图4c, c’,c”)。另一方面,与预期的PBS注射动物相比,G-HD处理的脊髓显示出更小的空 腔形成和一些轴突再生。脊髓冠状面图像和损伤部位下方轴突密度的定量分析表明, MPG-HD治疗的动物在损伤处的5-HT、本体脊髓和NF+轴突明显多于G-HD或PBS 注射的动物,这可能不仅是由于改善了轴突再生造成的,也与有更多的轴突残留有关。
MPG-HD治疗促进脊髓神经回路重建
电生理记录,以评估从中枢到外周神经元的神经回路的连接情况。结果显示:在皮层电刺激同时记录TA肌肉的电信号,证实经MGP-HD治疗的脊髓能更有效地将下行神 经信号传递到腰椎段脊髓。本实验仅在注射MGP-HD的动物身上记录到与正常动物相 比延迟更大,幅度更微弱的肌电信号,表明通过MGP-HD治疗重建的神经环路存在多 个突触连接,而且能将部分皮层电刺激产生的电信号,传递给受伤动物腰段脊髓的运动 神经元(图5a)。在自由行走过程中,注射PBS的大鼠不能支撑体重,后肢无关节活动。 在注射G-HD的大鼠中,捕捉到膝关节的轻微运动和体重的支撑。与之相对应,注射 MGP-HD的大鼠能支撑体重,并能做与正常大鼠相似的步态。肌电图显示,注射 MPG-HD后,大鼠TA、GS活动明显,后肢总步幅明显增加。与正常大鼠一样,记录 了步态时TA和GS的交替激活。但GS信号明显弱于正常大鼠,提示MGP-HD注射大 鼠出现了次优的后肢运动功能恢复(图5b)。结果表明,注射MGP-HD可使严重脊髓挫 伤模型动物的建立新的伸进环路连接,恢复部分负重步行能力。
以上结果表明本发明成功制备了具有药物释放能力的可注射水凝胶,能用于SCI的修复,具体特征如下:
1、通过本发明制备的可注射水凝胶MPG-HD能使脊髓损伤的原位凝胶化,确保 了其能适配空腔的形状,从而使脊髓组织和凝胶之间的间隙最小化。在损伤部位注入的 水凝胶为成纤维细胞的迁移和侵袭提供了支架,形成富含成纤维细胞的ECM,从而减 少孔洞产生。
2、本发明的可注射水凝胶MPG-HD具有合适的溶胀比,降低了损伤部位残留组 织二次损伤风险。
3、本发明通过反应基团修饰的负载药物的纳米粒子/GFs与水凝胶的反应基团通过点击化学耦合,使药物或生长因子能在损伤部位分时段释放,适应脊髓损伤后病理变化。
4、本发明制备的可注射水凝胶MPG-HD有助于减少瘢痕组织生成,促进脊髓神 经再生。
5、本发明制备的可注射水凝胶MPG-HD有助于脊髓神经回路的重建,促进功能 恢复。

Claims (8)

1.一种治疗中枢神经损伤的可注射水凝胶的制备方法,
所述治疗中枢神经损伤的可注射水凝胶为:
以精氨酸-甘氨酸-天冬氨酸修饰过的多臂聚乙二醇-X与多臂聚乙二醇-Y通过点击化学反应得到用于病灶原位形成水凝胶支架的聚合物,所述聚合物还负载有纳米/微米粒子和细胞生长因子,所述纳米/微米粒子负载有免疫调控药物和/或抗氧化药物;
所述多臂聚乙二醇-X和多臂聚乙二醇-Y中发生点击化学反应的官能团对X与Y选自:巯基与马来酰胺基;
所述多臂聚乙二醇-X为4-臂聚乙二醇-X或3-臂聚乙二醇-X;所述多臂聚乙二醇-Y为4-臂聚乙二醇-Y或3-臂聚乙二醇-Y;
所述多臂聚乙二醇-X与多臂聚乙二醇-Y中聚乙二醇的聚合度n为1-1000,
所述方法包含以下步骤:
步骤1:高分子纳米粒子NP的合成:在反应容器中,将甲基丙烯酸2-二甲氨基乙酯、苯乙烯、丙烯酸酯-聚乙二醇-N-羟基琥珀酰亚胺酯、4-乙烯基苯磺酸钠、N,N'-亚甲基双丙烯酰胺加入水中,然后加入氧化还原引发剂过硫酸钾和焦亚硫酸钠,在温度为50±10℃、氮气保护和搅拌下聚合反应3h以上,通过透析膜去除未反应完的单体得到纳米粒子NP;
步骤2:在纳米粒子NP的表面修饰马来酰亚胺:继续加入摩尔比为1:1~1.1的MAL-NH2和丙烯酸酯-聚乙二醇-N-羟基琥珀酰亚胺酯,在搅拌下进行马来酰亚胺改性反应至少1h,继续通过透析膜去除未反应完单体并冻干,得到冻干的马来酰亚胺改性纳米粒子NP-MAL;
步骤3:NP-MAL粒子负载MPSS:在MPSS的PBS溶液中,加入上述得到的纳米粒子NP-MAL并静置过夜,然后经过离心收集处理得到负载MPSS的纳米粒子,并经过冻干处理得到负载MPSS的纳米粒子MM-NPs;
步骤4:生长因子GFs的马来酰亚胺改性:将生长因子GFs按照1:30~70的摩尔比与sulfo-SMCC混合反应,得到马来酰亚胺改性的生长因子GF-MAL;
步骤5:将4a- PEG-MAL和RGD-PEG-SH按1:1摩尔比混合,得到RGD修饰过的4a-PEG-MAL,然后加入步骤3得到MM-NPs纳米粒子与步骤4得到的马来酰亚胺改性的生长因子GF-MAL并混合均匀形成溶液A;
步骤6:溶液B的制备:将 4a-PEG-SH溶于缓冲溶液,混合均匀形成溶液B;
步骤7:将步骤5与步骤6中的溶液A和B按1:1比例混合反应,即得到偶联负载药物的纳米粒子与细胞生长因子的可注射水凝胶MPG-HD,
上述中,MPSS代表甲基强的松龙琥珀酸钠,MAL-NH2表示1-(2-氨基乙基)-1H-吡咯-2,5-二酮盐酸盐,PEG表示乙二醇,4a-PEG-MAL表示4-臂聚乙二醇-马来酰亚胺,4a-PEG 表示4-臂聚乙二醇,RGD表示精氨酸-甘氨酸-天冬氨酸,SH表示硫醇,MM-NPs表示马来酰亚胺改性MPSS负载纳米粒子,GF表示生长因子。
2.根据权利要求1所述治疗中枢神经损伤的可注射水凝胶的制备方法,其特征在于:步骤1聚合反应中各反应物浓度为5%甲基丙烯酸2-二甲氨基乙酯、10%苯乙烯、3%丙烯酸酯-聚乙二醇-N-羟基琥珀酰亚胺酯、0.4%4-乙烯基苯磺酸钠、0.4% N,N'-亚甲基双丙烯酰胺、0.2%过硫酸钾和0.1%焦亚硫酸钠,以上浓度单位为w/v。
3.根据权利要求1所述治疗中枢神经损伤的可注射水凝胶的制备方法,其特征在于:步骤3中的载药纳米/微米粒子通过偶联反应负载在水凝胶上。
4.根据权利要求1所述治疗中枢神经损伤的可注射水凝胶的制备方法,其特征在于:步骤4中生长因子通过偶联反应负载在水凝胶上。
5.根据权利要求1所述治疗中枢神经损伤的可注射水凝胶的制备方法,其特征在于,所述纳米/微米粒子选自反应基团修饰过的高分子微米/纳米粒子和/或脂质体中一种或多种的混合。
6.根据权利要求1所述治疗中枢神经损伤的可注射水凝胶的制备方法,其特征在于,所述纳米/微米粒子采用聚乙烯、明胶、胶原、聚乳酸或脂质体粒子中的一种或多种的混合。
7.根据权利要求1所述治疗中枢神经损伤的可注射水凝胶的制备方法,其特征在于,所述免疫调控类/抗氧化类药物选自甲基强的松龙琥珀酸钠MPSS、异丙嗪、地塞米松、氢化可的松、布洛芬、羟基保泰松、环孢菌素A、藤霉素、硫唑嘌呤、6-巯基嘌呤、环磷酰胺、他克莫司KF506、雷帕霉素、霉酚酸脂、茶多酚TP、生育酚、丁基羟基茴香醚BHA、二丁基羟基甲苯BHT和/或 叔丁基对苯二酚TBHQ中一种或多种的混合。
8.根据权利要求1所述治疗中枢神经损伤的可注射水凝胶的制备方法,其特征在于,所述细胞生长因子选自:碱性成纤维生长因子bFGF、脑源性神经营养因子BDNF、血管内皮生长因子VEGF、酸性成纤维生长因子aFGF、肝细胞生长因子HGF、睫状神经营养因子CNTF、胶质细胞衍生神经营养因子GDNF、神经营养因子-3NT-3、表皮生长因子EGF、白介素 3IL-3、转化生长因子-αTGF-α、血小板衍生的生长因子PDGF、胰岛素样生长因子-1IGF-1、骨形态发生蛋白BMP、结缔组织生长因子CTGF、骨桥蛋白OPN和 / 或生长激素释放因子GRF中一种或多种的混合。
CN202011228988.9A 2020-11-06 2020-11-06 一种治疗中枢神经损伤的可注射水凝胶及其制备方法 Active CN112933293B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011228988.9A CN112933293B (zh) 2020-11-06 2020-11-06 一种治疗中枢神经损伤的可注射水凝胶及其制备方法
PCT/CN2020/131330 WO2022095151A1 (zh) 2020-11-06 2020-11-25 一种治疗中枢神经损伤的可注射水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011228988.9A CN112933293B (zh) 2020-11-06 2020-11-06 一种治疗中枢神经损伤的可注射水凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN112933293A CN112933293A (zh) 2021-06-11
CN112933293B true CN112933293B (zh) 2022-06-10

Family

ID=76234632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011228988.9A Active CN112933293B (zh) 2020-11-06 2020-11-06 一种治疗中枢神经损伤的可注射水凝胶及其制备方法

Country Status (2)

Country Link
CN (1) CN112933293B (zh)
WO (1) WO2022095151A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114767920B (zh) * 2022-05-13 2023-08-29 中国科学院长春应用化学研究所 一种聚乙二醇基粘合剂及其制备方法以及应用
CN114773629B (zh) * 2022-05-20 2024-04-12 昆明理工大学 用于创伤性脑损伤的可注射光固化止血水凝胶的制备方法
CN116407681B (zh) * 2023-06-07 2023-08-11 首都医科大学 一种可长期控制NGF&bFGF释放的肝素-透明质酸水凝胶及其制备方法与应用
CN116421745B (zh) * 2023-06-14 2023-08-29 中国人民解放军总医院第一医学中心 一种腹腔出血点延时显像造影剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970438A (zh) * 2017-11-28 2018-05-01 镇江市中西医结合医院(镇江市第二人民医院) 一种神经再生凝胶及其制备方法和应用
CN110101918A (zh) * 2019-05-24 2019-08-09 上海市同济医院 一种动员内源性神经干细胞修复脊髓损伤的多级孔功能支架材料及其制备方法和应用
CN111110924A (zh) * 2019-12-18 2020-05-08 中国科学院遗传与发育生物学研究所 一种用于神经损伤修复的组织工程材料及其制备方法与应用
CN111218011A (zh) * 2020-03-09 2020-06-02 西南交通大学 一种聚乙二醇基水凝胶及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056348A (ko) * 2008-09-25 2013-05-29 인비보 테라퓨틱스 코포레이션 척수 외상, 염증, 및 면역 질환: 치료제의 국소적 제어 방출
US8680182B2 (en) * 2009-06-04 2014-03-25 Clemson University Research Foundation Methods for promoting the revascularization and reenervation of CNS lesions
PL2455104T3 (pl) * 2010-11-19 2013-12-31 Univ Freiburg Bio-funkcjonalizowane reagujące na bodziec rozpuszczalne hydrożele PEG
CN104399118B (zh) * 2014-12-10 2017-11-17 武汉理工大学 一种神经生长因子可注射原位水凝胶、制备及其应用
WO2018144966A1 (en) * 2017-02-06 2018-08-09 The Board Of Trustees Of The Leland Stanford Junior University Bioconjugation methods for targeted in situ therapeutic delivery
CN108525017B (zh) * 2018-03-21 2021-01-19 武汉理工大学 一种缓释型透明质酸基可注射水凝胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970438A (zh) * 2017-11-28 2018-05-01 镇江市中西医结合医院(镇江市第二人民医院) 一种神经再生凝胶及其制备方法和应用
CN110101918A (zh) * 2019-05-24 2019-08-09 上海市同济医院 一种动员内源性神经干细胞修复脊髓损伤的多级孔功能支架材料及其制备方法和应用
CN111110924A (zh) * 2019-12-18 2020-05-08 中国科学院遗传与发育生物学研究所 一种用于神经损伤修复的组织工程材料及其制备方法与应用
CN111218011A (zh) * 2020-03-09 2020-06-02 西南交通大学 一种聚乙二醇基水凝胶及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering;Jianqi Wang et al.;《Biomaterials》;20161220;第120卷;第11-21页 *

Also Published As

Publication number Publication date
WO2022095151A1 (zh) 2022-05-12
CN112933293A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN112933293B (zh) 一种治疗中枢神经损伤的可注射水凝胶及其制备方法
Zhang et al. Polymer scaffolds facilitate spinal cord injury repair
US20220265779A1 (en) Enhancement of skeletal muscle stem cell engraftment by dual delivery of vegf and igf-1
Gresham et al. Growth factor delivery using extracellular matrix-mimicking substrates for musculoskeletal tissue engineering and repair
Turner et al. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury
Sun et al. Neurotrophin-3-loaded multichannel nanofibrous scaffolds promoted anti-inflammation, neuronal differentiation, and functional recovery after spinal cord injury
KR20180125937A (ko) 조직 치유용 섬유-하이드로겔 복합체 외과용 메쉬
KR20180126436A (ko) 조직 복원용 간엽 세포-결합 복합 재료
Liu et al. Engineered hydrogels for peripheral nerve repair
Romeo et al. Rotator cuff repair using a bioresorbable nanofiber interposition scaffold: a biomechanical and histologic analysis in sheep
CN114642765B (zh) 一种治疗软组织损伤的可注射水凝胶细胞支架材料及其制备方法和应用
Bonnet et al. Motor and sensitive recovery after injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat hemisectioned spinal cord
Chai et al. Improved functional recovery of rat transected spinal cord by peptide-grafted PNIPAM based hydrogel
Xu et al. NECL1 coated PLGA as favorable conduits for repair of injured peripheral nerve
Cao et al. The design criteria and therapeutic strategy of functional scaffolds for spinal cord injury repair
Mihaly et al. Engineering skeletal muscle: building complexity to achieve functionality
KR100856135B1 (ko) 생체적합성의 주사형 하이드로 젤을 이용한 신경 재생용조직공학 이식체
Shan et al. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction
Xu et al. Electrospun PCL nerve conduit filled with GelMA gel for CNTF and IGF-1 delivery in promoting sciatic nerve regeneration in rat
He et al. Human menstrual blood-derived stem cells combined with a new 3D bioprinted composite scaffold for spinal cord injury treatment
Kárová et al. Tissue engineering and regenerative medicine in spinal cord injury repair
Duran et al. Decellularized extracellular matrix hydrogels: fabrication, properties, characterization, and current applications
Chen et al. Injectable hydrogel embedded with mesenchymal stem cells repairs severe spinal cord injury
US20240285694A1 (en) Rotator Cuff Therapy Using Muscle Fiber Fragments
Kolberg-Edelbrock Development of Bioactive Peptide Amphiphile Injectable Hydrogels for Regeneration of the Central Nervous System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant