CN112924408A - 一种基于溶剂萃取耦合ftir分析食用油中tbbq含量的方法 - Google Patents
一种基于溶剂萃取耦合ftir分析食用油中tbbq含量的方法 Download PDFInfo
- Publication number
- CN112924408A CN112924408A CN202110149358.0A CN202110149358A CN112924408A CN 112924408 A CN112924408 A CN 112924408A CN 202110149358 A CN202110149358 A CN 202110149358A CN 112924408 A CN112924408 A CN 112924408A
- Authority
- CN
- China
- Prior art keywords
- spectrum
- tbbq
- content
- edible oil
- difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000008157 edible vegetable oil Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000000638 solvent extraction Methods 0.000 title claims abstract description 8
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 title claims abstract description 7
- 230000008878 coupling Effects 0.000 title abstract description 5
- 238000010168 coupling process Methods 0.000 title abstract description 5
- 238000005859 coupling reaction Methods 0.000 title abstract description 5
- 238000001228 spectrum Methods 0.000 claims abstract description 100
- 238000010521 absorption reaction Methods 0.000 claims abstract description 21
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 37
- 239000002904 solvent Substances 0.000 claims description 29
- 238000000605 extraction Methods 0.000 claims description 17
- VLKZOEOYAKHREP-UHFFFAOYSA-N methyl pentane Natural products CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 11
- -1 n-hexane saturated acetonitrile Chemical class 0.000 claims description 9
- 230000003595 spectral effect Effects 0.000 claims description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 239000003921 oil Substances 0.000 claims description 6
- 235000019198 oils Nutrition 0.000 claims description 6
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 4
- 238000009795 derivation Methods 0.000 claims description 4
- 235000019482 Palm oil Nutrition 0.000 claims description 3
- 235000019483 Peanut oil Nutrition 0.000 claims description 3
- 235000019484 Rapeseed oil Nutrition 0.000 claims description 3
- 239000002540 palm oil Substances 0.000 claims description 3
- 239000000312 peanut oil Substances 0.000 claims description 3
- 239000003549 soybean oil Substances 0.000 claims description 3
- 235000012424 soybean oil Nutrition 0.000 claims description 3
- 235000020238 sunflower seed Nutrition 0.000 claims description 3
- 238000004611 spectroscopical analysis Methods 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 11
- 238000011282 treatment Methods 0.000 abstract description 4
- 230000035945 sensitivity Effects 0.000 abstract description 2
- NCCTVAJNFXYWTM-UHFFFAOYSA-N 2-tert-butylcyclohexa-2,5-diene-1,4-dione Chemical compound CC(C)(C)C1=CC(=O)C=CC1=O NCCTVAJNFXYWTM-UHFFFAOYSA-N 0.000 description 62
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 8
- 239000004250 tert-Butylhydroquinone Substances 0.000 description 8
- 235000019281 tert-butylhydroquinone Nutrition 0.000 description 8
- 238000002329 infrared spectrum Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 230000009021 linear effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 3
- 238000004566 IR spectroscopy Methods 0.000 description 3
- 235000013405 beer Nutrition 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000015074 other food component Nutrition 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3577—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种基于溶剂萃取耦合FTIR分析食用油中TBBQ含量的方法,所示方法包括标准曲线绘制和样品TBBQ含量测定。本发明法结合原始波谱的差谱二阶导数处理减少了基线吸收问题,实现了食用油中TBBQ含量的准确快速分析,操作简单,可连续操作,测定准确性好,精度高,灵敏,操作安全,适用于各种食用油中TBBQ含量的分析。
Description
(一)技术领域
本发明涉及一种基于溶剂萃取耦合FTIR分析食用油中TBBQ含量的方法。
(二)背景技术
食用油在储藏、热加工过程中,受光照、高温作用,同时可能曝露于氧气、水分环境下,会发生水解、氧化、聚合、热裂解等一系列反应,并且油脂与其他食物成分的相互作用常常同时发生,造成食用油的质量、营养降低,甚至带来健康隐患。叔丁基对苯二酚(TBHQ),因其抗氧化效果好、成本低而被广泛应用于延缓油脂氧化。然而由于食用油长期暴露在高温及有氧环境中,以及水分的存在会导致TBHQ自身发生氧化和降解。研究发现叔丁基对苯醌(TBBQ)是TBHQ氧化降解的主要产物,并且其毒性明显高于TBHQ,可致多种模式细胞发生凋亡现象。我们前期研究发现不仅热处理食用油中存在TBBQ,含油食品中同样存在TBBQ风险。因此亟需对添加TBHQ的食用油及外加含TBHQ的食用油食品中的TBBQ含量进行监测分析。然而目前食用油中TBBQ的分析尚没有专用的检测分析方法,仍借鉴TBHQ的分析方法,主要为液相色谱法和气相色谱法,然而这些方法存在前处理复杂、耗时长等缺点,难以实现准确快速、实时在线监测。
红外光谱定量技术近年来发展迅速。因其分析快速、操作简单,可实现样品无损在线分析的特点,目前已广泛应用于食用油中酸价、过氧化值、碘价、反式脂肪酸、总极性化合物等指标的检测。红外光谱技术在食用油中的应用虽然研究较多,然而关于红外光谱技术在测定食用油中TBBQ含量的应用目前尚未构建相关方法。
(三)发明内容
基于上述问题,本发明提供一种基于溶剂萃取结合FTIR光谱分析的食用油中TBBQ含量快速分析方法,结合原始波谱的差谱二阶导数处理减少了基线吸收问题,实现了食用油中TBBQ含量的准确快速分析。
本发明采用的技术方案是:
一种基于溶剂萃取耦合FTIR分析食用油中TBBQ含量的方法,所示方法包括:
(1)标准曲线绘制:萃取溶剂,采用1055μm CaF2样品池,记录溶剂波谱S0,扫描次数为32次,分辨率为4cm-1,波谱范围4000~400cm-1;分别取梯度浓度的TBBQ乙腈溶液,记录标准样品的原始波谱S1系列,做波谱减法运算S1-S0,得到系列差谱S2,同时对波谱S1和差谱S2进行二阶求导,并放大-1000倍,分别得到标准波谱的二阶导数图谱S1-2nd和差谱的二阶导数图谱S2-2nd;分别测量原始波谱S1、差谱S2、原始二阶波谱S1-2nd和差谱二阶S2-2nd相应特征峰的吸收强度,以最大吸收峰强度为横坐标,TBBQ标准添加量(单位:μg/mL)为纵坐标,绘制得到TBBQ浓度的标准曲线;所述萃取溶剂为下列之一:甲醇,乙腈或正己烷饱和的乙腈;
(2)样品TBBQ含量测定:将待测食用油样品用溶剂萃取后,取下层溶剂萃取液在步骤(1)相同条件(采用1055μm CaF2样品池,记录溶剂波谱S0,扫描次数为32次,分辨率为4cm-1,波谱范围4000-400cm-1)下记录波谱S3,对S0、S3作减法,得到差谱进行二阶求导,并放大-1000倍,得到差谱的二阶导数图谱,读取差谱或差谱的二阶导数图谱对应特征吸收峰的强度,对照相应标准曲线得出待测样品中的TBBQ含量。
所述萃取溶剂按如下方法筛选获得:配制含10、50、100μg/mL TBBQ的食用油样品,分别取不同的光谱级溶剂,剧烈震荡至充分萃取,静置分层后取萃取液,待GC分析测定食用油样品中TBBQ的实际值,与标准添加值对比后计算其回收率,最终确定TBBQ适宜的萃取溶剂。
所述萃取溶剂优选为正己烷饱和的乙腈。
具体的,步骤(1)中TBBQ乙腈溶液梯度浓度为2、5、10、25、50、75、100、200μg/mL。
具体的,所述食用油为下列之一:大豆油、菜籽油、花生油、葵花籽油、棕榈油。
优选的,步骤(2)中波谱的处理方法为差谱二阶导数,特征吸收峰为1656cm-1。
本发明的有益效果主要体现在:本发明法结合原始波谱的差谱二阶导数处理减少了基线吸收问题,实现了食用油中TBBQ含量的准确快速分析,操作简单,可连续操作,测定准确性好,精度高,灵敏,操作安全,适用于各种食用油中TBBQ含量的分析。
(四)附图说明
图1为典型的TBBQ乙腈溶液红外光谱图;
图2为TBBQ-乙腈溶液(0~200μg/mL)原始FTIR波谱、差谱及差谱二阶导数波谱局部放大图(1640~1660cm-1);图中,a.TBBQ原始光谱;b.TBBQ差谱;c.差谱的二阶导数图谱。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1:
1.萃取溶剂的选择
配制含10、50、100μg/mL TBBQ的食用油样品,取2g,分别溶解于10mL不同的光谱级溶剂中,剧烈震荡至充分萃取,静置分层后取萃取液,待GC分析测定食用油样品中TBBQ的实际值,与标准添加值对比后计算其回收率如表1。
表1:不同萃取溶剂下TBBQ的回收率
适宜的溶剂,首先应该能够溶解TBBQ,对TBBQ有充足的萃取力以保障TBBQ的完全萃取,同时对萃取油脂的溶解度尽量低,以保证后期减少对FTIR波谱的干扰。据此,比较了上述三种溶剂,结果表明,正己烷饱和的乙腈作为萃取溶剂,其TBBQ回收率在94.92~99.53%范围内,萃取效果最优。故后续萃取试剂选为正己烷饱和的乙腈。
2.标准曲线的制备
2.1基于不同波数的TBBQ标准曲线的建立
取光谱级正己烷饱和的乙腈,采用1055μm CaF2样品池,记录溶剂波谱S0,扫描次数为32次,分辨率为4cm-1,波谱范围4000-400cm-1:分别取浓度为2、5、10、25、50、75、100、200μg/mL TBBQ正己烷饱和的乙腈溶液,记录标准样品的原始波谱S1系列。分别测量原始波谱S1中TBBQ相应特征峰的吸收强度,以最大吸收峰强度为横坐标,TBBQ标准添加量(单位:μg/mL)为纵坐标,得到TBBQ浓度的标准曲线如表2:
表2:基于不同波谱吸收峰处理的标准曲线
根据TBBQ的结构式,分别基于3009cm-1、2945cm-1和1656cm-1处进行朗伯比尔定律线性拟合,结果表明,三种溶剂中正己烷饱和的乙腈溶剂构建的标准曲线精度最高,尤其基于1656cm-1处所得的标准曲线效果最优,线性相关系数为0.9779,故后续萃取溶剂采用正己烷饱和的乙腈,朗伯比尔建模波数采用1656cm-1。
2.2基于不同波谱处理的TBBQ标准曲线的建立
由于样品本身的物理性质、环境因素、仪器噪音等因素会影响红外光谱的采集,引起基线漂移和光谱重现性较差等问题,因此需要通过对波谱进行预处理来提高模型的准确度。在模型优化过程中,做波谱减法运算即S1-S0,得到系列差谱S2。同时对波谱S1和差谱S2进行二阶求导,并放大-1000倍,分别得到标准波谱的二阶导数图谱S1-2nd和差谱的二阶导数图谱S2-2nd。分别测量原始波谱S1、差谱S2、原始二阶波谱S1-2nd和差谱二阶S2-2nd相应特征峰的吸收强度,以最大吸收峰强度为横坐标,TBBQ标准添加量(单位:μg/mL)为纵坐标,得到TBBQ浓度的标准曲线如表3:
表3:基于不同波谱处理的标准曲线
由于样品本身的物理性质、环境因素、仪器噪音等因素会影响红外光谱的采集,引起基线漂移和光谱重现性较差等问题,因此需要通过对波谱进行预处理来提高模型的准确度。有研究表明,二阶导数可有效降低波谱在采集过程中出现的漂移,而差谱则可扣除溶剂基质吸收影响。本试验将对原始波谱分别进行差谱和差谱二阶导数处理,相关结果列于表3。从表3可以看出,基于差谱所构建的回归方程的线性效果(R=0.9949)均明显优于原始波谱(R=0.9779),这可能是因为乙腈中微量水分(吸收峰1630cm-1)存在对TBBQ的特征吸收峰造成了一定的干扰。基于二阶导数图谱的回归方程的线性关系(R=0.9981)优于差谱(R=0.9949),这可能是因为二阶导数可使峰锐化,利于峰拆分,此外还可部分消除基质吸收,因此表现出较高的分析精密度。二者均明显优于TBBQ乙腈溶液原始红外波谱回归方程。最佳标准曲线为“TBBQ(μg/mL)=1089.5Abs-11.35”。
3.标准TBBQ含量的准备
取适量精炼食用油如大豆油、菜籽油、花生油、葵花籽油和棕榈油,定量添加TBBQ得到浓度为10.32、25.01、55.09、108.92、198.88μg/mL一系列准确TBBQ含量的标准品,待测。
4.溶剂萃取耦合FTIR分析食用油样品中TBBQ含量的方法
分别准确称取2g标准TBBQ含量的食用油样品于30mL具塞玻璃管中,添加10mL溶剂(正己烷饱和的乙腈),密封,剧烈混合萃取1min,静置10~15min,取萃取液,采用1055μmCaF2样品池,记录溶剂波谱扫描次数为32次,分辨率为4cm-1,波谱范围4000-400cm-1)下记录波谱S3,对S0、S3作减法,得到差谱进行二阶求导,并放大-1000倍,得到差谱的二阶导数图谱,读取差谱或差谱的二阶导数图谱对应特征吸收峰的强度,对照相应标准曲线得出待测样品中的TBBQ含量。
4.1不同波谱处理对分析食用油TBBQ含量准确度的影响
基于不同波谱处理方法所得红外光谱TBBQ特征峰的标准曲线稳定性分析结果如表4所示。不同波谱处理方法的所得TBBQ红外预测值与化学值之间的相对误差在1.22%~14.79%之间。从相对误差的平均值看,基于差谱所构建的模型稳定性均略优于原始波谱所构建模型的稳定性;且经差谱-二阶导数预处理组模型稳定性最佳,相对误差范围为3.46%,相对误差平均值仅为3.46%。
表4:基于不同波谱处理方法测定的TBBQ标准值与红外预测值比较
4.2分析不同食用油样品TBBQ的准确性及精确性的研究
随机选取25组不同温度下煎炸薯条1~24h后的实际煎炸油样品,分别采用标准GC法、朗伯比尔定律模型和PLS模型进行TBBQ浓度测定,不同模型预测数据列于表5。
表5:不同食用油样品TBBQ的准确性及精确性的研究
如表5所示,不同食用油中TBBQ化学值与预测值的相对误差为4.87%,体现了该方法优良的准确性及精确性。
Claims (5)
1.一种基于溶剂萃取耦合FTIR分析食用油中TBBQ含量的方法,所示方法包括:
(1)标准曲线绘制:萃取溶剂,采用1055μm CaF2样品池,记录溶剂波谱S0,扫描次数为32次,分辨率为4cm-1,波谱范围4000~400cm-1;分别取梯度浓度的TBBQ乙腈溶液,记录标准样品的原始波谱S1系列,做波谱减法运算S1-S0,得到系列差谱S2,同时对波谱S1和差谱S2进行二阶求导,并放大-1000倍,分别得到标准波谱的二阶导数图谱S1-2nd和差谱的二阶导数图谱S2-2nd;分别测量原始波谱S1、差谱S2、原始二阶波谱S1-2nd和差谱二阶S2-2nd相应特征峰的吸收强度,以最大吸收峰强度为横坐标,TBBQ标准添加量为纵坐标,绘制得到TBBQ浓度的标准曲线;所述萃取溶剂为下列之一:甲醇,乙腈或正己烷饱和的乙腈;
(2)样品TBBQ含量测定:将待测食用油样品用溶剂萃取后,取下层溶剂萃取液在步骤(1)相同条件下记录波谱S3,对S0、S3作减法,得到差谱进行二阶求导,并放大-1000倍,得到差谱的二阶导数图谱,读取差谱或差谱的二阶导数图谱对应特征吸收峰的强度,对照相应标准曲线得出待测样品中的TBBQ含量。
2.如权利要求1所述的方法,其特征在于所述萃取溶剂为正己烷饱和的乙腈。
3.如权利要求1所述的方法,其特征在于步骤(1)中TBBQ乙腈溶液梯度浓度为2、5、10、25、50、75、100、200μg/mL。
4.如权利要求1所述的方法,其特征在于所述食用油为下列之一:大豆油、菜籽油、花生油、葵花籽油、棕榈油。
5.如权利要求1所述的方法,其特征在于步骤(2)中波谱的处理方法为差谱二阶导数,特征吸收峰为1656cm-1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110149358.0A CN112924408B (zh) | 2021-02-03 | 2021-02-03 | 一种基于溶剂萃取耦合ftir分析食用油中tbbq含量的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110149358.0A CN112924408B (zh) | 2021-02-03 | 2021-02-03 | 一种基于溶剂萃取耦合ftir分析食用油中tbbq含量的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112924408A true CN112924408A (zh) | 2021-06-08 |
CN112924408B CN112924408B (zh) | 2024-09-27 |
Family
ID=76169628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110149358.0A Active CN112924408B (zh) | 2021-02-03 | 2021-02-03 | 一种基于溶剂萃取耦合ftir分析食用油中tbbq含量的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112924408B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102419308A (zh) * | 2011-09-01 | 2012-04-18 | 浙江工业大学 | 基于溶剂萃取耦合ftir分析食用油中微量水分的方法 |
CN102539371A (zh) * | 2011-12-15 | 2012-07-04 | 浙江工业大学 | 一种基于溶剂萃取耦合ftir快速分析磷脂的方法 |
JP5748897B1 (ja) * | 2013-12-20 | 2015-07-15 | 築野食品工業株式会社 | 近赤外分光法を用いた植物油脂またはその原料中の遊離脂肪酸の定量方法 |
CN105158189A (zh) * | 2015-08-28 | 2015-12-16 | 广西科技大学 | 基于空间夹角判据分析植物油中抗氧化剂含量的方法 |
-
2021
- 2021-02-03 CN CN202110149358.0A patent/CN112924408B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102419308A (zh) * | 2011-09-01 | 2012-04-18 | 浙江工业大学 | 基于溶剂萃取耦合ftir分析食用油中微量水分的方法 |
CN102539371A (zh) * | 2011-12-15 | 2012-07-04 | 浙江工业大学 | 一种基于溶剂萃取耦合ftir快速分析磷脂的方法 |
JP5748897B1 (ja) * | 2013-12-20 | 2015-07-15 | 築野食品工業株式会社 | 近赤外分光法を用いた植物油脂またはその原料中の遊離脂肪酸の定量方法 |
CN105158189A (zh) * | 2015-08-28 | 2015-12-16 | 广西科技大学 | 基于空间夹角判据分析植物油中抗氧化剂含量的方法 |
Non-Patent Citations (4)
Title |
---|
QIN YE等: "Accumulation of 2-tert-Butyl-1, 4-Benzoquinone in Frying Oil and Fried Food during Repeated Deep Fat Frying Processes", JOURNAL OF AMERICAN OIL CHEMISTS\' SOCIETY, vol. 97, no. 8, pages 779 - 888 * |
QIN YE等: "Accumulation of 2-tert-Butyl-1, 4-Benzoquinone in Frying Oil and Fried Food during Repeated Deep Fat Frying Processes", JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, vol. 97, no. 8, 13 April 2020 (2020-04-13), pages 879 - 888 * |
叶沁: "油脂煎炸过程中TBBQ生成规律、危害控制机器细胞毒性研究", 中国博士学位论文全文数据库工程科技Ⅰ辑, no. 02, pages 19 * |
王朝杰;李倩;杨天明;: "气相色谱法测定食品中叔丁基对苯二酚定量方法的探讨", 浙江农业科学, no. 11, 11 November 2017 (2017-11-11), pages 2026 - 2033 * |
Also Published As
Publication number | Publication date |
---|---|
CN112924408B (zh) | 2024-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Mechanism, indexes, methods, challenges, and perspectives of edible oil oxidation analysis | |
Zhang et al. | Analytical methods for determining the peroxide value of edible oils: A mini-review | |
Jiang et al. | Determination of the acid values of edible oils via FTIR spectroscopy based on the OH stretching band | |
Zhang et al. | A rapid method for simultaneously determining ethanol and methanol content in wines by full evaporation headspace gas chromatography | |
Pollo et al. | Chemometrics, comprehensive two-dimensional gas chromatography and “omics” sciences: Basic tools and recent applications | |
Monsoor et al. | Determination of polygalacturonic acid content in pectin extracts by diffuse reflectance Fourier transform infrared spectroscopy | |
Wang et al. | Rapid analysis of flavor volatiles in apple wine using headspace solid‐phase microextraction | |
Xie et al. | Prediction of titratable acidity, malic acid, and citric acid in bayberry fruit by near-infrared spectroscopy | |
Jin et al. | Application of Raman spectroscopy in the rapid detection of waste cooking oil | |
Jiang et al. | Quantitative determination of peroxide value of edible oil by algorithm-assisted liquid interfacial surface enhanced Raman spectroscopy | |
Zhu et al. | Evaluation of the non-enzymatic browning in thermally processed apple juice by front-face fluorescence spectroscopy | |
CN102706915B (zh) | 一种地沟油的检测方法 | |
Sun et al. | Rapid and sensitive detection of multi-class food additives in beverages for quality control by using HPLC-DAD and chemometrics methods | |
Poormoghadam et al. | Ion pair-based dispersive liquid–liquid microextraction combined with UV-Vis spectrophotometry as a circuitous assay for nitrite | |
Mu et al. | Determination of sulfur dioxide in food by liquid chromatography with pre-column derivatization | |
CN103411945A (zh) | 一种利用生成偶氮分子对酚类及多环芳烃类化合物进行表面增强拉曼检测的方法 | |
He et al. | Estimating bulk optical properties of AFB1 contaminated edible oils in 300–900 nm by combining double integrating spheres technique with laser induced fluorescence spectroscopy | |
CN112924408B (zh) | 一种基于溶剂萃取耦合ftir分析食用油中tbbq含量的方法 | |
Hua et al. | Rapid analysis of flaxseed oil quality during frying process based on Raman spectroscopy combined with peak-area-ratio method | |
Liu et al. | Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy | |
Rohman et al. | Simultaneous quantitative analysis of two functional food oils, extra virgin olive oil and virgin coconut oil using FTIR spectroscopy and multivariate calibration | |
CN107796780B (zh) | 太赫兹光谱定量检测血液中血脂含量的分析方法 | |
Wang et al. | Application of Fourier transform near-infrared spectroscopy to the quantification and monitoring of carbonyl value in frying oils | |
CN110940658A (zh) | 快速定量测定鸡尾酒中西地那非的方法 | |
Giumanini et al. | Improved method for the analysis of organic acids and new derivatization of alcohols in complex natural aqueous matrixes: application to wine and apple vinegar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |