CN112926156A - 一种基于位置可变半影模型的直接子野优化装置及其优化方法 - Google Patents

一种基于位置可变半影模型的直接子野优化装置及其优化方法 Download PDF

Info

Publication number
CN112926156A
CN112926156A CN202110209209.9A CN202110209209A CN112926156A CN 112926156 A CN112926156 A CN 112926156A CN 202110209209 A CN202110209209 A CN 202110209209A CN 112926156 A CN112926156 A CN 112926156A
Authority
CN
China
Prior art keywords
penumbra
model
variable
blade
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110209209.9A
Other languages
English (en)
Other versions
CN112926156B (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Chaojing Nanjing Technology Co ltd
Original Assignee
Zhongke Chaojing Nanjing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Chaojing Nanjing Technology Co ltd filed Critical Zhongke Chaojing Nanjing Technology Co ltd
Priority to CN202110209209.9A priority Critical patent/CN112926156B/zh
Publication of CN112926156A publication Critical patent/CN112926156A/zh
Application granted granted Critical
Publication of CN112926156B publication Critical patent/CN112926156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Abstract

本发明公开了一种基于位置可变半影模型的直接子野优化装置及其优化方法。涉及医学物理领域;首先通过用户输入模块,输入多叶光栅的叶片机械参数;然后,根据用户输入叶片结构进行蒙特卡罗模拟,使用蒙特卡罗方法模拟不同位置下半影参数,遍历叶片的每个位置进行模拟形成曲线,通过函数拟合曲线建立不同位置下的可变半影模型;最后,在直接子野优化模块中,基于已经建立的基于位置的可变半影模型,使用直接机器参数优化方法微调子野位置,进行计划优化。本发明能够快速精准优化放射治疗计划。

Description

一种基于位置可变半影模型的直接子野优化装置及其优化 方法
技术领域
本发明涉及医学物理领域,具体涉及一种用于计划优化问题模型,通过用户输入叶片结构和蒙特卡罗模拟,建立不同位置下的可变半影模型,并基于此使用直接机器参数优化方法微调子野位置,达到计划快速优化的目的。
背景技术
随着科技的发展和社会的进步,对放射治疗方法的精度要求也在与时俱进。但在实际优化计算中,为快速优化,通常简化处理半影参数,认为半影参数为固定值,方便优化处理。但这与实际照射情况不符。根据叶片端面不同,叶片处于不同位置时其半影参数并不相同。
半影参数影响子野边缘剂量分布,特别是对于面积较小的子野影响更大。由于叶片处于不同位置而导致的半影参数偏差常常被忽略,但是当叶片处于边缘时,其半影参数与叶片处于中间时差距极大。若使用相同半影参数,则与实际效果差距极大,极大的影响了计划精度。为精确模拟半影实际参数,需要建立基于位置的可变半影模型,并基于此模型使用直接机器参数方法精准优化。目前尚无使用基于位置的可变半影模型的直接子野优化方法和装置。
发明内容
本发明要解决的技术问题为:本发明的目的提供一种基于位置可变半影模型的直接子野优化装置及其优化方法,建立基于位置的可变半影模型,并基于此实施直接机器参数优化模型,基于已有计划快速优化。因此,本发明具有重要的实用价值。
本发明的技术方案是:一种基于位置可变半影模型的直接子野优化装置,包括相互连接的用户输入模块、半影模型建立模块和直接子野优化模块。
进一步的,一种基于位置可变半影模型的直接子野优化装置的优化方法,具体操作步骤如下:
步骤(2.1)、用户输入多叶光栅的叶片机械参数,从而构建叶片模型;
步骤(2.2)、根据构建的叶片模型,使用蒙特卡罗方法,模拟不同位置下的半影参数,从而得到可变半影模型;
步骤(2.3)、根据得到可变半影模型,建立基于位置的可变半影模型;
步骤(2.4)、针对建立的可变半影模型,使用其直接机器参数方法,从而优化子野形状;
步骤(2.5)、根据优化子野形状,从而确定其是否满足结束条件,如满足,则操作过程结束,否则继续执行步骤(2.4)直到满足条件。
进一步的,在所述步骤(2.1)中,所述的叶片机械参数包括用户输入叶片的长、宽、高、舌及槽的尺寸。
进一步的,在所述步骤(2.2)中,使用蒙特卡罗方法,模拟不同位置下的半影参数的操作方法是:从叶片起始位置与最大位置之间离散化位置,遍历每个位置进行蒙特卡罗模拟,在叶片和放射源的不同相对位置分别进行计算,当放射源被叶片遮挡不同程度时,对等中心面的剂量进行模拟,形成一组强度曲线,得到不同位置下的半影参数。
进一步的,在所述步骤(2.3)中,建立基于位置的可变半影模型具体是指:针对不同位置所形成的强度曲线,通过函数拟合曲线,从而得到可变半影模型。
进一步的,在所述步骤(2.4)中,使用可变半影模型的直接机器参数方法,优化子野形状具体操作步骤如下:
步骤(2.4.1)、使用强度优化和子野分割得到初始子野;
步骤(2.4.2)、根据可变半影模型,建立子野位置与强度转换关系;
步骤(2.4.3)、根据转换关系得到目标函数,对叶片位置求偏导数,偏导数计算公式如下:
Figure BDA0002951752500000021
式中,F表示目标函数值,x表示叶片位置,D表示剂量贡献矩阵,I表示强度分布,根据公式求得目标函数对叶片位置的偏导数;
步骤(2.4.4)、利用目标函数对叶片位置的偏导数,使用直接机器参数优化方法微调叶片位置,采用共轭梯度法计算,进行计划优化。
进一步的,在所述步骤(2.5)中,满足结束的条件具体是指:目标函数达到最优解,或循环迭代次数达到设置的最大阈值。
本发明的有益效果是:本发明通过精准模拟半影参数,建立半影模型,使用直接机器参数优化方法微调叶片位置,可以快速优化子野形状,精准得到优化解。
附图说明
图1是本发明的装置模块示意图;
图2是本发明的方法流程图;
图3是本发明的多叶光栅叶片模型示意图;
图4是本发明的位置可变半影模型的叶片半影示意图。
具体实施方式
为了更清楚地说明本发明的技术方案,下面结合附图对本发明的技术方案做进一步的详细说明:
如图1所述,一种基于位置可变半影模型的直接子野优化装置,包括相互连接的用户输入模块、半影模型建立模块和直接子野优化模块;
所述用户输入模块,用户输入多叶光栅的叶片机械参数,包括用户输入叶片的长、宽、高、舌、槽等尺寸,构建叶片模型;
所述半影模型模块,根据用户输入模块建立的叶片模型,使用蒙特卡罗方法在叶片不同位置上建立半影模型,从叶片起始位置与最大位置之间离散化位置,遍历每个位置进行模拟,在叶片和放射源的不同相对位置分别进行计算;对于选择的叶片位置,当放射源被叶片遮挡不同程度时,对等中心面的剂量进行模拟,模拟得到强度曲线,确定半影区域位置和不同位置对应的强度,并据此通过函数拟合,得到可变半影模型;
所述计划优化模块,根据半影模型模块得到的可变半影模型,建立叶片位置与强度的转换关系,再通过半影模型得到目标函数对叶片位置的偏导数,最后,使用直接机器参数优化方法微调叶片位置,进行计划优化。
进一步的,如图2-图4所述,图2~图4为本发明具体实施例的详细描述,图2为本发明的具体操作流程图;具体的,一种基于位置可变半影模型的直接子野优化装置的优化方法,具体操作步骤如下:
步骤(2.1)、用户输入多叶光栅的叶片机械参数,从而构建叶片模型;
步骤(2.2)、根据构建的叶片模型,使用蒙特卡罗方法,模拟不同位置下的半影参数,从而得到可变半影模型;
步骤(2.3)、根据得到可变半影模型,建立基于位置的可变半影模型;
步骤(2.4)、针对建立的可变半影模型,使用其直接机器参数方法,从而优化子野形状;
步骤(2.5)、根据优化子野形状,从而确定其是否满足结束条件,如满足,则操作过程结束,否则继续执行步骤(2.4)直到满足条件。
进一步的,在所述步骤(2.1)中,所述叶片模型示意图如图3所示,叶片为三段式端面,具备舌与槽的叶片,用户指定的参数如下:端面结构参数,三段式端面的坐标;舌与槽的高度、深度与位置;叶片起始位置与最大位置;其中,所述的叶片机械参数包括用户输入叶片的长、宽、高、舌、槽等尺寸。
进一步的,如图4所示,在所述步骤(2.2)中,使用蒙特卡罗方法,模拟不同位置下的半影参数的操作方法是:从叶片起始位置与最大位置之间离散化位置,遍历每个位置进行蒙特卡罗模拟,在叶片和放射源的不同相对位置分别进行计算,当放射源被叶片遮挡不同程度时,对等中心面的剂量进行模拟,形成一组强度曲线,得到不同位置下的半影参数;
具体的、(一)、从叶片起始位置与最大位置之间离散化位置,针对任一位置进行模拟,如图4所示叶片位置与放射源有4种不同的位置关系,四边形ABCD为叶片,在叶片运动的起点和终点之间,判断放射源与叶片连接的射线产生的位置关系,叶片不同的位置会产生不同的射线半影;
(二)、对于选择的叶片位置,使用蒙特卡罗方法模拟,当放射源被叶片遮挡不同程度时,对等中心面的剂量进行模拟,如图4所示四种不同的叶片与放射源的位置,放射源被叶片遮挡0%、20%、80%、100%等不同位置时,分别对透过叶片的剂量进行蒙特卡罗模拟,确定半影区域位置,形成强度曲线。
进一步的,在所述步骤(2.3)中,建立基于位置的可变半影模型具体是指:针对不同位置所形成的强度曲线,通过函数拟合曲线,从而得到可变半影模型。
进一步的,在所述步骤(2.4)中,使用可变半影模型的直接机器参数方法,优化子野形状具体操作步骤如下:
步骤(2.4.1)、使用强度优化和子野分割得到初始子野;
步骤(2.4.2)、根据可变半影模型,建立子野位置与强度转换关系;
步骤(2.4.3)、根据转换关系得到目标函数,对叶片位置求偏导数,偏导数计算公式如下:
Figure BDA0002951752500000041
式中,F表示目标函数值,x表示叶片位置,D表示剂量贡献矩阵,I表示强度分布,根据公式求得目标函数对叶片位置的偏导数;
步骤(2.4.4)、利用目标函数对叶片位置的偏导数,使用直接机器参数优化方法微调叶片位置,采用共轭梯度法计算,进行计划优化。
进一步的,在所述步骤(2.5)中,满足结束的条件具体是指:目标函数达到最优解,或循环迭代次数达到设置的最大阈值。
总之,本发明的一种基于位置可变半影模型的直接子野优化装置及其优化方法,通过精确模拟半影参数,建立半影模型,使用直接机器参数优化方法微调叶片位置,快速优化子野形状,贴近工程实际应用,具有极大的实用价值。
最后,应当理解的是,本发明中所述实施例仅用以说明本发明实施例的原则;其他的变形也可能属于本发明的范围;因此,作为示例而非限制,本发明实施例的替代配置可视为与本发明的教导一致;相应地,本发明的实施例不限于本发明明确介绍和描述的实施例。

Claims (7)

1.一种基于位置可变半影模型的直接子野优化装置,其特征在于,包括相互连接的用户输入模块、半影模型建立模块和直接子野优化模块。
2.如权利要求1所述的一种基于位置可变半影模型的直接子野优化装置的优化方法,其特征在于,具体操作步骤如下:
步骤(2.1)、用户输入多叶光栅的叶片机械参数,从而构建叶片模型;
步骤(2.2)、根据构建的叶片模型,使用蒙特卡罗方法,模拟不同位置下的半影参数,从而得到可变半影模型;
步骤(2.3)、根据得到可变半影模型,建立基于位置的可变半影模型;
步骤(2.4)、针对建立的可变半影模型,使用其直接机器参数方法,从而优化子野形状;
步骤(2.5)、根据优化子野形状,从而确定其是否满足结束条件,如满足,则操作过程结束,否则继续执行步骤(2.4)直到满足条件。
3.如权利要求2所述的一种基于位置可变半影模型的直接子野优化装置的优化方法,其特征在于,在所述步骤(2.1)中,所述的叶片机械参数包括用户输入叶片的长、宽、高、舌及槽的尺寸。
4.如权利要求2所述的一种基于位置可变半影模型的直接子野优化装置的优化方法,其特征在于,在所述步骤(2.2)中,使用蒙特卡罗方法,模拟不同位置下的半影参数的操作方法是:从叶片起始位置与最大位置之间离散化位置,遍历每个位置进行蒙特卡罗模拟,在叶片和放射源的不同相对位置分别进行计算,当放射源被叶片遮挡不同程度时,对等中心面的剂量进行模拟,形成一组强度曲线,得到不同位置下的半影参数。
5.如权利要求2所述的一种基于位置可变半影模型的直接子野优化装置的优化方法,其特征在于,在所述步骤(2.3)中,建立基于位置的可变半影模型具体是指:针对不同位置所形成的强度曲线,通过函数拟合曲线,从而得到可变半影模型。
6.如权利要求2所述的一种基于位置可变半影模型的直接子野优化装置的优化方法,其特征在于,在所述步骤(2.4)中,使用可变半影模型的直接机器参数方法,优化子野形状具体操作步骤如下:
步骤(2.4.1)、使用强度优化和子野分割得到初始子野;
步骤(2.4.2)、根据可变半影模型,建立子野位置与强度转换关系;
步骤(2.4.3)、根据转换关系得到目标函数,对叶片位置求偏导数,偏导数计算公式如下:
Figure FDA0002951752490000021
式中,F表示目标函数值,x表示叶片位置,D表示剂量贡献矩阵,I表示强度分布,根据公式求得目标函数对叶片位置的偏导数;
步骤(2.4.4)、利用目标函数对叶片位置的偏导数,使用直接机器参数优化方法微调叶片位置,采用共轭梯度法计算,进行计划优化。
7.如权利要求2所述的一种基于位置可变半影模型的直接子野优化装置的优化方法,其特征在于,在所述步骤(2.5)中,满足结束的条件具体是指:目标函数达到最优解,或循环迭代次数达到设置的最大阈值。
CN202110209209.9A 2021-02-25 2021-02-25 一种基于位置可变半影模型的直接子野优化装置及其优化方法 Active CN112926156B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110209209.9A CN112926156B (zh) 2021-02-25 2021-02-25 一种基于位置可变半影模型的直接子野优化装置及其优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110209209.9A CN112926156B (zh) 2021-02-25 2021-02-25 一种基于位置可变半影模型的直接子野优化装置及其优化方法

Publications (2)

Publication Number Publication Date
CN112926156A true CN112926156A (zh) 2021-06-08
CN112926156B CN112926156B (zh) 2024-04-26

Family

ID=76171693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110209209.9A Active CN112926156B (zh) 2021-02-25 2021-02-25 一种基于位置可变半影模型的直接子野优化装置及其优化方法

Country Status (1)

Country Link
CN (1) CN112926156B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090316858A1 (en) * 2008-06-19 2009-12-24 Varian Medical Systems International Ag Treatment plan optimization method for radiation therapy
US20110184283A1 (en) * 2008-07-25 2011-07-28 Tufts Medical Center system and method of clinical treatment planning of complex, monte carlo-based brachytherapy dose distributions
CN103083821A (zh) * 2013-01-27 2013-05-08 合肥超安医疗科技有限公司 一种直接优化静态调强子野形状及其机器跳数的系统和方法
CN104338240A (zh) * 2014-10-31 2015-02-11 章桦 一种在线自适应放疗计划自动优化方法及装置
CN105617535A (zh) * 2015-12-24 2016-06-01 上海联影医疗科技有限公司 一种剂量分布估算方法以及子野优化方法
CN110237439A (zh) * 2018-12-21 2019-09-17 苏州雷泰医疗科技有限公司 用于正交双层光栅装置的静态调强子野优化方法
US20200001117A1 (en) * 2018-06-29 2020-01-02 Victor Hernandez Method of calculating the tongue and groove effect of a multi-leaf collimator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090316858A1 (en) * 2008-06-19 2009-12-24 Varian Medical Systems International Ag Treatment plan optimization method for radiation therapy
US20110184283A1 (en) * 2008-07-25 2011-07-28 Tufts Medical Center system and method of clinical treatment planning of complex, monte carlo-based brachytherapy dose distributions
CN103083821A (zh) * 2013-01-27 2013-05-08 合肥超安医疗科技有限公司 一种直接优化静态调强子野形状及其机器跳数的系统和方法
CN104338240A (zh) * 2014-10-31 2015-02-11 章桦 一种在线自适应放疗计划自动优化方法及装置
CN105617535A (zh) * 2015-12-24 2016-06-01 上海联影医疗科技有限公司 一种剂量分布估算方法以及子野优化方法
US20200001117A1 (en) * 2018-06-29 2020-01-02 Victor Hernandez Method of calculating the tongue and groove effect of a multi-leaf collimator
CN110237439A (zh) * 2018-12-21 2019-09-17 苏州雷泰医疗科技有限公司 用于正交双层光栅装置的静态调强子野优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周东,张辉,叶佩青: ""多叶光栅叶片端面形状优化设计"", 《中国机械工程》, vol. 27, no. 6, pages 737 - 742 *

Also Published As

Publication number Publication date
CN112926156B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US10534255B2 (en) Method of applying vertex based corrections to a semiconductor design
CN103083821B (zh) 一种直接优化静态调强子野形状及其机器跳数的系统和方法
CN105617536A (zh) 旋转逆向调强放疗优化方法及装置
TWI612493B (zh) 線量分布演算裝置及具有線量分布演算裝置之粒子射線治療裝置
CN104043203B (zh) 基于医用直线加速器照射束特征建立照射源模型的方法
CN106897511A (zh) 圆环微带天线谐振频率预测方法
Tai et al. A method for determination of parameters of the initial electron beam hitting the target in linac
Fuchs et al. Computer‐assisted beam modeling for particle therapy
Fix et al. Photon‐beam subsource sensitivity to the initial electron‐beam parameters
Mohammed et al. Validation of BEAMnrc Monte Carlo model for a 12 MV photon beam
CN112926156A (zh) 一种基于位置可变半影模型的直接子野优化装置及其优化方法
CN109248385B (zh) 基于蒙特卡洛树搜索的放射治疗计划优化系统
US10751546B2 (en) Radiation treatment planning system and radiation treatment system
CN105477789A (zh) 基于二次规划模型抑制总出束时间的动态调强放疗方法
CN102819237B (zh) 一种实体法铣削仿真过程中仿真目标毛坯的产生方法
CN108103273A (zh) 一种激光淬火变形的补偿方法及滑槽的加工方法
Michaeli et al. Approach of an automatic extrusion die optimization
Schmid et al. Simulating Space Charge Dominated Beam Dynamics Using FMM
CN106407551A (zh) 一种软测量建模方法
Ezzati et al. Spatial mesh-based surface source model for the electron contamination of an 18 MV photon beams
WO2024087524A1 (zh) 一种摆动激光焊接等效热源建模方法及摆动激光焊接仿真方法
Mangiacapra et al. A new process simulator for the optimization of electron beam crosslinking processes of polymers isolations in electrical cables
Embriaco On the parametrization of lateral dose profiles in proton radiation therapy
Bane Longitudinal stability study for the FACET-II e+ damping ring
Akpochafor et al. Simulation of the Linear Boltzmann Transport Equation in modelling of photon beam data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant