CN112920531B - 一种高储能密度聚合物及基于场排列制备其的方法 - Google Patents

一种高储能密度聚合物及基于场排列制备其的方法 Download PDF

Info

Publication number
CN112920531B
CN112920531B CN202110187985.3A CN202110187985A CN112920531B CN 112920531 B CN112920531 B CN 112920531B CN 202110187985 A CN202110187985 A CN 202110187985A CN 112920531 B CN112920531 B CN 112920531B
Authority
CN
China
Prior art keywords
polymer
energy storage
film
storage density
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110187985.3A
Other languages
English (en)
Other versions
CN112920531A (zh
Inventor
张洁
赵枫婉
史鹏
张易军
庄建
任巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202110187985.3A priority Critical patent/CN112920531B/zh
Publication of CN112920531A publication Critical patent/CN112920531A/zh
Application granted granted Critical
Publication of CN112920531B publication Critical patent/CN112920531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种高储能密度聚合物及基于场排列制备其的方法,属于高储能密度复合材料技术领域。本发明中,碳纳米管表面沉积均匀超薄的氧化铝绝缘层,将其均匀添加到聚合物基体中,随后利用场排列技术使碳纳米管在聚合物基体中定向排列,在提高聚合物基体的介电常数的同时保持其相对较高的击穿强度;另外,向聚合物中添加氮化硼纳米片以增加聚合物基体的击穿强度;通过热压技术将高耐压层和高介电层结合在一起,获得同时具有高介电和高击穿的聚合物薄膜。不同于其他单纯地提高介电常数或者提高击穿强度从而提高聚合物储能密度的方法,本发明通过复合多层膜,使得聚合物薄膜同时具有高介电和高击穿性能,在较低的电场下就能获得更高的储能密度。

Description

一种高储能密度聚合物及基于场排列制备其的方法
技术领域
本发明属于高储能密度复合材料技术领域,具体为一种高储能密度聚合物及基于场排列制备其的方法。
背景技术
相比于目前的商用电池,介电电容器有着更快的充放电效率以及更高的能量密度,被广泛地应用于医疗器械、混动汽车等现代电子应用领域。然而目前商用的介电电容器(如双向拉伸聚丙烯薄膜)的储能密度比较低(~1-2J/cm3),应用电场也比较高(>600KV·mm-1),这就大大限制了介电电容器的应用。介电电容器的能量密度用公式(1)表示
U=∫EdD (1)
式中,E表示外加电场,D表示电位移。对于线性电介质来说,能量密度可以进一步用公式(2)表示
U=1/2ε0εrEb 2 (2)
式中,ε0表示真空介电常数,εr表示电介质的相对介电常数,Eb表示电介质的击穿场强。通过公式可以看出,电介质电容器的能量密度与介电常数和击穿场强是直接相关的。相比于陶瓷材料,聚合物材料有着更高的击穿场强,有望获得更高的储能密度,因此目前基于聚合物复合材料的电容器被广泛研究。常见的提高聚合物的能量密度的方法主要由两种:一是通过向聚合物中添加陶瓷颗粒等以获得更高的介电常数,但是这种方法会使其击穿场强大幅降低;二是向聚合物中加入PMMA等提高其击穿场强从而在高场强下获得更大的能量密度,但是这种方法在低场下并未提高其原本的能量密度,限制了其应用范围。
发明内容
本发明的目的在于克服聚合物复合材料的高耐压性能与低电场下的高能量密度不能兼顾的缺点,提供一种高储能密度聚合物及基于场排列制备其的方法。
为达到上述目的,本发明采用以下技术方案予以实现:
一种基于场排列制备高储能密度聚合物的方法:
在碳纳米管上生长一层均匀致密的氧化铝薄膜;将生长有氧化铝薄膜的碳纳米管分散到聚合物溶液中,得到碳纳米管-聚合物的分散液;将所述分散液刮涂在玻璃板上,烘干后得到碳纳米管-聚合物薄膜;
施加电场或压力场,在电场或者压力场作用下,聚合物薄膜中的碳纳米管在薄膜内形成定向排列,得到定向排列的碳纳米管-聚合物薄膜;
将含有氮化硼纳米片的聚合物分散液刮涂在玻璃板上,烘干后得到氮化硼-聚合物薄膜;
将定向排列的碳纳米管-聚合物薄膜作为中间层,氮化硼-聚合物薄膜作为上下层进行热压,得到具有高储能密度的多层聚合物薄膜;
其中,碳纳米管-聚合物的分散液中碳纳米管的浓度为0.3%~0.5%;
含有氮化硼纳米片的聚合物分散液中氮化硼纳米片的浓度为0.2%~1%。
进一步的,氧化铝薄膜的厚度为5nm。
进一步的,碳纳米管-聚合物的分散液的制备方法为:
将生长有氧化铝的碳纳米管分散于聚合物溶液中,之后在冰水浴的条件下超声振荡2~5h。
进一步的,使聚合物薄膜中的碳纳米管在薄膜内形成定向排列的具体操作为:
在80~110℃的温度下,施加垂直于预设排列方向上的压力,压力压强为10~15MPa,持续30~60min。
进一步的,使聚合物薄膜中的碳纳米管在薄膜内形成定向排列的具体操作为:
在80~100℃的温度下,施加预设排列方向上的电场,场强为100~300V/cm,持续30~60min。
进一步的,所述聚合物溶液的溶质为聚偏氟乙烯及其共聚物,溶剂为N,N二甲基甲酰胺。
含有氮化硼纳米片的聚合物分散液中的聚合物为聚偏氟乙烯及其共聚物,溶剂为N,N二甲基甲酰胺。
进一步的,聚偏氟乙烯及其共聚物的浓度为8%~12%。
进一步的,含有氮化硼纳米片的聚合物分散液的制备方法为:
利用球磨机对氮化硼纳米片进行研磨,将研磨后的氮化硼纳米片均匀分散在N,N二甲基甲酰胺中,之后进行离心处理,取上清液;
将聚合物粉末分散到含有氮化硼的上清液中,每10mL上清液中加入0.5-1.5g聚合物粉末。
进一步的,热压条件为:
温度为80~110℃,压力为10~15MPa,时间为30~60min。
一种高储能密度聚合物,基于本发明的方法制备得到。
与现有技术相比,本发明具有以下有益效果:
本发明的高储能密度聚合物及基于场排列制备其的方法,碳纳米管表面沉积均匀超薄的氧化铝绝缘层,将其均匀添加到聚合物基体中,随后利用场排列技术使碳纳米管在聚合物基体中定向排列,在提高聚合物基体的介电常数的同时保持其相对较高的击穿强度,在一定的温度范围内,薄膜内的碳纳米管有一定的自由移动的空间,在施加外场时,碳纳米管可沿加压力的垂直方向或沿电场的方向进行排列,从而形成定向排列;另外,向聚合物中添加氮化硼纳米片以增加聚合物基体的击穿强度;最后通过热压技术将高耐压层和高介电层结合在一起,获得同时具有高介电和高击穿的聚合物薄膜。不同于其他单纯地提高介电常数或者提高击穿强度从而提高聚合物储能密度的方法,本发明通过制备具有不同功能的多层膜,使得聚合物薄膜同时具有高介电和高击穿性能,在较低的电场下就能获得更高的储能密度。本发明操作简单,易实现,为制备高能量密度的聚合物基复合材料提供了新思路,具有良好的应用前景。
本发明的多层聚合物复合薄膜,经介电、击穿性能测试、储能密度测试,具有较高的介电常数和击穿强度,在相同的场强下具有更高的能量密度。
附图说明
图1为实施例1的多层聚合物的制备示意图;
图2为实施例1的多层聚合物薄膜在不同频率下的相对介电常数;
图3为实施例1的多层聚合物薄膜的电滞回线图;
图4为实施例1的多层聚合物薄膜在不同场强下的储能密度。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
实施例1
下面结合图1对制备过程进行说明,一种基于场排列制备高储能密度聚合物的方法,包括以下操作:
利用原子层沉积技术在碳纳米管表面生长一层厚度为5nm的均匀致密的氧化铝薄膜;配制碳纳米管-聚合物的分散液,碳纳米管的浓度为0.3%,具体的,将沉积有氧化铝薄膜的碳纳米管分散到浓度为10%的P(VDF-TrFE-CTFE)聚合物溶液中,在冰水浴的条件下超声振荡2小时后得到均匀分散的悬浮液;之后利用刮膜法将含有碳纳米管的分散液均匀地刮涂在玻璃板上,在80℃的条件下烘至定型,再将其置于130℃的烘箱中2小时得到聚合物薄膜;
在90℃、15MPa条件下对薄膜内的碳纳米管进行定向排列,持续时间为30min,得到含有定向排列的碳纳米管的复合材料聚合物薄膜。
利用球磨机对氮化硼纳米片进行研磨,时间为80min,并将其分散在N,N二甲基甲酰胺中,在冰水浴的条件下超声振荡5小时后得到均匀分散的悬浮液,之后对得到的悬浮液在2000转/min的条件下进行40min的离心处理,最终取其上清液,上清液中,氮化硼纳米片的浓度为0.2%。将1gP(VDF-TrFE-CTFE)聚合物粉末加到10mL的含有氮化硼的上清液中,在冰水浴的条件下超声振荡2小时后得到均匀分散的悬浮液;将含有氮化硼纳米片的聚合物分散液利用刮膜法均匀地刮涂在玻璃板上,在80℃的条件下烘干,再将其置于130℃的烘箱中2小时,得到氮化硼的聚合物薄膜。
将定向排列的碳纳米管的复合材料聚合物薄膜作为中间层,氮化硼的聚合物薄膜作为上下层在100℃、10MPa的条件下热压30min,最终得到具有高储能密度的多层聚合物薄膜。
实施例2
本实施例2中碳纳米管-聚合物的分散液中碳纳米管的浓度为0.5%,其余操作与实施例1相同。最终得到的多层聚合物实现了更高的能量密度。
实施例3
本实施例3对薄膜内的碳纳米管进行定向排列的条件为:电场100V/cm,温度为80℃,持续时间为40min;其他条件与实施例1相同。最终得到的多层聚合物实现了更高的能量密度。
实施例4
本实施例4对薄膜内的碳纳米管进行定向排列的条件为:电场300V/cm,温度为80℃,持续时间为40min;其他条件与实施例1相同。最终得到的多层聚合物实现了更高的能量密度。
对比例
a、将1g聚偏氟乙烯粉末分散到10mL的N,N二甲基甲酰胺中,搅拌10h,得到聚合物溶液;
b、利用刮膜法将聚合物溶液均匀地刮涂在玻璃板上,在50~100℃的条件下烘干,再将其置于110~130℃的烘箱中2~4小时,得到聚合物薄膜。
表1实施例1与对比例制得的复合材料的击穿强度
Figure BDA0002943913460000071
图2和表1分别是复合材料的介电常数和击穿强度的测试结果,实验结果表明多层聚合物薄膜具有更高的介电常数以及更高的击穿场强,图3的铁电测试得到的电滞回线结果表明多层聚合物在相同的电场下具有更高的极化强度。图4的能量密度的计算结果表明多层聚合物薄膜相比于纯的聚合物来说,有着更高的能量密度。
由实施例1和对比例可知,实施例1利用场排列的方法得到具有高介电的聚合物薄膜层,同时利用向聚合物中添加氮化硼的方法得到具有高击穿的聚合物薄膜层,其中聚合物悬浮液的分散主要是通过搅拌和超声振荡来实现,聚合物薄膜的制备主要是通过刮膜的方法制备,聚合物内碳纳米管的定向排列主要通过外场作用来实现,通过对内部碳纳米管的排列来提高中间层的介电性能,最终通过热压技术将两种薄膜结合在一起。本发明方法的优点在于可以获得同时具有高介电和高击穿的复合材料薄膜,从而得到更高的能量密度,其中刮膜的方法的使用也有利于薄膜的工业化生产,整个过程简单易行,为制备具有高介电常数,高击穿场强的高储能聚合物基复合材料提供了新的思路,具有良好的应用前景和经济效益。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (9)

1.一种基于场排列制备高储能密度聚合物的方法,其特征在于:
在碳纳米管上生长一层均匀致密的氧化铝薄膜;将生长有氧化铝薄膜的碳纳米管分散到聚合物溶液中,得到碳纳米管-聚合物的分散液;将所述分散液刮涂在玻璃板上,烘干后得到碳纳米管-聚合物薄膜;
施加电场或压力场,在电场或者压力场作用下,聚合物薄膜中的碳纳米管在薄膜内形成定向排列,得到定向排列的碳纳米管-聚合物薄膜;
将含有氮化硼纳米片的聚合物分散液刮涂在玻璃板上,烘干后得到氮化硼-聚合物薄膜;
将定向排列的碳纳米管-聚合物薄膜作为中间层,氮化硼-聚合物薄膜作为上下层进行热压,得到具有高储能密度的多层聚合物薄膜;
其中,碳纳米管-聚合物的分散液中碳纳米管的浓度为0.3%~0.5%;
含有氮化硼纳米片的聚合物分散液中氮化硼纳米片的浓度为0.2%~1%;
所述聚合物溶液的溶质为聚偏氟乙烯或者聚偏氟乙烯共聚物,溶剂为N,N二甲基甲酰胺;
含有氮化硼纳米片的聚合物分散液中的聚合物为聚偏氟乙烯或者聚偏氟乙烯共聚物,溶剂为N,N二甲基甲酰胺。
2.根据权利要求1所述的基于场排列制备高储能密度聚合物的方法,其特征在于,氧化铝薄膜的厚度为5nm。
3.根据权利要求1所述的基于场排列制备高储能密度聚合物的方法,其特征在于,碳纳米管-聚合物的分散液的制备方法为:
将生长有氧化铝的碳纳米管分散于聚合物溶液中,之后在冰水浴的条件下超声振荡2~5h。
4.根据权利要求1所述的基于场排列制备高储能密度聚合物的方法,其特征在于,使聚合物薄膜中的碳纳米管在薄膜内形成定向排列的具体操作为:
在80~110℃的温度下,施加垂直于预设排列方向上的压力,压力压强为10~15MPa,持续30~60min。
5.根据权利要求1所述的基于场排列制备高储能密度聚合物的方法,其特征在于,使聚合物薄膜中的碳纳米管在薄膜内形成定向排列的具体操作为:
在80~100℃的温度下,施加预设排列方向上的电场,场强为100~300V/cm,持续30~60min。
6.根据权利要求1所述的基于场排列制备高储能密度聚合物的方法,其特征在于,聚偏氟乙烯或者聚偏氟乙烯共聚物的浓度为8%~12%。
7.根据权利要求1所述的基于场排列制备高储能密度聚合物的方法,其特征在于,含有氮化硼纳米片的聚合物分散液的制备方法为:
利用球磨机对氮化硼纳米片进行研磨,将研磨后的氮化硼纳米片均匀分散在N,N二甲基甲酰胺中,之后进行离心处理,取上清液;
将聚合物粉末分散到含有氮化硼的上清液中,每10mL上清液中加入0.5-1.5g聚合物粉末。
8.根据权利要求1所述的基于场排列制备高储能密度聚合物的方法,其特征在于,热压条件为:
温度为80~110℃,压力为10~15MPa,时间为30~60min。
9.一种高储能密度聚合物,其特征在于,基于权利要求1-8任一项所述的方法制备得到。
CN202110187985.3A 2021-02-18 2021-02-18 一种高储能密度聚合物及基于场排列制备其的方法 Active CN112920531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110187985.3A CN112920531B (zh) 2021-02-18 2021-02-18 一种高储能密度聚合物及基于场排列制备其的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110187985.3A CN112920531B (zh) 2021-02-18 2021-02-18 一种高储能密度聚合物及基于场排列制备其的方法

Publications (2)

Publication Number Publication Date
CN112920531A CN112920531A (zh) 2021-06-08
CN112920531B true CN112920531B (zh) 2022-02-11

Family

ID=76169863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110187985.3A Active CN112920531B (zh) 2021-02-18 2021-02-18 一种高储能密度聚合物及基于场排列制备其的方法

Country Status (1)

Country Link
CN (1) CN112920531B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926231B (zh) * 2023-01-16 2024-01-26 北京五脉电气科技有限公司 一种层状聚酯基高储能复合介质薄膜及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1843905A (zh) * 2006-04-21 2006-10-11 清华大学 电场控制碳纳米管分散排列的复合材料制备方法
JP5111324B2 (ja) * 2008-10-09 2013-01-09 独立行政法人科学技術振興機構 カーボンナノチューブ配向膜の作製法
CN106832937B (zh) * 2017-01-05 2019-06-11 西安交通大学 一种利用原子层沉积技术修饰碳纳米管制备耐高压复合材料及方法
CN107901303B (zh) * 2017-10-09 2020-11-10 南通洪明电工科技有限公司 一种三明治结构高储能密度聚合物基介电复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets";Yang, Minhao等;《APPLIED PHYSICS LETTERS》;20161231;第109卷(第7期);第4260页 *

Also Published As

Publication number Publication date
CN112920531A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
Zhao et al. A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss
Li et al. Synergistic effect of graphene nanoplate and carbonized loofah fiber on the electromagnetic shielding effectiveness of PEEK-based composites
Li et al. Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO3 nanofibers
Feng et al. High dielectric and breakdown properties obtained in a PVDF based nanocomposite with sandwich structure at high temperature via all-2D design
Yang et al. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density
Zhang et al. High performance capacitors via aligned TiO2 nanowire array
Li et al. Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and their nanographite doped hybrids.
CN107901303B (zh) 一种三明治结构高储能密度聚合物基介电复合材料及其制备方法
Zhang et al. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors
Liu et al. Poly (vinylidene fluoride) nanocomposite capacitors with a significantly enhanced dielectric constant and energy density by filling with surface-fluorinated Ba 0.6 Sr 0.4 TiO 3 nanofibers
Liu et al. A small loading of surface-modified Ba 0.6 Sr 0.4 TiO 3 nanofiber-filled nanocomposites with enhanced dielectric constant and energy density
Ishaq et al. Dielectric and impedance spectroscopic studies of three phase graphene/titania/poly (vinyl alcohol) nanocomposite films
Li et al. Largely enhanced dielectric and thermal conductive properties of novel ternary composites with small amount of nanofillers
Liang et al. Microstructure and dielectric behavior of the three-phase Ag@ SiO2/BaTiO3/PVDF composites with high permittivity
Shen et al. Enhanced breakdown strength and suppressed leakage current of polyvinylidene fluoride nanocomposites by two-dimensional ZrO2 nanosheets
TWI656093B (zh) 石墨烯分散膏、其製備方法及使用方法
Zeng et al. Significantly improved dielectric and mechanical performance of Ti3C2Tx MXene/silicone rubber nanocomposites
CN112920531B (zh) 一种高储能密度聚合物及基于场排列制备其的方法
Chen et al. Sandwich-structured poly (vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer
Wang et al. Polypyrrole random-coil induced permittivity from negative to positive in all-organic composite films
Zhang et al. High dielectric performance composites with a hybrid BaTiO3/graphene as filler and poly (vinylidene fluoride) as matrix
Wang et al. Effect of hot pressing temperature on dielectric and energy storage properties of Ba0. 6Sr0. 4TiO3/poly (vinylidene fluoride) composites
CN113150554B (zh) 一种pdms基柔性储能复合膜及其制备方法
Zhang et al. Dual crosslinked PMMA/BaTiO 3 polymer nanocomposite dielectrics for flexible film capacitors
CN116120608B (zh) 一种高储能聚丙烯电容薄膜生产工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant