CN112920960B - Method for increasing palmitoleic acid content of saccharomyces cerevisiae - Google Patents

Method for increasing palmitoleic acid content of saccharomyces cerevisiae Download PDF

Info

Publication number
CN112920960B
CN112920960B CN202110314423.0A CN202110314423A CN112920960B CN 112920960 B CN112920960 B CN 112920960B CN 202110314423 A CN202110314423 A CN 202110314423A CN 112920960 B CN112920960 B CN 112920960B
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
mga2
asn
fatty acid
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110314423.0A
Other languages
Chinese (zh)
Other versions
CN112920960A (en
Inventor
刘军锋
庞杰
邓利
王芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202110314423.0A priority Critical patent/CN112920960B/en
Publication of CN112920960A publication Critical patent/CN112920960A/en
Application granted granted Critical
Publication of CN112920960B publication Critical patent/CN112920960B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/19Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)
    • C12Y114/19001Stearoyl-CoA 9-desaturase (1.14.19.1), i.e. DELTA9-desaturase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01086Fatty-acyl-CoA synthase (2.3.1.86)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a method for improving the palmitoleic acid content of saccharomyces cerevisiae. The invention provides a recombinant bacterium, which is obtained by carrying out the following 1) transformation in oil-producing saccharomyces cerevisiae: 1) improving the transcription activity of the OLE1 gene in the oil-producing saccharomyces cerevisiae to obtain the recombinant strain. In the invention, in a saccharomyces cerevisiae strain YS58 with more oil production, a transcription factor Mga2 or a truncated Mga2 gene fragment is overexpressed, and the expression level of an OLE1 gene for regulating and controlling delta 9 desaturase is improved, so that the content of palmitoleic acid in saccharomyces cerevisiae is improved, exogenous fatty acid elongase genes KCS and FAE are expressed at the same time, a saccharomyces cerevisiae genetic engineering strain is constructed, and the content of palmitoleic acid in saccharomyces cerevisiae is improved.

Description

Method for increasing content of palmitoleic acid in saccharomyces cerevisiae
Technical Field
The invention relates to the technical field of biology, in particular to a method for improving the palmitoleic acid content of saccharomyces cerevisiae.
Background
Palmitoleic acid (palmitoleic acid) is a 16-carbon monounsaturated fatty acid with a double bond at the 7 th carbon atom of the carbon end (C16:1 n-7). The compound has wide medical and cosmetic applications, has certain curative effect on chronic diseases such as obesity, diabetes, fatty liver and the like, and has application potential in the fields of blood sugar reduction, inflammation resistance, skin pigmentation improvement and food. At present, marine products such as fish oil are the main source of palmitoleic acid, but the source of palmitoleic acid is limited due to international prohibition of whale catching and shortage of fishery resources. Efforts have therefore been made to expand the possibilities of isolating such fatty acids from microbial sources.
Palmitoleic acid exists as a biological metabolite, mainly in the form of triglycerides, phospholipids or glycerol sugar esters. In s.cerevisiae, the formation of unsaturated fatty acids is due to the action of Δ 9 desaturase, the OLE1 gene is responsible for encoding Δ 9 desaturase, and transcription factor Mga2 regulates the metabolism of unsaturated fatty acids by controlling the transcription of OLE1 gene and the stability of its mRNA. Mga2 can sense unsaturated fatty acid level on cell membrane and bind ligand through Tryptophan residue of TM transmembrane domain, so as to regulate Mga2 transcription activity, while higher unsaturated fatty acid level on membrane can inhibit Mga2 transcription activation, so that fatty acid dehydrogenase expression cannot be activated. But the regulation and control effects of the IPT structural domain and the ankyrin repetitive sequence on the synthesis of unsaturated fatty acid are not clear yet.
Fatty acid de novo synthesis C2 to C4; c4 to C16; the 3-ketoacyl-ACP synthase (KCS) enzymes used in the three stages C16 to C18 are different. KCSIII is responsible for condensing acetyl-coa and formyl-coa into a four-carbon unit, then KCSI is responsible for extending the four-carbon unit to C16; the last step, KCSII, is responsible for the extension of C16 to C18, where the C16 and C18 series fatty acids are the major components of most animal plant cell fatty acid compositions.
Disclosure of Invention
An object of the present invention is to provide a recombinant bacterium.
The recombinant strain provided by the invention is obtained by carrying out the following 1) transformation in oil-producing saccharomyces cerevisiae:
1) improving the transcription activity of the OLE1 gene in the oil-producing saccharomyces cerevisiae to obtain the recombinant strain.
In the recombinant strain, the improvement of the transcriptional activity of the OLE1 gene in the grease-producing Saccharomyces cerevisiae is the improvement of the expression level (over-expression Mga2) of the transcription factor Mga2 of the OLE1 gene or the coding gene of a truncated body of the OLE1 gene in the grease-producing Saccharomyces cerevisiae;
the amino acid sequence of the transcription factor Mga2 is a sequence 4 in a sequence table;
the amino acid sequence of the truncated body of the transcription factor Mga2 is 1 st-975 th of a sequence 4 in a sequence table;
or the amino acid sequence of the truncated body of the transcription factor Mga2 is 1 st to 706 th in a sequence 4 in a sequence table.
Or the promoter of the coding gene of the transcription factor Mga2 or the truncation thereof is a saccharomyces cerevisiae strong promoter, such as PGK1 or TEF 1.
The Mga2 overexpression method is to clone the gene to YEp by adopting a T4 connection methodlac112-P PGK -T CYC On the vector, a saccharomyces cerevisiae strong promoter PGK1 is adopted to start expression.
In the recombinant bacteria, the recombinant bacteria are obtained by carrying out the transformation of 1) and 2) in oil-producing saccharomyces cerevisiae:
2) and (3) allowing the grease-producing saccharomyces cerevisiae to express fatty acid elongase.
The expression of KCS and FAE is realized by cloning a gene sequence to a pYES2.0 vector by adopting a T4 connection and seamless cloning method, and the expression is started by adopting a strong promoter TEF1 or PGK1, wherein the promoter of KCS is TEF1 or PGK1, and the promoter of FAE is PGK 1.
In the recombinant strain, 1 or 2 kinds of fatty acid elongases are used;
the fatty acid elongase is fatty acid elongase from crambe or cardamine hirsutum or protein of amino acid residues with homology of more than 95 percent with the amino acid sequence of the fatty acid elongase.
In the recombinant bacterium, the fatty acid elongase is a fatty acid elongase shown in a) and a fatty acid elongase shown in b) as follows:
a) the fatty acid elongase is KCS; the encoding gene is derived from beta-ketoacyl coenzyme A synthase gene of cardamine hirsuta (Cardaminehirsuta), and the nucleotide sequence is sequence 2 in the sequence table;
b) the fatty acid elongase is FAE; the coding gene is derived from beta-ketoacyl coenzyme A synthase gene of Crambe abyssinica, and the nucleotide sequence is the sequence 3 in the sequence table.
In the recombinant bacteria, the grease-producing saccharomyces cerevisiae takes saccharomyces cerevisiae YS58 as an example.
It is another object of the present invention to provide the following method.
The invention provides a method for preparing the recombinant bacterium of the first purpose, which is prepared according to the modified form of the recombinant bacterium of the first purpose.
The application of the recombinant bacterium in improving the palmitoleic acid content of the saccharomyces cerevisiae is also within the protection range of the invention;
or, the application of the recombinant bacteria in the preparation or production of palmitoleic acid is also within the protection scope of the invention.
Or, the invention provides a method for increasing the palmitoleic acid content of saccharomyces cerevisiae, which comprises the following steps: the improvement is carried out according to the improvement mode 1) in the recombinant strain, so that the palmitoleic acid content of the saccharomyces cerevisiae is increased;
or, the invention provides a method for increasing the palmitoleic acid content of saccharomyces cerevisiae, which comprises the following steps: the improvement is carried out according to the improvement modes 1) and 2) in the recombinant bacteria, so that the palmitoleic acid content of the saccharomyces cerevisiae is increased.
It is also an object of the present invention to provide a process for the preparation or production of palmitoleic acid.
The method provided by the invention comprises the following steps:
1) fermenting the recombinant bacteria in an YNB auxotrophic culture medium, and collecting fermentation products;
2) and extracting fatty acid in the fermentation product by a saponification method to obtain the palmitoleic acid.
The construction method of the saccharomyces cerevisiae gene engineering bacteria comprises the steps of transforming a vector into saccharomyces cerevisiae by using a saccharomyces cerevisiae gene transformation kit, coating the saccharomyces cerevisiae gene transformation kit on a corresponding auxotroph (Trp-deficient or Ura-deficient) solid culture medium, and screening the saccharomyces cerevisiae gene engineering bacteria successfully transformed into a recombinant vector.
The culture method of the saccharomyces cerevisiae gene engineering bacteria comprises the following steps: the engineering bacteria are inoculated into YNB culture medium and are continuously activated twice in a shaking flask at the temperature of 28 ℃ and the speed of 180 rpm. The seed solution was inoculated into YNB auxotrophic medium 28 ℃, shake-flask culture was carried out at 180rpm for 2 days at 18 ℃, and after further culture was carried out at 180rpm for 4 days, the cells were collected by centrifugation.
In the invention, in a saccharomyces cerevisiae strain YS58 with more oil production, a transcription factor Mga2 or a truncated Mga2 gene fragment is overexpressed, and the expression level of an OLE1 gene for regulating and controlling delta 9 desaturase is improved, so that the palmitoleic acid content of saccharomyces cerevisiae is improved, and meanwhile, exogenous fatty acid elongase genes KCS and FAE are expressed, so that a saccharomyces cerevisiae genetic engineering strain is constructed, and the palmitoleic acid content of saccharomyces cerevisiae is improved.
The invention has the following beneficial effects: the method improves the palmitoleic acid content in the saccharomyces cerevisiae, and provides a reference for breaking through the limitation of palmitoleic acid sources and expanding microbial sources. The invention takes the regulation and control of the transcription factor of the delta 9 desaturase gene as the starting point to construct the saccharomyces cerevisiae gene engineering bacteria, can effectively improve the transcription activity of the OLE1 gene, and is beneficial to the synthesis of unsaturated fatty acid; meanwhile, the transcription factor and the fatty acid elongase are jointly regulated and controlled, so that the palmitoleic acid content of the saccharomyces cerevisiae is effectively improved, and the palmitoleic acid content of the saccharomyces cerevisiae reaches 60%. The exogenous KCS gene is responsible for the extension of long-chain monounsaturated fatty acid, when the unsaturated fatty acid in the cell membrane is excessive, the synthesis of palmitoleic acid can be inhibited, and partial long-chain fatty acid is consumed by using fatty acid elongase genes KCS and FAE, so that the production of saccharomyces cerevisiae palmitoleic acid is driven.
The invention has the following advantages:
1) overexpression of the transcription factor Mga2 can effectively improve the expression of OLE 1. And with the continuous truncation of Mga2 gene, the content of monounsaturated fatty acid in the saccharomyces cerevisiae is increased, wherein after truncation of IPT structural domain and ankyrin repetitive sequence of Mga2, the accumulation of palmitoleic acid in saccharomyces cerevisiae genetic engineering bacteria is facilitated.
2) The fatty acid elongase is commonly used in the synthesis of the ultra-long chain fatty acid, but is not applied in the synthesis of the palmitoleic acid, and the improvement of the palmitoleic acid content by the synergistic action of the palmitoleic acid elongase and the transcription factor Mga2 is not reported in documents. When Mga2 is over-expressed, the fatty acid elongase genes KCS and FAE are expressed at the same time, which is more beneficial to improving the palmitoleic acid content of the saccharomyces cerevisiae.
3) According to the invention, two fatty acid elongases are used and are respectively from crambe and cardamine hirsute, C18:1 is extended to C22:1 by using FAE genes of the fatty acid elongases, C22:1 is extended to C24:1 by using KCS genes of the fatty acid elongases, and related researches show that the content of palmitoleic acid can be improved by transferring two exogenous genes.
Drawings
FIG. 1 is a schematic representation of the location of the various domains of transcription factor Mga2 and the truncation location of the three truncated fragments.
FIG. 2 is a schematic diagram of the design of a seamless ligation primer involved in the construction of a heterologous expression of a fatty acid elongase gene.
FIG. 3 is a graph showing the effect of overexpressing transcription factor Mga2 and truncated fragments of overexpressing transcription factor Mga2 on palmitoleic acid content in Saccharomyces cerevisiae.
FIG. 4 shows the effect of heterologous expression of fatty acid elongase genes KCS and FAE on the palmitoleic acid content of Saccharomyces cerevisiae while overexpressing transcription factors.
FIG. 5 is a gas chromatography analysis chart of the standard and each sample.
Detailed Description
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The present invention is further illustrated by the following specific examples, but the scope of the invention is not limited thereto.
The culture media used in the following examples are as follows, wherein the percentages are by mass:
final concentration composition of LB medium: 0.5 percent of yeast powder, 1 percent of peptone, 0.5 percent of sodium chloride, 1.7 percent of agar (used for a solid culture medium), a solvent is deionized water, and the pH value is natural.
Final concentration composition of YPD medium: 1% yeast powder, 2% peptone, 2% glucose, 1.7% agar (for solid medium), deionized water as solvent, and natural pH.
Final concentration composition of YNB auxotrophic medium: 0.17% nitrogen source without amino yeast (Shanghai-derived leaf Biotechnology Co., Ltd., S24483), 0.5% ammonium sulfate, 0.13% Dropout Supplement-Trp (Beijing Ku Lai Pake Co., Ltd., PM2250) or 0.13% Dropout Supplement-Ura (Beijing Ku Lai Pake Co., Ltd., PM2270), 2% glucose, deionized water as solvent, pH5.0, addition of D-S amino acid determined by the selection marker of the expression vector, and addition of 1.7% agar to the solid medium based on the above components.
The amino acid sequence of the transcription factor Mga2 in the following embodiment is sequence 4 in the sequence table, and the nucleotide sequence of the gene coded by the transcription factor is sequence 1 in the sequence table;
the nucleotide sequence of the gene coded by the fatty acid elongase KCS is sequence 2;
the nucleotide sequence of the gene coded by the fatty acid elongase FAE is sequence 3.
Example 1 Effect of overexpression of transcription factor Mga2 on the content of palmitoleic acid in Saccharomyces cerevisiae
Construction of over-expressed transcription factor Mga2 gene engineering bacteria
1. Construction of Mga2 overexpression vector
The yeast genome is extracted by using a standard yeast extraction kit of Bomeide company to clone Mga2 genes, BamHI and SmaI enzyme cleavage sites are selected and are connected to a vector YEplac112-P with a saccharomyces cerevisiae strong promoter PGK promoter and a CYC terminator PGK -T CYC (Shanghai ze leaf Biotech Co., Ltd., ZY 1369).
The successfully ligated plasmids were transferred to Trans10 competent cells for validation screening and plasmid amplification. Selecting a single colony grown from a plate for colony PCR verification, selecting the single colony successfully verified by the colony PCR, inoculating the single colony into an LB test tube with Amp resistance for culturing for about 12 hours, extracting plasmids, performing enzyme digestion verification to further determine whether the single colony is a required carrier, selecting a plasmid with a correct enzyme digestion verification result for sequencing, and determining that Mga2 gene fragments are successfully connected into YEplac112-P through a sequence comparison result PGK -T CYC The vector, the plasmid with the correct sequencing was named YEplac112-P PGK -MGA2-T CYC And Mga2 is an overexpression vector.
YEplac112-P PGK -MGA2-T CYC The recombinant vector is obtained by replacing Mga2 gene shown in sequence 1 in a sequence table with YEplac112-P PGK -T CYC The vector obtained between BamHI and SmaI enzyme cutting sites of the vector expresses Mga2 gene, and the promoter of Mga2 gene is P PGK The terminator is T CYC。
2. Construction of truncated Mga2 Gene overexpression vectors
Similar to the Mga2 gene overexpression vector construction, the gene for the Mga2 truncation was cloned using the primers listed in table 1.
Table 1 shows the sequences of the primers used
Figure BDA0002990537350000051
The wMga2 gene is obtained by using a DNA molecule shown in a sequence 1 as a template and using MGA2-F and MGA2-R for amplification;
MGA2 of a truncated tMga2(975aa) 975aa The gene uses MGA2-F and MGA2 as templates 975aa The nucleotide sequence of the gene is obtained by amplification of-R, and the nucleotide sequence is 1 st to 2925 th of the sequence 1;
MGA2 of a truncated tMga2(706aa) 706aa The gene uses MGA2-F and MGA2 as templates 706aa The nucleotide sequence of the gene is obtained by amplification of-R, and the nucleotide sequence is 1 st to 2118 th of the sequence 1;
MGA2 of a truncated tMga2(529aa) 529aa The gene uses a DNA molecule shown in sequence 1 as a template, and MGA2-F and MGA2 529aa The nucleotide sequence of the gene is 1 st to 1587 th positions of the sequence 1.
The above described truncated body is shown in figure 1.
According to YEplac112-P PGK -T CYC Plasmid restriction site and MGA2 gene self sequence characteristics BamHI and SmaI restriction sites are selected to be connected with MGA2 truncated fragment to respectively construct YEplac112-P PGK -MGA2 975aa -T CYC 、YEplac112-P PGK -MGA2 706aa -T CYC 、YEplac112-P PGK -MGA2 529aa -T CYC An expression vector.
YEplac112-P PGK -MGA2 975aa -T CYC The recombinant vector is MGA2 shown in 1 st-2925 th site of a sequence 1 in a sequence table 975aa Gene replacement YEplac112-P PGK -T CYC The vector obtained by cutting the fragment between BamHI and SmaI enzymes of the vector expresses MGA2 975aa Gene, MGA2 975aa The promoter of the gene is P PGK The terminator is T CYC。
YEplac112-P PGK -MGA2 706aa -T CYC The recombinant vector is MGA2 shown in 1 st-2118 th site of a sequence 1 in a sequence table 706aa Gene replacement YEplac112-P PGK -T CYC The vector obtained by cutting the fragment between BamHI and SmaI enzymes of the vector expresses MGA2 706aa Gene, MGA2 706aa The promoter of the gene is P PGK The terminator is T CYC。
YEplac112-P PGK -MGA2 529aa -T CYC The recombinant vector is MGA2 shown in 1 st to 1587 th sites of a sequence 1 in a sequence table 529aa Gene replacement YEplac112-P PGK -T CYC The vector obtained by cutting the fragment between BamHI and SmaI enzymes of the vector expresses MGA2 529aa Gene, MGA2 529aa The promoter of the gene is P PGK The terminator is T CYC。
3. Construction of Saccharomyces cerevisiae Gene engineering bacteria
The 4 expression vectors successfully constructed in the steps 1 and 2 are respectively introduced into the YS58 strain by using a lithium acetate transformation method, screened and expressed, and the specific steps are as follows:
the host bacteria is Saccharomyces cerevisiae YS58 (Shanghai Beino Biotechnology Co., Ltd.), the classical yeast transformation kit is used for yeast transformation, and the source is Beijing Kulai bock technology Co., Ltd., SK 2400. YPD medium was activated twice, cultured to logarithmic growth phase to prepare competent cells, harvested by refrigerated centrifugation, washed twice with water, and suspended in 1/10-concentration LiAc. A premix of 240. mu.l of PEG Solution (SL 9510, Ku-Laplace technology Co., Ltd. in Beijing), 36. mu.l of LiAc Solution (YT 0002, Ku-Laplace technology Co., Ltd. in Beijing), 10. mu.l of Carrier DNA (YT 0003, Ku-Laplace technology Co., Ltd. in Beijing), and 5. mu.l of plasmid (any of the above 4 expression vectors) was prepared and supplemented with sterile water to a final volume of 360. mu.l. The premix was injected into YS58 competent cells, sequentially washed with water at 30 ℃ and 42 ℃ for 30 minutes, centrifuged, and then resuspended in sterile water and applied to Trp-deficient selection medium (PM 2251, Beijing blue Boster Bio Inc.), followed by culturing at 30 ℃ for 2-4 days to select positive transformants.
Empty plasmid YEplac112-P PGK -T CYC And recombinant plasmid YEplac112-P PGK -MGA2-T CYC 、YEplac112-P PGK -MGA2 975aa -T CYC 、YEplac112-P PGK -MGA2 706aa -T CYC 、YEplac112-P PGK -MGA2 529aa -T CYC The recombinant bacteria YS01, YS02, YS03, YS04 and YS05 are obtained by transferring the strain into a host bacterium YS58 in sequence.
Second, influence of over-expression transcription factor on palmitoleic acid content of saccharomyces cerevisiae
1. Engineering bacteria culture
Activating the genetically engineered bacteria and the host bacteria: preparing YNB auxotrophic culture medium, preparing nitrogen source and glucose solution separately to prevent ammonia carbonyl reaction, autoclaving at 115 deg.C under 0.12MPa for 25 min.
And (3) obtaining a seed solution, namely inoculating the prepared genetically engineered bacteria YS01, YS02, YS03, YS04 and YS05 into an YNB auxotrophic culture medium, culturing for 48h in a constant-temperature shaking table at 180rpm and 28 ℃, repeatedly activating twice to obtain the seed solution, and standing for use.
Fermentation culture: and inoculating the seed solution obtained by repeated activation twice into an YNB auxotrophic culture medium, wherein the bacterial strain YS01 is a control bacterial strain, shaking the flask for 2 days at 28 ℃, and then transferring to 18 ℃ for continuous culture for four days after carrying out shake flask fermentation culture at 180rpm, so as to obtain YS01 fermentation product, YS02 fermentation product, YS03 fermentation product, YS04 fermentation product and YS05 fermentation product.
2. Extraction of the product
The wall breaking efficiency of the saccharomyces cerevisiae is not high, intracellular products cannot be completely released to the outside of cells, the accuracy of a detection result is directly influenced, and a saponification method is selected to extract the yeast grease according to laboratory conditions and the efficiency of a grease extraction method pointed out in literature, and the method specifically comprises the following steps:
6000g of fermentation products of the strains are centrifuged for 5min, thallus is collected and washed twice, 15mL of 10% (volume percentage content) KOH-methanol solution (composed of 10g/100mLKOH, 95% methanol and 5% deionized water) is added, and the mixture is transferred to a ground conical flask. Then placing the mixture in a water bath kettle at the temperature of 80 ℃ for condensing and refluxing for 2 hours to cause strong base to carry out saponification reaction with intracellular esters, collecting condensed and refluxed liquid to obtain fatty acid salt, and acidifying the fatty acid salt by hydrochloric acid (adding 4mL of hydrochloric acid with the concentration of 6M) to obtain fatty acid.
3. Product handling and detection
Preparation of fatty acid methyl ester: adding 4mL of 1% (volume percentage) sulfuric acid-methanol solution into the fatty acid obtained by the 2 saponification method, uniformly mixing, transferring into a clean test tube with a plug, and reacting for 1h in a water bath kettle at 60 ℃; cooling at room temperature, and adding 5mL of saturated NaCl solution to precipitate impurities such as protein; then adding 1mL of normal hexane, and collecting an organic phase, namely the extracted fatty acid methyl ester; the sample was dehydrated with anhydrous sodium sulfate.
GC detection of fatty acid methyl esters: and (3) carrying out gas phase detection and analysis on the obtained fatty acid methyl ester by using a DB-WAX chromatographic column of an Shimadzu gas analyzer, using high-purity nitrogen as a detection carrier, and separating the fatty acid methyl ester by adopting a two-stage heating program, wherein the initial column temperature is 62 ℃, the time lasts for 5min, the heating increasing rate is 3 ℃/min, the column temperature is gradually increased from 60 ℃ to 215 ℃, and the retention time is 32 min.
The standard substance is a mixed standard of 37 fatty acid methyl esters (Shanghai-sourced folk biotechnology, B25881).
The results are shown in FIG. 5, wherein A is a fatty acid methyl ester mixed standard gas chromatography analysis chart, and B is a YS01 fatty acid gas chromatography analysis chart; c is YS02 fatty acid gas chromatography diagram, D is YS03 fatty acid gas chromatography diagram; e is a YS04 fatty acid gas chromatography analysis chart; f is YS05 fatty acid gas chromatography analysis chart; g is YS06 fatty acid gas chromatography diagram; h is YS07 fatty acid gas chromatography diagram, and I is YS08 fatty acid gas chromatography diagram. The target product obtained in the sample is the methyl palmitoleate, and the retention time of the methyl palmitoleate in the sample is consistent with that of the methyl palmitoleate in the standard and is 10.200-10.450 min.
Palmitoleic acid C16: 1-area of methyl palmitoleate peak/area of total peak X100%
Palmitoleic acid C16:1 content results are shown in fig. 3, and it can be seen that the strain YS02 overexpressing the Mga2 transcription factor compared to the empty plasmid strain YS01, C16:1, the content of the strain YS04 palmitoleic acid reaches 46 percent, and is improved by about 9 percent compared with a control strain YS 01.
This is consistent with the expected results, and it can be seen that the IPT domain and ankyrin repeat are not essential domains for P120 activation, and even the domain is truncated to facilitate the activation and expression of Mga2, thereby increasing the palmitoleic acid content in Saccharomyces cerevisiae.
Example 2 Effect of overexpression of Mga2 transcription factor and simultaneous heterologous expression of fatty acid elongase genes KCS and FAE on the content of palmitoleic acid in Saccharomyces cerevisiae
Construction of gene engineering bacteria for synchronously heterogeneously expressing fatty acid elongase genes KCS and FAE by overexpression of Mga2 transcription factors
The fatty acid elongase genes KCS and FAE are from foreign plants cardamine hirsute and crambe and are not easy to obtain, so the sequences are directly synthesized by Jinwei Zhi company in Suzhou and are connected with YEplac112-P PGK -T CYC On a carrier.
The nucleotide sequence of the fatty acid elongase gene KCS is a sequence 2 in the sequence table;
the nucleotide sequence of the fatty acid elongase gene FAE is a sequence 3 in the sequence table.
1. Construction of MGA2 and KCS double-gene expression engineering bacteria YS07
pYES2-P TEF1 -MGA2 706aa -T CYC -P PGK -KCS-T CYC The construction method of the expression vector comprises the following steps:
1) the KCS gene (SEQ ID NO: 2) was ligated into pYES2-P using Not I and Xho I TEF1 Vector (the vector is P TEF1 (SEQ ID NO: 5) the pYES2-P vector (vector obtained by substituting the Gal1 promoter in the pYES2.0 vector (Saimer Feishell science and technology (China) Co., Ltd.)) was constructed TEF1 -KCS-T CYC (T CYC Self-carrying vector pYES 2);
2) the CYC and PGK fragments are seamlessly connected by using Overlap PCR to form T CYC -P PGK (SEQ ID NO: 6), schematic primer design as shown in FIG. 2 a; then, the T is put into CYC -P PGK Double digestion with BamHI and EcoRI into pYES2-P obtained in 1) above TEF1 -KCS-T CYC In (1), obtaining pYES2-P TEF1 -T CYC -P PGK -KCS-T CYC
3) Mixing MGA2 706aa The gene (SEQ ID NO: 1, 1-2118) was amplified by a PCR instrument and ligated to pYES2-P described above TEF1 -T CYC -P PGK -KCS-T CYC The Kpn I and BamH I enzyme cutting sites are verified by colony PCR and sequencing to obtain pYES2-P TEF1 -MGA2 706aa -T CYC -P PGK -KCS-T CYC Two-gene vector expressing MGA2 706aa Genes and KCS genes, wherein the MGA2 corresponding promoter is TEF1, and the KCS corresponding promoter is PGK 1.
The primers used in the construction are shown in Table 2.
Will pYES2-P TEF1 -MGA2 706aa -T CYC -P PGK -KCS-T CYC The double-gene vector is transferred into a host bacterium YS58 to obtain a saccharomyces cerevisiae gene engineering bacterium YS 07.
Secondly, constructing MGA2, KCS and FAE three-gene expression engineering bacteria YS08
1. Construction of pYES2-P TEF1 -KCS-T CYC -P PGK -FAE-T CYC Double-gene expression vector
1) From a company-synthesized support PGK -FAE and KCS-T CYC Two fragments are amplified by using the method that the Overlap PCR utilizes homologous sequences to seamlessly connect the two fragments to form KCS-T CYC -P PGK -FAE (seq id No. 7), schematic of fig. 2 b;
2) reacting KCS-T CYC -P PGK the-FAE fragment was digested simultaneously with EcoRI and Not I to join pYES2-P TEF1 Vector construction pYES2-P TEF1 -KCS-T CYC -P PGK -FAE-T CYC A double gene vector.
2. Three-gene vector pYES2-P TEF1 -KCS-T CYC -P PGK -FAE-T CYC -P PGK -MGA2 706aa -T CYC
In pYES2-P TEF1 -KCS-T CYC -P PGK -FAE-T CYC The construction is carried out on the basis of the double-gene vector, and specifically comprises the following steps:
1) the CYC and PGK fragments are seamlessly connected, and then T is connected CYC -P PGK And MGA2 706aa Seamless join, get T CYC -P PGK -MGA2 706aa (SEQ ID NO: 8), which is schematically shown in FIG. 2 c.
2) Then, the product is processedWill T CYC -P PGK -MGA2 706aa Ligation to pYES2-P TEF1 -KCS-T CYC -P PGK -FAE-T CYC NotI and XhoI double restriction sites of the double-gene vector to obtain pYES2-P TEF1 -KCS-T CYC -P PGK -FAE-T CYC -P PGK -MGA2 706aa -T CYC Three gene vectors, the primers used are shown in Table 2.
The recombinant vector pYES2-P TEF1 -KCS-T CYC -P PGK -FAE-T CYC -P PGK -MGA2 706aa -T CYC Transferring the strain into a host strain YS58 to obtain a saccharomyces cerevisiae gene engineering strain YS 08.
Table 2 shows the primers used
Figure BDA0002990537350000091
Figure BDA0002990537350000101
Influence of heterologous expression of fatty acid elongase genes KCS and FAE on palmitoleic acid content of saccharomyces cerevisiae while over-expressing transcription factors
1. Engineering bacteria culture
The same culture method as that of example 1 was followed, except that YS07 and YS08 were cultured by fermentation and pYES2-P was introduced into the host strain YS58 TEF1 Vector strain YS06 was obtained as a control strain.
2. Extraction of the product
The same procedure as in example 1.
3. Product handling and detection
The same procedure as in example 1.
As shown in FIG. 4, when the transcription factor Mga2 was overexpressed and the KCS gene was overexpressed, the palmitoleic acid content was significantly increased, and the palmitoleic acid content of the strain YS07 was about 51%. On the basis, the effect of simultaneous expression of the KCS gene and the FAE gene is more obvious, and the palmitoleic acid content of the final strain YS08 can reach 60%, so that the palmitoleic acid content is obviously improved compared with that of a control strain.
The above embodiments are only described to help understanding the method of the present invention and its core idea. It should be noted that, for those skilled in the art, without departing from the principle of the present invention, it is possible to make various improvements and modifications to the present invention, and those improvements and modifications also fall within the scope of the claims of the present invention.
SEQUENCE LISTING
<110> Beijing university of chemical industry
<120> method for improving palmitoleic acid content of saccharomyces cerevisiae
<160> 8
<170> PatentIn version 3.5
<210> 1
<211> 3342
<212> DNA
<213> Artificial sequence
<400> 1
atgcagcaga acagtgagtt cttaacggaa acacctggaa gcgaccctca tatatctcaa 60
ttgcacgcga atagcgtaat ggaatcacag ctcttggacg atttcctcct gaacgggtct 120
cccatgtacc aggatgatag catggcgcat attaatattg atgagggtgc taatttccaa 180
aattttatca agacagatga gggtgattcg cccaacctgt tgtctttcga aggtatcggt 240
aacaatactc atgtcaacca aaacgtgtcc actccactgg aggaggaaat ggaaagtaac 300
agagccttga aggaggaaga agaggacgag catgaaaata aggtttttaa tgaaaaaaat 360
ataggcaacc ctgctcatga cgagattgta tttggaagaa aggagacgat tcaatctgtt 420
tacataaatc ctttagatta ccttaaagtg aacgcagcgc agctaccttt ggatgtagag 480
gtctcaggtt tgccacaagt atctagagtg gaaaatcaac tgaaactgaa agtgaaaatt 540
acgtctgaaa caccactaaa ccaaagcatg ctttacttgc ctagcgattc catttcaaga 600
gaaaagtttt atttaaaaaa aaatatcgag gatttttcag aagacttcaa gaaaaatctt 660
ctgtacatca atgcgtttgt tctatgtgcg gtcagcaaca gaacgacaaa tgtttgtacc 720
aagtgtgtta agcgagaaca aagaagagcc gctagaagga aatcaggtat tgcagacaat 780
ttactctggt gtaataatat taatagaagg ttagtcgtgt tcaataacaa acaggttttc 840
cccataatga aaactttcga taatgttaag gagtttgaat taactaccag gctagtttgt 900
tattgcaggc accataaggc aaataatggc tttgtcatat tattcactat aacagattgg 960
caaaatagac tgttgggtaa gtttacgaca acacctatta tgatcacgga tagaaaacca 1020
gcaaatatgg ataccaccaa gtttaataac actactacct cgtccagaag gcagctaacg 1080
gaagaagaat ctaccacaga atattattca acggataaca accaattgag caaagacgaa 1140
aatatgccat ttcaatatac ttatcaacac aacccatatg ataatgacag tcaaatgaat 1200
aatattccac tgaaagacaa aaacgtacca ttcccatatt ccatctctca acagacagat 1260
ttgcttcaga acaataactt atcactgaac ctttctctgc ccaatcagca tattccatca 1320
ccaacatcta tgagcgaaga aggctcagaa tcatttaact atcatcatcg cgataatgac 1380
aatcccgtcc gtactatctc tttgacaaat attgaacaac agagtcaatt gaaccaacgg 1440
aaaagagcac gcaataattt ggaaaatgac attggtaaac ccctattcaa gcattccttt 1500
tcaaattcaa tcagtgcaac aaatacgatg aatccagctt tacattcaat gcaagatttc 1560
tcaatgaaaa acaacaacaa taatttgcca tcaattaatc gcgttatacc ttcacaaggc 1620
ccaatcaatg gtggtatcga agttacatta ctgggttgta acttcaaaga tggtctttct 1680
gtaaagttcg gctctaatct tgccctttct acgcaatgct ggagtgagac cacgatcgtc 1740
acttatctcc ctcccgctgc ctacgcgggt caagttttcg tctctattac tgatacgaat 1800
aatgaaaata ataacgatga ccttccccaa gaaattgaga tcaatgacaa taaaaaggcc 1860
atatttacct atgttgatga tactgatagg caactgattg aattggcttt gcaaattgtg 1920
ggattaaaaa tgaatggtaa gttagaagat gcaagaaata tcgcgaagag gattgttggc 1980
aatgattctc ctgatagcgg tacaaatggc aacagctgtt caaaaagcac aggtccctct 2040
ccaaaccaac acagtatgaa tctgaacaca agtgttcttt actccgatga agtcttgata 2100
caaaaagtta taaaatcatt gaacataaat tccaatattt ccatatgtga ttcattaggg 2160
agaactttat tacatcttgc ctgtttgaaa aattactcaa gccttgtgta tacattgatt 2220
aaaaagggtg ctcgtgttaa cgatattgat tcctttgggc taactccatt acattttgct 2280
tgcataagtg gtgaccctaa aattattaag atgcttttaa attgtaaagt aaattattca 2340
ctgaggtcac acaacggatt aactgcaaga gaagtattca tagcaaacca cattcattca 2400
aaggaaatag acaaaaaaca agataacaga gacaaccata agtttgttca taatgacact 2460
tatatcagcg aagtattgtc attgtttgaa gaattccaaa acggtacgaa gtttaccgat 2520
agtgtagaaa cagacagtaa ttattctatt agcaggaaat attcacaatc cagtttcaat 2580
tcaagcctgc tagacaatga atctttgaat gagaacttat tcgaaagcca aagcatgata 2640
aatcccactt ctatggagat tcagcatcca accttgcaac tatttgagaa ttcaagttac 2700
tctgagtacg accaaagtga tttcgaagaa gacggggatg aagatctgtt cgtcactgac 2760
gaagtagaaa aaccaggtgt tgcatgcagg gaggaacaaa gcgaactcct tgatattgga 2820
tctagcgcca acgaacccga agaggataat ggtagtacat ctctctggaa tagagtttta 2880
catcgaatta atgatgactt accaaaatat gaggatctgt tcccgttgtc ttggggtaaa 2940
gatgataaat tgaaaaccac aaatcaagac agtattgtgg agcagtcagc atctaatatt 3000
gaaaactctg aaaattcgga ggaagaggat tatgaggaag aggaagaatt tttgaaaaaa 3060
cagtttaaca gattcttcca aaacaaacaa aacttccgaa atgataaaat gttaatattt 3120
ttctggatac ccttaacact actacttttg acatggttca tcatgtacaa atttggcaac 3180
caagatagtt ccatcaatca tataagcgaa ttaatctcag agtacttgag aattgcatta 3240
gcaaagttct tgctgggaaa tgaaaggatg aaaactgcat tcaggtcaaa attatcaaac 3300
ctgcaaacaa caagaatgtt gaacgattta attgtcagtt ag 3342
<210> 2
<211> 1521
<212> DNA
<213> Artificial sequence
<400> 2
atgacttcta ttaatgttaa attgttgtac cattacgttt tgactaactt ttttaatttg 60
tgtttgttcc cattgactgc tttccctgct ggtaaggctt ctcaattgac tactaatgat 120
ttacatcatt tgtattctta cttgcatcat aatttaatta cagttacttt gttgtttgct 180
tttactgttt ttggttctat tttgtatatt gttacaagac caaaaccagt ttatttggtt 240
gattattctt gttatttgcc accaagacat ttgtcttgtg gtatttctag agttatggaa 300
attttttatg aaataagaaa atctgatcca tctagagagg tccctttcga tgacccatct 360
tctttggaat ttttgagaaa gattcaggag aggtctggtt tgggtgatga gacttacggt 420
ccacaaggtt tggtccacga catgccattg aggatgaact ttgctgctgc tagggaggag 480
actgagcagg tcattaacgg tgctttggaa aaattgtttg aaaatacaaa agttaatcca 540
agagaaattg gtattttggt tgttaattct tctatgttta atccaactcc atctttgtct 600
gctatggttg ttaatacttt taaattgaga tctaatatta aatctttttc attgggtggt 660
atgggttgct ctgctggtat tattgctatt gatttggcta aagatttgtt gcatgttcat 720
aaaaatactt atgcattggt tgtttctact gaaaatatta ctcattctac ttatactggt 780
gataacagat ctatgatggt ttctaattgt ttgtttagaa tgggtggtgc tgctattttg 840
ttgtctaata aagctggtga tagaagaaga tctaaatata agttggctca cactgttaga 900
actcacactg gtgctgacga ccagtctttt aggtgcgtta ggcaagagga cgacgacaga 960
ggtaagattg gtgtttgttt gtctaaagat attactgctg ttgctggtaa aactgttact 1020
aaaaatattg ctactttggg tccattggtt ttgccattgt cagaaaaatt tttgtatgtt 1080
gtttctttga tggctaaaaa attgtttaaa aataaaatta aacatactta tgttccagat 1140
tttaagttgg ctattgatca tttttgtatt cacgctggtg gtagggctgt cattgatgtt 1200
ttggagaaaa atttggcttt gtctcctgtt gatgttgaag cttctagatc tactttgcat 1260
agatttggta atacttcttc ttcttctatt tggtatgaat tggcttatat tgaagctaaa 1320
ggtagaatga aaaaaggtaa taaagtttgg caaattgcta ttggttctgg tttcaagtgc 1380
aactctgctg tttgggtcgc tttgtgcaac gtcaagccat ctgtcaactc tccatgggag 1440
cactgcattg atcgttatcc tgttgaaatt aattatggtt cttctaaatc tgaaactaga 1500
gctcaaaatg gtagatctta a 1521
<210> 3
<211> 1521
<212> DNA
<213> Artificial sequence
<400> 3
atgacttcta ttaatgttaa attgttgtac cattacgttt tgactaactt ttttaatttg 60
tgtttgttcc cattgactgc tttccctgct ggtaaggctt ctcaattgac tactaatgat 120
ttacatcatt tgtattctta cttgcatcat aatttaatta cagttacttt gttgtttgct 180
tttactgttt ttggttctat tttgtatatt gttacaagac caaaaccagt ttatttggtt 240
gattattctt gttatttgcc accaagacat ttgtcttgtg gtatttctag agttatggaa 300
attttttatg aaataagaaa atctgatcca tctagagagg tccctttcga tgacccatct 360
tctttggaat ttttgagaaa gattcaggag aggtctggtt tgggtgatga gacttacggt 420
ccacaaggtt tggtccacga catgccattg aggatgaact ttgctgctgc tagggaggag 480
actgagcagg tcattaacgg tgctttggaa aaattgtttg aaaatacaaa agttaatcca 540
agagaaattg gtattttggt tgttaattct tctatgttta atccaactcc atctttgtct 600
gctatggttg ttaatacttt taaattgaga tctaatatta aatctttttc attgggtggt 660
atgggttgct ctgctggtat tattgctatt gatttggcta aagatttgtt gcatgttcat 720
aaaaatactt atgcattggt tgtttctact gaaaatatta ctcattctac ttatactggt 780
gataacagat ctatgatggt ttctaattgt ttgtttagaa tgggtggtgc tgctattttg 840
ttgtctaata aagctggtga tagaagaaga tctaaatata agttggctca cactgttaga 900
actcacactg gtgctgacga ccagtctttt aggtgcgtta ggcaagagga cgacgacaga 960
ggtaagattg gtgtttgttt gtctaaagat attactgctg ttgctggtaa aactgttact 1020
aaaaatattg ctactttggg tccattggtt ttgccattgt cagaaaaatt tttgtatgtt 1080
gtttctttga tggctaaaaa attgtttaaa aataaaatta aacatactta tgttccagat 1140
tttaagttgg ctattgatca tttttgtatt cacgctggtg gtagggctgt cattgatgtt 1200
ttggagaaaa atttggcttt gtctcctgtt gatgttgaag cttctagatc tactttgcat 1260
agatttggta atacttcttc ttcttctatt tggtatgaat tggcttatat tgaagctaaa 1320
ggtagaatga aaaaaggtaa taaagtttgg caaattgcta ttggttctgg tttcaagtgc 1380
aactctgctg tttgggtcgc tttgtgcaac gtcaagccat ctgtcaactc tccatgggag 1440
cactgcattg atcgttatcc tgttgaaatt aattatggtt cttctaaatc tgaaactaga 1500
gctcaaaatg gtagatctta a 1521
<210> 4
<211> 1113
<212> PRT
<213> Artificial sequence
<400> 4
Met Gln Gln Asn Ser Glu Phe Leu Thr Glu Thr Pro Gly Ser Asp Pro
1 5 10 15
His Ile Ser Gln Leu His Ala Asn Ser Val Met Glu Ser Gln Leu Leu
20 25 30
Asp Asp Phe Leu Leu Asn Gly Ser Pro Met Tyr Gln Asp Asp Ser Met
35 40 45
Ala His Ile Asn Ile Asp Glu Gly Ala Asn Phe Gln Asn Phe Ile Lys
50 55 60
Thr Asp Glu Gly Asp Ser Pro Asn Leu Leu Ser Phe Glu Gly Ile Gly
65 70 75 80
Asn Asn Thr His Val Asn Gln Asn Val Ser Thr Pro Leu Glu Glu Glu
85 90 95
Met Glu Ser Asn Arg Ala Leu Lys Glu Glu Glu Glu Asp Glu His Glu
100 105 110
Asn Lys Val Phe Asn Glu Lys Asn Ile Gly Asn Pro Ala His Asp Glu
115 120 125
Ile Val Phe Gly Arg Lys Glu Thr Ile Gln Ser Val Tyr Ile Asn Pro
130 135 140
Leu Asp Tyr Leu Lys Val Asn Ala Ala Gln Leu Pro Leu Asp Val Glu
145 150 155 160
Val Ser Gly Leu Pro Gln Val Ser Arg Val Glu Asn Gln Leu Lys Leu
165 170 175
Lys Val Lys Ile Thr Ser Glu Thr Pro Leu Asn Gln Ser Met Val Tyr
180 185 190
Leu Pro Ser Asp Ser Ile Ser Arg Glu Lys Phe Tyr Leu Lys Lys Asn
195 200 205
Ile Glu Asp Phe Ser Glu Asp Phe Lys Lys Asn Leu Leu Tyr Ile Asn
210 215 220
Ala Phe Val Leu Cys Ala Val Ser Asn Arg Thr Thr Asn Val Cys Thr
225 230 235 240
Lys Cys Val Lys Arg Glu Gln Arg Arg Ala Ala Arg Arg Lys Ser Gly
245 250 255
Ile Ala Asp Asn Leu Leu Trp Cys Asn Asn Ile Asn Arg Arg Leu Val
260 265 270
Val Phe Asn Asn Lys Gln Val Phe Pro Ile Met Lys Thr Phe Asp Asn
275 280 285
Val Lys Glu Phe Glu Leu Thr Thr Arg Leu Val Cys Tyr Cys Arg His
290 295 300
His Lys Ala Asn Asn Gly Phe Val Ile Leu Phe Thr Ile Thr Asp Trp
305 310 315 320
Gln Asn Arg Leu Leu Gly Lys Phe Thr Thr Thr Pro Ile Met Ile Thr
325 330 335
Asp Arg Lys Pro Ala Asn Met Asp Thr Thr Lys Phe Asn Asn Thr Thr
340 345 350
Thr Ser Ser Arg Arg Gln Leu Thr Glu Glu Glu Ser Thr Thr Glu Tyr
355 360 365
Tyr Ser Thr Asp Asn Asn Gln Leu Ser Lys Asp Glu Asn Met Pro Phe
370 375 380
Gln Tyr Thr Tyr Gln His Asn Pro Tyr Asp Asn Asp Ser Gln Met Asn
385 390 395 400
Asn Ile Pro Leu Lys Asp Lys Asn Val Pro Phe Pro Tyr Ser Ile Ser
405 410 415
Gln Gln Thr Asp Leu Leu Gln Asn Asn Asn Leu Ser Leu Asn Leu Ser
420 425 430
Leu Pro Asn Gln His Ile Pro Ser Pro Thr Ser Met Ser Glu Glu Gly
435 440 445
Ser Glu Ser Phe Asn Tyr His His Arg Asp Asn Asp Asn Pro Val Arg
450 455 460
Thr Ile Ser Leu Thr Asn Ile Glu Gln Gln Ser Gln Leu Asn Gln Arg
465 470 475 480
Lys Arg Ala Arg Asn Asn Leu Glu Asn Asp Ile Gly Lys Pro Leu Phe
485 490 495
Lys His Ser Phe Ser Asn Ser Ile Ser Ala Thr Asn Thr Met Asn Pro
500 505 510
Ala Leu His Ser Met Gln Asp Phe Ser Met Lys Asn Asn Asn Asn Asn
515 520 525
Leu Pro Ser Ile Asn Arg Val Ile Pro Ser Gln Gly Pro Ile Asn Gly
530 535 540
Gly Ile Glu Val Thr Leu Leu Gly Cys Asn Phe Lys Asp Gly Leu Ser
545 550 555 560
Val Lys Phe Gly Ser Asn Leu Ala Leu Ser Thr Gln Cys Trp Ser Glu
565 570 575
Thr Thr Ile Val Thr Tyr Leu Pro Pro Ala Ala Tyr Ala Gly Gln Val
580 585 590
Phe Val Ser Ile Thr Asp Thr Asn Asn Glu Asn Asn Asn Asp Asp Leu
595 600 605
Pro Gln Glu Ile Glu Ile Asn Asp Asn Lys Lys Ala Ile Phe Thr Tyr
610 615 620
Val Asp Asp Thr Asp Arg Gln Leu Ile Glu Leu Ala Leu Gln Ile Val
625 630 635 640
Gly Leu Lys Met Asn Gly Lys Leu Glu Asp Ala Arg Asn Ile Ala Lys
645 650 655
Arg Ile Val Gly Asn Asp Ser Pro Asp Ser Gly Thr Asn Gly Asn Ser
660 665 670
Cys Ser Lys Ser Thr Gly Pro Ser Pro Asn Gln His Ser Met Asn Leu
675 680 685
Asn Thr Ser Val Leu Tyr Ser Asp Glu Val Leu Ile Gln Lys Val Ile
690 695 700
Lys Ser Leu Asn Ile Asn Ser Asn Ile Ser Ile Cys Asp Ser Leu Gly
705 710 715 720
Arg Thr Leu Leu His Leu Ala Cys Leu Lys Asn Tyr Ser Ser Leu Val
725 730 735
Tyr Thr Leu Ile Lys Lys Gly Ala Arg Val Asn Asp Ile Asp Ser Phe
740 745 750
Gly Leu Thr Pro Leu His Phe Ala Cys Ile Ser Gly Asp Pro Lys Ile
755 760 765
Ile Lys Met Leu Leu Asn Cys Lys Val Asn Tyr Ser Leu Arg Ser His
770 775 780
Asn Gly Leu Thr Ala Arg Glu Val Phe Ile Ala Asn His Ile His Ser
785 790 795 800
Glu Glu Val Asp Lys Lys Gln Glu Asn Arg Asp Asn His Lys Phe Val
805 810 815
His Asn Asp Thr Tyr Ile Ser Glu Val Leu Ser Leu Phe Glu Glu Phe
820 825 830
Gln Asn Gly Thr Lys Phe Thr Asp Ser Val Glu Thr Asp Ser Asn Tyr
835 840 845
Ser Ile Ser Arg Lys Tyr Ser Gln Ser Ser Phe Asn Ser Ser Leu Leu
850 855 860
Asp Asn Glu Ser Leu Asn Glu Asn Leu Phe Glu Ser Gln Ser Met Ile
865 870 875 880
Asn Pro Thr Ser Met Glu Ile Gln His Pro Thr Leu Gln Leu Phe Glu
885 890 895
Asn Ser Ser Tyr Ser Glu Tyr Asp Gln Ser Asp Phe Glu Glu Asp Gly
900 905 910
Asp Glu Asp Leu Phe Val Thr Asp Glu Val Glu Lys Pro Gly Val Ala
915 920 925
Cys Arg Glu Glu Gln Ser Glu Leu Leu Asp Ile Gly Ser Ser Ala Asn
930 935 940
Glu Pro Glu Glu Asp Asn Gly Ser Thr Ser Leu Trp Asn Arg Val Leu
945 950 955 960
His Arg Ile Asn Asp Asp Leu Pro Lys Tyr Glu Asp Leu Phe Pro Leu
965 970 975
Ser Trp Gly Lys Asp Asp Lys Leu Lys Thr Thr Asn Gln Asp Ser Ile
980 985 990
Val Glu Gln Ser Ala Ser Asn Ile Glu Asn Ser Glu Asn Ser Glu Glu
995 1000 1005
Glu Asp Tyr Glu Glu Glu Glu Glu Phe Leu Lys Lys Gln Phe Asn
1010 1015 1020
Arg Phe Phe Gln Asn Lys Gln Asn Phe Arg Asn Asp Lys Met Leu
1025 1030 1035
Ile Phe Phe Trp Ile Pro Leu Thr Leu Leu Leu Leu Thr Trp Phe
1040 1045 1050
Ile Met Tyr Lys Phe Gly Asn Gln Asp Ser Ser Ile Asn His Ile
1055 1060 1065
Ser Glu Leu Ile Ser Glu Tyr Leu Arg Ile Ala Leu Ala Lys Phe
1070 1075 1080
Leu Leu Gly Asn Glu Arg Met Lys Thr Ala Phe Arg Ser Lys Leu
1085 1090 1095
Ser Asn Leu Gln Thr Thr Arg Met Leu Asn Asp Leu Ile Val Ser
1100 1105 1110
<210> 5
<211> 412
<212> DNA
<213> Artificial sequence
<400> 5
atagcttcaa aatgtttcta ctcctttttt actcttccag attttctcgg actccgcgca 60
tcgccgtacc acttcaaaac acccaagcac agcatactaa atttcccctc tttcttcctc 120
tagggtgtcg ttaattaccc gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt 180
tctttttctt cgtcgaaaaa ggcaataaaa atttttatca cgtttctttt tcttgaaaat 240
tttttttttt gatttttttc tctttcgatg acctcccatt gatatttaag ttaataaacg 300
gtcttcaatt tctcaagttt cagtttcatt tttcttgttc tattacaact ttttttactt 360
cttgctcatt agaaagaaag catagcaatc taatctaagt tttaattaca aa 412
<210> 6
<211> 998
<212> DNA
<213> Artificial sequence
<400> 6
tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg 60
aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt 120
tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt 180
acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt 240
taatttgcac gcacagatat tataacatct gcacaatagg catttgcaag aattactcgt 300
gagtaaggaa agagtgagga actatcgcat acctgcattt aaagatgccg atttgggcgc 360
gaatccttta ttttggcttc accctcatac tattatcagg gccagaaaaa ggaagtgttt 420
ccctccttct tgaattgatg ttaccctcat aaagcacgtg gcctcttatc gagaaagaaa 480
ttaccgtcgc tcgtgatttg tttgcaaaaa gaacaaaact gaaaaaaccc agacacgctc 540
gacttcctgt cttcctattg attgcagctt ccaatttcgt cacacaacaa ggtcctagcg 600
acggctcaca ggttttgtaa caagcaatcg aaggttctgg aatggcggga aagggtttag 660
taccacatgc tatgatgccc actgtgatct ccagagcaaa gttcgttcga tcgtactgtt 720
actctctctc tttcaaacag aattgtccga atcgtgtgac aacaacagcc tgttctcaca 780
cactcttttc ttctaaccaa gggggtggtt tagtttagta gaacctcgtg aaacttacat 840
ttacatatat ataaacttgc ataaattggt caatgcaaga aatacatatt tggtcttttc 900
taattcgtag tttttcaagt tcttagatgc tttctttttc tcttttttac agatcatcaa 960
ggaagtaatt atctactttt tacaacaaat ataaaaca 998
<210> 7
<211> 4065
<212> DNA
<213> Artificial sequence
<400> 7
atgacttcta ttaatgttaa attgttgtac cattacgttt tgactaactt ttttaatttg 60
tgtttgttcc cattgactgc tttccctgct ggtaaggctt ctcaattgac tactaatgat 120
ttacatcatt tgtattctta cttgcatcat aatttaatta cagttacttt gttgtttgct 180
tttactgttt ttggttctat tttgtatatt gttacaagac caaaaccagt ttatttggtt 240
gattattctt gttatttgcc accaagacat ttgtcttgtg gtatttctag agttatggaa 300
attttttatg aaataagaaa atctgatcca tctagagagg tccctttcga tgacccatct 360
tctttggaat ttttgagaaa gattcaggag aggtctggtt tgggtgatga gacttacggt 420
ccacaaggtt tggtccacga catgccattg aggatgaact ttgctgctgc tagggaggag 480
actgagcagg tcattaacgg tgctttggaa aaattgtttg aaaatacaaa agttaatcca 540
agagaaattg gtattttggt tgttaattct tctatgttta atccaactcc atctttgtct 600
gctatggttg ttaatacttt taaattgaga tctaatatta aatctttttc attgggtggt 660
atgggttgct ctgctggtat tattgctatt gatttggcta aagatttgtt gcatgttcat 720
aaaaatactt atgcattggt tgtttctact gaaaatatta ctcattctac ttatactggt 780
gataacagat ctatgatggt ttctaattgt ttgtttagaa tgggtggtgc tgctattttg 840
ttgtctaata aagctggtga tagaagaaga tctaaatata agttggctca cactgttaga 900
actcacactg gtgctgacga ccagtctttt aggtgcgtta ggcaagagga cgacgacaga 960
ggtaagattg gtgtttgttt gtctaaagat attactgctg ttgctggtaa aactgttact 1020
aaaaatattg ctactttggg tccattggtt ttgccattgt cagaaaaatt tttgtatgtt 1080
gtttctttga tggctaaaaa attgtttaaa aataaaatta aacatactta tgttccagat 1140
tttaagttgg ctattgatca tttttgtatt cacgctggtg gtagggctgt cattgatgtt 1200
ttggagaaaa atttggcttt gtctcctgtt gatgttgaag cttctagatc tactttgcat 1260
agatttggta atacttcttc ttcttctatt tggtatgaat tggcttatat tgaagctaaa 1320
ggtagaatga aaaaaggtaa taaagtttgg caaattgcta ttggttctgg tttcaagtgc 1380
aactctgctg tttgggtcgc tttgtgcaac gtcaagccat ctgtcaactc tccatgggag 1440
cactgcattg atcgttatcc tgttgaaatt aattatggtt cttctaaatc tgaaactaga 1500
gctcaaaatg gtagatctta aggatcctct agagtcgaca tcatgtaatt agttatgtca 1560
cgcttacatt cacgccctcc ccccacatcc gctctaaccg aaaaggaagg agttagacaa 1620
cctgaagtct aggtccctat ttattttttt atagttatgt tagtattaag aacgttattt 1680
atatttcaaa tttttctttt ttttctgtac agacgcgtgt acgcatgtaa cattatactg 1740
aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt taatttgcac gcacagatat 1800
tataacatct gcacaatagg catttgcaag aattactcgt gagtaaggaa agagtgagga 1860
actatcgcat acctgcattt aaagatgccg atttgggcgc gaatccttta ttttggcttc 1920
accctcatac tattatcagg gccagaaaaa ggaagtgttt ccctccttct tgaattgatg 1980
ttaccctcat aaagcacgtg gcctcttatc gagaaagaaa ttaccgtcgc tcgtgatttg 2040
tttgcaaaaa gaacaaaact gaaaaaaccc agacacgctc gacttcctgt cttcctattg 2100
attgcagctt ccaatttcgt cacacaacaa ggtcctagcg acggctcaca ggttttgtaa 2160
caagcaatcg aaggttctgg aatggcggga aagggtttag taccacatgc tatgatgccc 2220
actgtgatct ccagagcaaa gttcgttcga tcgtactgtt actctctctc tttcaaacag 2280
aattgtccga atcgtgtgac aacaacagcc tgttctcaca cactcttttc ttctaaccaa 2340
gggggtggtt tagtttagta gaacctcgtg aaacttacat ttacatatat ataaacttgc 2400
ataaattggt caatgcaaga aatacatatt tggtcttttc taattcgtag tttttcaagt 2460
tcttagatgc tttctttttc tcttttttac agatcatcaa ggaagtaatt atctactttt 2520
tacaacaaat ataaaacagg taccatgact tctattaatg ttaaattatt gtatcattac 2580
gttattacta atttgttcaa tttatgcttt tttccattaa ctgctattgt tgctggtaaa 2640
gcttcaagat tgactattga tgatttgcat catttgtact attcttattt gcaacataat 2700
gttattacta ttgctccatt gtttgctttt acagtttttg gttctatttt gtatattgtt 2760
actagaccaa aacctgttta tttagttgaa tattcttgtt atttgccacc aactcaatgt 2820
agatcttcaa tttctaaagt tatggatatt ttttaccaag tcagaaaggc tgacccattc 2880
aggaacggta cttgcgacga ttcttcatgg ttggattttt tgagaaaaat tcaggaaaga 2940
tctggtttgg gtgacgagac acacggtcct gaaggtttgt tgcaggttcc accaaggagg 3000
actttcgctg ctgctagaga agaaactgaa caagttattg ttggtgcttt gaaaaacttg 3060
tttgaaaata ctaaagttaa tccaaaagat attggtattt tggttgttaa ttcttctatg 3120
tttaatccaa ctccatcttt gtctgctatg gttgttaata cttttaaatt gagatctaat 3180
gttagatctt ttaatttggg tggtatgggt tgctctgctg gtgttattgc tattgatttg 3240
gctaaagatt tgttgcatgt tcataaaaat acttatgctt tggttgtttc aactgaaaac 3300
attacataca atatttatgc tggtgataat agatctatga tggtttctaa ttgtttgttt 3360
agagttggtg gtgctgctat tttgttgtca aacaaaccta gagatagaag aagatctaaa 3420
tatgaattgg ttcacactgt cagaactcac actggtgctg acgacagatc tttcaggtgc 3480
gtccaacaag gtgacgacga gaacggtaag actggtgtct ctttgtctaa agatattaca 3540
gaagttgctg gtagaactgt taaaaagaat attgctactt tgggtccatt gattttacca 3600
ttgtctgaaa aattgttgtt ttttgttact tttatggcta aaaaattgtt taaagataaa 3660
gttaaacatt attatgttcc agattttaaa ttggctattg atcatttttg cattcacgct 3720
ggtggtaggg ctgttattga cgttttggag aaaaatttgg gtttagctcc aattgatgtt 3780
gaagcttcta gatctacttt gcatagattt ggtaatactt cttcttcttc tatttggtat 3840
gaattggctt atattgaagc taaaggtaga atgaaaaaag gtaataaagt ttggcaaatt 3900
gctttgggtt ctggtttcaa gtgcaactct gctgtctggg tcgctttgtc taacgtcaag 3960
gcttctacta actctccatg ggagcactgc attgacagat acccagttaa aattgattct 4020
gattctgcta aatctgaaac tagagctcaa aatggtagat cttaa 4065
<210> 8
<211> 3116
<212> DNA
<213> Artificial sequence
<400> 8
tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg 60
aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt 120
tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt 180
acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt 240
taatttgcac gcacagatat tataacatct gcacaatagg catttgcaag aattactcgt 300
gagtaaggaa agagtgagga actatcgcat acctgcattt aaagatgccg atttgggcgc 360
gaatccttta ttttggcttc accctcatac tattatcagg gccagaaaaa ggaagtgttt 420
ccctccttct tgaattgatg ttaccctcat aaagcacgtg gcctcttatc gagaaagaaa 480
ttaccgtcgc tcgtgatttg tttgcaaaaa gaacaaaact gaaaaaaccc agacacgctc 540
gacttcctgt cttcctattg attgcagctt ccaatttcgt cacacaacaa ggtcctagcg 600
acggctcaca ggttttgtaa caagcaatcg aaggttctgg aatggcggga aagggtttag 660
taccacatgc tatgatgccc actgtgatct ccagagcaaa gttcgttcga tcgtactgtt 720
actctctctc tttcaaacag aattgtccga atcgtgtgac aacaacagcc tgttctcaca 780
cactcttttc ttctaaccaa gggggtggtt tagtttagta gaacctcgtg aaacttacat 840
ttacatatat ataaacttgc ataaattggt caatgcaaga aatacatatt tggtcttttc 900
taattcgtag tttttcaagt tcttagatgc tttctttttc tcttttttac agatcatcaa 960
ggaagtaatt atctactttt tacaacaaat ataaaacaat gcagcagaac agtgagttct 1020
taacggaaac acctggaagc gaccctcata tatctcaatt gcacgcgaat agcgtaatgg 1080
aatcacagct cttggacgat ttcctcctga acgggtctcc catgtaccag gatgatagca 1140
tggcgcatat taatattgat gagggtgcta atttccaaaa ttttatcaag acagatgagg 1200
gtgattcgcc caacctgttg tctttcgaag gtatcggtaa caatactcat gtcaaccaaa 1260
acgtgtccac tccactggag gaggaaatgg aaagtaacag agccttgaag gaggaagaag 1320
aggacgagca tgaaaataag gtttttaatg aaaaaaatat aggcaaccct gctcatgacg 1380
agattgtatt tggaagaaag gagacgattc aatctgttta cataaatcct ttagattacc 1440
ttaaagtgaa cgcagcgcag ctacctttgg atgtagaggt ctcaggtttg ccacaagtat 1500
ctagagtgga aaatcaactg aaactgaaag tgaaaattac gtctgaaaca ccactaaacc 1560
aaagcatgct ttacttgcct agcgattcca tttcaagaga aaagttttat ttaaaaaaaa 1620
atatcgagga tttttcagaa gacttcaaga aaaatcttct gtacatcaat gcgtttgttc 1680
tatgtgcggt cagcaacaga acgacaaatg tttgtaccaa gtgtgttaag cgagaacaaa 1740
gaagagccgc tagaaggaaa tcaggtattg cagacaattt actctggtgt aataatatta 1800
atagaaggtt agtcgtgttc aataacaaac aggttttccc cataatgaaa actttcgata 1860
atgttaagga gtttgaatta actaccaggc tagtttgtta ttgcaggcac cataaggcaa 1920
ataatggctt tgtcatatta ttcactataa cagattggca aaatagactg ttgggtaagt 1980
ttacgacaac acctattatg atcacggata gaaaaccagc aaatatggat accaccaagt 2040
ttaataacac tactacctcg tccagaaggc agctaacgga agaagaatct accacagaat 2100
attattcaac ggataacaac caattgagca aagacgaaaa tatgccattt caatatactt 2160
atcaacacaa cccatatgat aatgacagtc aaatgaataa tattccactg aaagacaaaa 2220
acgtaccatt cccatattcc atctctcaac agacagattt gcttcagaac aataacttat 2280
cactgaacct ttctctgccc aatcagcata ttccatcacc aacatctatg agcgaagaag 2340
gctcagaatc atttaactat catcatcgcg ataatgacaa tcccgtccgt actatctctt 2400
tgacaaatat tgaacaacag agtcaattga accaacggaa aagagcacgc aataatttgg 2460
aaaatgacat tggtaaaccc ctattcaagc attccttttc aaattcaatc agtgcaacaa 2520
atacgatgaa tccagcttta cattcaatgc aagatttctc aatgaaaaac aacaacaata 2580
atttgccatc aattaatcgc gttatacctt cacaaggccc aatcaatggt ggtatcgaag 2640
ttacattact gggttgtaac ttcaaagatg gtctttctgt aaagttcggc tctaatcttg 2700
ccctttctac gcaatgctgg agtgagacca cgatcgtcac ttatctccct cccgctgcct 2760
acgcgggtca agttttcgtc tctattactg atacgaataa tgaaaataat aacgatgacc 2820
ttccccaaga aattgagatc aatgacaata aaaaggccat atttacctat gttgatgata 2880
ctgataggca actgattgaa ttggctttgc aaattgtggg attaaaaatg aatggtaagt 2940
tagaagatgc aagaaatatc gcgaagagga ttgttggcaa tgattctcct gatagcggta 3000
caaatggcaa cagctgttca aaaagcacag gtccctctcc aaaccaacac agtatgaatc 3060
tgaacacaag tgttctttac tccgatgaag tcttgataca aaaagttata aaatca 3116

Claims (6)

1. A recombinant bacterium is obtained by carrying out the following transformation 1) and 2) in oil-producing saccharomyces cerevisiae:
1) improving the transcription activity of the OLE1 gene in the oil-producing saccharomyces cerevisiae to obtain a recombinant strain;
2) allowing the lipid-producing saccharomyces cerevisiae to express a fatty acid elongase;
the transcriptional activity of the OLE1 gene in the grease-producing Saccharomyces cerevisiae is improved by the expression level of the transcription factor Mga2 of the OLE1 gene or the coding gene of the truncated body of the OLE1 gene in the grease-producing Saccharomyces cerevisiae;
the amino acid sequence of the transcription factor Mga2 is a sequence 4 in a sequence table;
the amino acid sequence of the truncated body of the transcription factor Mga2 is 1 st-975 th of a sequence 4 in a sequence table;
or the amino acid sequence of the truncated body of the transcription factor Mga2 is the 1 st to 706 th position of the sequence 4 in the sequence table;
the fatty acid elongase is the fatty acid elongase shown in the following a);
or the fatty acid elongase is a fatty acid elongase shown in a) and a fatty acid elongase shown in b) as follows:
a) the fatty acid elongase is a protein coded by the nucleotide shown in a sequence 2;
b) the fatty acid elongase is protein coded by nucleotide shown in sequence 3.
2. The recombinant bacterium according to claim 1, wherein: the grease-producing saccharomyces cerevisiae is saccharomyces cerevisiae YS 58.
3. A method for preparing a recombinant bacterium by the modification of 1) and 2) according to any one of claims 1 to 2.
4. Use of the recombinant bacterium of any one of claims 1-2 to increase palmitoleic acid content of saccharomyces cerevisiae;
or, the use of the recombinant bacterium of any one of claims 1-2 for the production of palmitoleic acid.
5. A method for increasing the palmitoleic acid content of saccharomyces cerevisiae comprises the following steps: the improvement of the palmitoleic acid content of the saccharomyces cerevisiae is realized according to the improvement of 1) and 2) in the recombinant bacteria of any one of claims 1-2.
6. A process for preparing palmitoleic acid, comprising the steps of:
1) fermenting the recombinant strain of any one of claims 1-2 in a YNB auxotrophic medium and collecting the fermentation product;
2) and extracting fatty acid in the fermentation product by a saponification method to obtain the palmitoleic acid.
CN202110314423.0A 2021-03-24 2021-03-24 Method for increasing palmitoleic acid content of saccharomyces cerevisiae Active CN112920960B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110314423.0A CN112920960B (en) 2021-03-24 2021-03-24 Method for increasing palmitoleic acid content of saccharomyces cerevisiae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110314423.0A CN112920960B (en) 2021-03-24 2021-03-24 Method for increasing palmitoleic acid content of saccharomyces cerevisiae

Publications (2)

Publication Number Publication Date
CN112920960A CN112920960A (en) 2021-06-08
CN112920960B true CN112920960B (en) 2022-07-26

Family

ID=76175875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110314423.0A Active CN112920960B (en) 2021-03-24 2021-03-24 Method for increasing palmitoleic acid content of saccharomyces cerevisiae

Country Status (1)

Country Link
CN (1) CN112920960B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058445A (en) * 2022-06-28 2022-09-16 深圳技术大学 Genetically modified saccharomyces cerevisiae capable of degrading oleic acid and construction method and application thereof
CN116121092A (en) * 2022-11-01 2023-05-16 四川大学 Recombinant saccharomyces cerevisiae with enhanced multiple stress resistance, construction method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431529A (en) * 2013-05-03 2016-03-23 德克萨斯大学系统董事会 Compositions and methods for fungal lipid production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295512B2 (en) * 2012-03-15 2018-03-20 株式会社豊田中央研究所 Method for producing foreign gene expression product in yeast, expression regulator in yeast and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431529A (en) * 2013-05-03 2016-03-23 德克萨斯大学系统董事会 Compositions and methods for fungal lipid production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Accession:AJR43797.1;Strope,P.K.等;《Genbank》;20160420;序列 *
Mga2p processing by hypoxia and unsaturated fatty acids in Saccharomyces cerevisiae:impact on LORF-dependent gene expression;Jiang Y.D.等;《EUKARYOTIC CELL》;20020630;第1卷(第3期);第481-490页 *

Also Published As

Publication number Publication date
CN112920960A (en) 2021-06-08

Similar Documents

Publication Publication Date Title
KR102504198B1 (en) Expression constructs and methods of genetically engineering methylotrophic yeast
AU2018220469B2 (en) Method and cell line for production of phytocannabinoids and phytocannabinoid analogues in yeast
CN112920960B (en) Method for increasing palmitoleic acid content of saccharomyces cerevisiae
CN110358692B (en) Recombinant yeast strain for producing nervonic acid and application thereof
CN111434773B (en) Recombinant yeast for high-yield sandalwood oil and construction method and application thereof
CN110484572B (en) Method for increasing yield of saccharomyces cerevisiae nerolidol
KR20180117147A (en) Expression system for eukaryotes
CN113265344B (en) Genetic engineering bacterium for selectively producing retinol and construction method and application thereof
KR20210153106A (en) Materials and methods for protein production
CN112166188A (en) Methods for producing ethanol using engineered yeast
CN116064264A (en) Method for producing recombinant host cells with improved tolerance to terpenes or essential oils containing terpenes and uses thereof
WO2020119635A1 (en) Method for construction of dihomo-gamma linolenic acid producing cell factory by mucor circinelloides, and fermentation technology
CN112391300B (en) Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof
KR101262999B1 (en) Recombinant yeast by overexpression of pyruvate decarboxylase and alcohol dehydrogenase for improving productivity of bioethanol and Method for producing ethanol using the same
JP2973430B2 (en) Method for producing protein by yeast using inducible system, vector and transformant thereof
CN109402079B (en) Application of polypeptide in improving content of plant ultra-long chain fatty acid
JP6880010B2 (en) Novel episome plasmid vector
CN110997703A (en) Novel pyruvate transferases
CN108330114B (en) EPA-utilizing diacylglycerol acyltransferase and application thereof
CN115873732A (en) Method for preparing nervonic acid by using saccharomyces cerevisiae engineering bacteria
KR101640853B1 (en) Improved production of isoprenoids by metabolosome construction
KR20110117725A (en) High-efficiency lactic acid manufacturing method using candida utilis
KR102212882B1 (en) Chlamydomonas sp. Microalgae with increased fatty acid productivity and method for increasing fatty acid productivity of Chlamydomonas sp. Microalgae
CN116396875A (en) Yarrowia lipolytica genetically engineered bacterium and application thereof
CN115996757A (en) Universal gene expression system for expressing genes in oleaginous yeast

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant