CN112904108A - 一种电容式电压互感器电磁单元故障诊断方法 - Google Patents

一种电容式电压互感器电磁单元故障诊断方法 Download PDF

Info

Publication number
CN112904108A
CN112904108A CN202110058305.8A CN202110058305A CN112904108A CN 112904108 A CN112904108 A CN 112904108A CN 202110058305 A CN202110058305 A CN 202110058305A CN 112904108 A CN112904108 A CN 112904108A
Authority
CN
China
Prior art keywords
electromagnetic unit
fault
reactance
capacitor voltage
voltage transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110058305.8A
Other languages
English (en)
Other versions
CN112904108B (zh
Inventor
代维菊
朱龙昌
孙董军
赵加能
洪志湖
王山
邹德旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Yunnan Power Grid Co Ltd filed Critical Electric Power Research Institute of Yunnan Power Grid Co Ltd
Priority to CN202110058305.8A priority Critical patent/CN112904108B/zh
Publication of CN112904108A publication Critical patent/CN112904108A/zh
Application granted granted Critical
Publication of CN112904108B publication Critical patent/CN112904108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本申请提供的一种电容式电压互感器电磁单元故障诊断方法,包括:将可变负载箱接到需要进行故障诊断的CVT二次输出端口;对可变负载箱的二次侧负载电阻和电抗多次赋值,得到多组与负载相对应的电压、相位;根据等效电路及电压、相位,得到电容式电压互感器电磁单元等效模型的参数值;用等效模型参数值与参数原始值进行比较,取得等效模型的参数值的变化值;提出模糊综合评估方法,进行故障诊断。本申请提供的一种电容式电压互感器电磁单元故障诊断方法,能够在带电的情况下有效检测CVT电磁单元的各类故障,操作简单,避免了吊芯检查工作量大、耗时长,只能离线诊断以及红外诊断法需要辅助其他方法的问题。

Description

一种电容式电压互感器电磁单元故障诊断方法
技术领域
本申请涉及配电压互感器故障诊断技术领域,尤其涉及一种基于等效参数分析的电容式电压互感器电磁单元故障诊断方法。
背景技术
电容式电压互感器CVT(英文:Capacitor voltage transformer的缩写)因具有结构简单、经济安全、维护工作量小、绝缘可靠性高等特点,广泛应用于电力系统高电压监测的工作当中。电容式电压互感器的测量结果是二次计量、继电保护、监控设备等正常工作的重要依据,对于电网安全稳定运行至关重要。
但受限于电容式电压互感器CVT严格密封的制作工艺、运行环境复杂等因素,在实际运行过程中,除了发生漏油、产生异常声响等直观故障外,内部故障,如电容击穿、中间变压器故障等运行缺陷时有发生,且不易于发现,导致电容式电压互感器CVT测量误差超出合理范围,严重威胁电网安全运行。
电容式电压互感器的结构主要分为电容分压器单元和电磁单元两部分。电容分压单元由高压电容器C1和中压电容器C2组成。电磁单元外形为金属壳箱体,箱体内装有中间变压器、补偿电抗器、限压装置和阻尼器等器件,电磁单元绝缘油为变压器油。油箱顶部留有空气隙,用于进行温度补偿。运行经验表明,电容分压单元故障主要包括电容击穿、绝缘下降、受潮等;电磁单元故障主要包括补偿电抗器故障、中间变压器故障、避雷器故障和阻尼器故障等;电容分压单元故障或者电磁单元故障都会引起CVT二次电压异常或者二次失压。CVT的电容分压器参数一般可以通过预实验测量得到,而电磁单元放在密闭油箱中,其等效参数难以直接获得。并且电磁单元的绝缘故障多为集中性缺陷,一旦发生故障对电气设备乃至电力系统危害严重。因此,寻找到CVT电磁单元故障诊断的有效方法,及时发现CVT电磁单元内部绝缘故障,并且准确对缺陷进行定位和维修,对于CVT的安全运行尤为重要。
目前对CVT电磁单元故障诊断方法较少,主要有红外诊断法和吊芯检查。但现有红外诊断法的局限在于只有当电磁单元在发热严重时才有效,同时需要结合其他辅助方法进行故障诊断;吊芯检查是通过对电磁单元各个元件逐一检查,发现故障点和故障类型,其主要缺点是工作量大、耗时长,只能离线对CVT电磁单元进行故障检查。
发明内容
本申请提供了一种电容式电压互感器电磁单元故障诊断方法,是基于等效参数分析的电容式电压互感器电磁单元故障诊断方法,从CVT电磁单元等效模型参数变化的角度进行故障分析。本申请方法能够在带电的情况下有效检测CVT电磁单元的故障,操作简单、工作量小、节省时间;同时本申请方法中等效模型的不同参数变化能够准确预测和诊断CVT电磁单元的各类故障,确保设备的正常运行,提高电网的安全可靠性。
本申请提供了一种电容式电压互感器电磁单元故障诊断方法,包括:
将可变负载箱接到需要进行故障诊断的CVT二次输出端口;
对可变负载箱的二次侧负载电阻和电抗多次赋值,得到多组与负载相对应的电压、相位;
根据等效电路及电压、相位,得到电容式电压互感器电磁单元等效模型的参数值;
用等效模型参数值与参数原始值进行比较,取得等效模型的参数值的变化值;
提出模糊综合评估方法,进行故障诊断。
可选的,所述对可变负载箱的二次侧负载电阻和电抗多次赋值为,对可变负载箱负载阻抗的阻抗角在±90°范围内变化。
可选的,其特征在于,所述电容式电压互感器电磁单元等效模型的参数值包括:
补偿电抗器电抗和中间变压器一次侧漏抗之和,用X1表示;
补偿电抗器电阻和中间变压器一次侧电阻之和,用R1表示;
激磁回路电抗,用Xm表示;
激磁回路电阻,用Rm表示;
折算到一次侧的中间变压器二次侧漏抗,用X2表示;
折算到一次侧的中间变压器二次侧电阻,用R2表示;
所述参数原始值包括:X1′、R1′、Xm′、Rm′、X2′、R2′。
可选的,等效模型的参数值的变化值包括:
补偿电抗器电抗和中间变压器原边电抗变化,用Kx1表示,计算公式为:
Figure BDA0002899672910000021
补偿电抗器电阻和中间变压器原边电阻变化,用KR1表示,计算公式为:
Figure BDA0002899672910000022
激磁回路电抗变化,用Kxm表示,计算公式为:
Figure BDA0002899672910000031
激磁回路电阻变化,用KRm表示,计算公式为:
Figure BDA0002899672910000032
二次侧电抗变化,用Kx2表示,计算公式为:
Figure BDA0002899672910000033
二次侧电阻变化,用KR2表示,计算公式为:
Figure BDA0002899672910000034
可选的,所述电容式电压互感器各类故障包括:补偿电抗器故障、避雷器故障、中间变压器故障。
可选的,所述中间变压器故障包括:原边绕组匝间短路和副边绕组匝间短路。
可选的,对故障类型及故障现象进行模糊综合评估,其关系矩阵R为:
Figure BDA0002899672910000035
由以上技术方案可知,本申请提供的一种电容式电压互感器电磁单元故障诊断方法包括:将可变负载箱接到需要进行故障诊断的CVT二次输出端口;对可变负载箱的二次侧负载电阻和电抗多次赋值,得到多组与负载相对应的电压、相位;根据等效电路及电压、相位,得到电容式电压互感器电磁单元等效模型的参数值;用等效模型参数值与参数原始值进行比较,取得等效模型的参数值的变化值;提出模糊综合评估方法,进行故障诊断。本申请提供的一种电容式电压互感器电磁单元故障诊断方法,能够在带电的情况下有效检测CVT电磁单元的各类故障,操作简单,避免了吊芯检查工作量大、耗时长,只能离线诊断的问题;同时本方法中等效模型不同参数的变化能够准确反映CVT电磁单元的各类故障,相比于红外诊断法只有当电磁单元在发热严重时才有效,且需要辅助其他方法的局限,具有绝对优势。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一种电容式电压互感器电磁单元故障诊断方法操作流程图;
图2为电容式电压互感器的结构示意图;
图3为电磁单元等效电路图;
图4为参数辨识等效电路图;
图5为参数RT1随故障严重程度的变化规律曲线图;
图6为参数XT1随故障严重程度的变化规律曲线图;
图7为参数Rm随故障严重程度的变化规律曲线图;
图8为参数Xm随故障严重程度变化规律曲线图;
图9为参数R2随故障严重程度的变化规律曲线图;
图10为参数X2随故障严重程度的变化规律曲线图;
图11为参数R2随副边绕组匝间短路故障严重程度变化规律曲线图。
具体实施方式
下面将详细地对实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下实施例中描述的实施方式并不代表与本申请相一致的所有实施方式。仅是与权利要求书中所详述的、本申请的一些方面相一致的系统和方法的示例。
本申请提供的一种电容式电压互感器电磁单元故障诊断方法,是基于等效参数分析的电容式电压互感器电磁单元故障诊断方法,从CVT电磁单元等效模型参数变化的角度进行故障分析。适用于在带电的情况下有效检测CVT电磁单元的各类故障。克服了传统电磁单元诊断方法的局限性;提高故障类型判断的准确性。
参见图1本申请提供的一种电容式电压互感器电磁单元故障诊断方法,包括:
步骤1、将可变负载箱接到需要进行故障诊断的CVT二次输出端口;
本步骤中,将可变负载箱接到需要进行故障诊断的CVT二次输出端口。参见图2,为电容式电压互感器的结构示意图。如图2所示,包括电容单元和密封在金属箱体中的电磁单元。参见图3,为电磁单元的等效电路。如图3所示,其中Xk是补偿电抗器电抗,Rk为补偿电抗器电阻,XT1为中间变压器一次侧漏抗,RT1为中间变压器一次侧电阻,Xm为激磁回路电抗,Rm为激磁回路电阻,X2为折算至变压器一次侧的二次侧漏抗,R2为折算至变压器一次侧的二次侧电阻,RL和XL为折算到变压器一次侧的负载电阻和电抗。
步骤2、对可变负载箱的二次侧负载电阻和电抗多次赋值,得到多组与负载相对应的电压、相位;
本步骤中,用可变负载箱,多次改变二次侧负载电阻和电抗的值,得到一组不同大小、不同功率因数的负载相对应的输出电压值和相位。
进一步的,对可变负载箱的二次侧负载电阻和电抗多次赋值为,采用可变负载箱,负载阻抗的阻抗角可在±90°内任意变化度,可增加CVT的比差、角差的差异性,使得参数辨识的数据来源分散性高。
步骤3、根据等效电路及电压、相位,得到电容式电压互感器电磁单元等效模型的参数值;
本步骤中,根据等效电路以及电压、相位,推导出输出电压和模型参数的数学关系作为拟合的目标函数。以上一步得到的输出电压和相应负载数值作为约束条件,通过参数拟合优化的方法的到电容式电压互感器电磁单元的等值电路各参数值。
进一步的,所述电容式电压互感器电磁单元等效模型的参数值包括:
补偿电抗器电抗和中间变压器一次侧漏抗之和,用X1表示;
补偿电抗器电阻和中间变压器一次侧电阻之和,用R1表示;
激磁回路电抗,用Xm表示;
激磁回路电阻,用Rm表示;
折算到一次侧的中间变压器二次侧漏抗,用X2表示;
折算到一次侧的中间变压器二次侧电阻,用R2表示;
所述参数原始值包括:X1′、R1′、Xm′、Rm′、X2′、R2′。
参见图4,为参数辨识等效电路图。如图4所示,由于补偿电抗器和一次绕组是串联关系,进行拟合参数辨识时会出现多组最优解。因此,用参数R1表示补偿电抗器电阻和中间变压器一次侧电阻之和,用参数X1表示将补偿电抗器电抗和中间变压器一次侧漏抗之和,将原来4个参数变为2个,避免出现多组最优解的情况。图4中各参数说明如附表1所示。
附表1电磁单元参数辨识电路说明表
Figure BDA0002899672910000051
步骤4、用等效模型参数值与参数原始值进行比较,取得等效模型的参数值的变化值;
进一步的,等效模型的参数值的变化值包括:
补偿电抗器电抗和中间变压器原边电抗变化,用Kx1表示,计算公式为:
Figure BDA0002899672910000061
补偿电抗器电阻和中间变压器原边电阻变化,用KR1表示,计算公式为:
Figure BDA0002899672910000062
激磁回路电抗变化,用Kxm表示,计算公式为:
Figure BDA0002899672910000063
激磁回路电阻变化,用KRm表示,计算公式为:
Figure BDA0002899672910000064
二次侧电抗变化,用Kx2表示,计算公式为:
Figure BDA0002899672910000065
二次侧电阻变化,用KR2表示,计算公式为:
Figure BDA0002899672910000066
不同类型故障与电容式电压互感器参数关联关系如下:
参见图5,为参数RT1随故障严重程度的变化规律曲线图;图6为,参数XT1随故障严重程度的变化规律曲线图;图7为,参数Rm随故障严重程度的变化规律曲线图;图8为,参数Xm随故障严重程度变化规律曲线图。
一、补偿电抗器故障下电磁单元等效参数的变化规律
补偿电抗器具有可调气隙的铁芯,其线圈和中间变压器的一次绕组均设有若干调节线圈,以调节互感器的相位和电压误差。当补偿电抗器发生故障时,主要表现为参数Xk和Rk变化,理论上,Xk用于匹配电容分压单元电容并联等值容抗,用以降低因分压器容抗造成的误差,Xk=1/ωC,其中C为电容分压器等值电容,Rk大小接近于0。根据运行经验,补偿电抗器故障主要为铁芯松动,铁芯松动越严重,磁导率下降越快,参数Xk值显著下降,电磁单元其它参数值与中间变压器有关,因此补偿电抗器故障前后,参数Xk和Rk变化较为明显,同时CVT其它等效参数值基本保持不变。
二、避雷器故障下电磁单元等效参数的变化规律
保护用避雷器看作是一个并联在补偿电抗器两端的无穷大电阻,用来消除CVT中可能发生的铁磁谐振,以达到保护CVT的目的。当避雷器因为耐受多次内部铁磁谐振过电压导致击穿导通,即相当于补偿电抗器被短路,因此避雷器击穿导通故障后,参数Xk和Rk应当接近于0,而CVT其它参数值大小基本保持不变。
补偿电抗器故障和避雷器故障都会引起参数Xk和Rk的变化,进而引起参数X1和R1变化,两者的区别在于引起参数X1和R1的变化程度不同,补偿电抗器的电抗值X1较大,故障前后变化较明显,故障后X1可能仍保持较大值;而避雷器击穿故障时,X1会大幅度减小,且故障之后X1为一个较小的数值。
三、中间变压器故障下电磁单元等效参数的变化规律
中间变压器故障主要考虑原边绕组匝间短路和副边绕组匝间短路:
1.参见图9参数R2随故障严重程度的变化规律曲线图;参见图10,为参数X2随故障严重程度的变化规律曲线图。
如图9、图10所示,当中间变压器原边发生匝间短路,原边匝数变为原来的a倍,(0<a<1),即中间变压器变比N变为原来的a倍。一次侧漏抗XT1=ωLT1,LT1=N1 21,LT1为一次绕组的漏电感,N1为中间变压器原边匝数,∧1为一次绕组的漏磁导,漏磁导由该磁路的几何形状、尺寸、材料的磁特性等因素决定。中间变压器原边匝间短路故障时,磁路的特性并没有发生改变。因此,认为故障前后漏磁导保持不变。原边匝数变为原来的a倍,一次侧漏抗XT1变为原来的a2倍。一次侧电阻RT1=ρl/S,ρ为原边绕组的电阻率,其大小由绕组材料决定,S为原边绕组的截面积,l为原边绕组长度。原边匝数变为原来的a倍,即绕组长度l变为原来的a倍,一次侧电阻RT1变为原来的a倍。
变压器的激磁阻抗Zm=Rm+jXm,是用串联阻抗形式来表示铁芯的磁化性能和铁芯损耗的一个综合参数,Rm和Xm的表达式如式(1)和(2)所示:
Figure BDA0002899672910000071
Figure BDA0002899672910000072
式中Xμ为变压器的磁化电抗,它是表征铁芯磁化性能的一个参量,Xμ=ωLμ,Lμ=N1 2m,∧m为主磁路磁导。与上文同理,磁路几何形状、尺寸和材料未发生变化,主磁路磁导保持不变,原边匝数变为原来的a倍,Xμ变为原来的a2倍。将式(2)变化可得
Figure BDA0002899672910000073
因为铁耗电阻RFe 2远大于磁化电抗Xμ,所以Xm≈Xμ,因为Xμ变为原来的a2倍,即Xm变为原来的a2。RFe为铁耗电阻,
Figure BDA0002899672910000074
式中E1为感应电动势,IFe为铁耗电流,因为系统电压为不变,中间变压器输入电压UAX保持不变,UAX≈E1,因此可以认为E1为常值。IFe较小,认为IFe故障前后基本保持不变,因此铁耗电阻认为近似不变。将式(1)除以式(2)可以得到式(3):
Figure BDA0002899672910000081
将式(3)变化可得Rm=XmXμ/RFe,原边匝数变为原来的a倍,Xu和Xm变为原来的a2倍,铁耗电阻RFe认为近似不变,因此Rm变为原来的a4倍。
X2和R2分别是折算至中间变压器一次侧的二次侧漏抗和电阻,假设折变压器二次侧漏抗和电阻分别为X2′和R2′,X2=N2 X2′,R2=N2 R2′,X2′和R2′与副边匝数、磁导有关,因此X2′和R2′不变。原边匝数变化影响中间变压器变比N,原边匝数变为原来的a倍,相当于变比N变为原来的a倍,X2和R2都变为原来的a2倍。
2.参见图11,为参数R2随副边绕组匝间短路故障严重程度变化规律曲线图。
如图11所示,当中间变压器副边发生匝间短路,副边匝数变为原来的a倍,(0<a<1),即中间变压器变比N变为原来的1/a倍。参数Lk,Rk,XT1,RT1,Xm,Rm保持不变,与上文叙述同理,折算到一次侧的二次侧漏抗X2′=wN2 22,其中X2’为二次绕组漏抗,∧2为二次绕组的漏磁导,漏磁磁路主要为空气和油,磁导由该磁路的几何形状、尺寸、材料的磁特性等因素决定,因此认为漏磁导为常值,X2=N2 X2′,当副边匝数变为原来的a倍,X2′变为原来的a2倍,中间变压器变比N变为原来的1/a倍,因此折算到一次侧的二次侧漏抗X2保持不变。折算到一次侧的二次侧电阻,式中ρ为二次绕组电阻率,副边绕组匝数变为原来的a倍,即l变为原来的a倍,中间变压器二次侧电阻R2′变为原来的a倍,又因为R2=N2R2′,中间变压器变比变为原来的1/a倍,因此折算到一次侧的二次侧电阻R2变为原来的1/a倍。
附表2电容式电压互感器电磁单元故障类型与诊断特征参数
Figure BDA0002899672910000082
步骤5、提出模糊综合评估方法,进行故障诊断。
根据现场运行经验,电容式电压互感器电磁单元故障主要有补偿电抗器铁芯松动、避雷器击穿、中间变压器原边匝间短路、中间变压器副边匝间短路四种故障,四种故障分别会引起电磁单元模型六个等效参数的不同变化。基于模糊综合评判方法,将四种故障记为a1~a4,故障矩阵记为A;将六个参数变化分别记为kx1,kR1,kxm,kRm,kx2,kR2,如附表3所示,故障现象矩阵记为B。
附表3参数变化符号意义及计算
Figure BDA0002899672910000083
Figure BDA0002899672910000091
A和B之间的模糊关系分为5种情况,有密切关系取其关系rij为0.9,较为密切的为0.7,有关系的为0.5,有点关系的为0.3,关系很小取0.1,无关系为0。根据前面的分析关系矩阵R为:
Figure BDA0002899672910000092
具体判断步骤为:
(1)根据辨识所得参数及原始模型参数根据附表3求取矩阵B;
(2)由公式R·B=A,算出矩阵A值;
(3)求取矩阵A个元素平均值,若各元素与平均值之差均小于10%,则判断设备无故障;否则,寻找与平均值偏差最大的元素,该元素所代表的故障即为设备故障。
由以上技术方案可知,本申请提供的一种电容式电压互感器电磁单元故障诊断方法包括:将可变负载箱接到需要进行故障诊断的CVT二次输出端口;对可变负载箱的二次侧负载电阻和电抗多次赋值,得到多组与负载相对应的电压、相位;根据等效电路及电压、相位,得到电容式电压互感器电磁单元等效模型的参数值;用等效模型参数值与参数原始值进行比较,取得等效模型的参数值的变化值;提出模糊综合评估方法,进行故障诊断。本申请提供的一种电容式电压互感器电磁单元故障诊断方法,能够在带电的情况下有效检测CVT电磁单元的各类故障,操作简单,避免了吊芯检查工作量大、耗时长,只能离线诊断的问题;同时本方法中等效模型不同参数的变化能够准确反映CVT电磁单元的各类故障,相比于红外诊断法只有当电磁单元在发热严重时才有效,且需要辅助其他方法的局限,具有绝对优势。
本申请提供的实施例之间的相似部分相互参见即可,以上提供的具体实施方式只是本申请总的构思下的几个示例,并不构成本申请保护范围的限定。对于本领域的技术人员而言,在不付出创造性劳动的前提下依据本申请方案所扩展出的任何其他实施方式都属于本申请的保护范围。

Claims (7)

1.一种电容式电压互感器电磁单元故障诊断方法,其特征在于,包括:
将可变负载箱接到需要进行故障诊断的CVT二次输出端口;
对可变负载箱的二次侧负载电阻和电抗多次赋值,得到多组与负载相对应的电压、相位;
根据等效电路及电压、相位,得到电容式电压互感器电磁单元等效模型的参数值;
用等效模型参数值与参数原始值进行比较,取得等效模型的参数值的变化值;
提出模糊综合评估方法,进行故障诊断。
2.根据权利要求1所述的一种电容式电压互感器电磁单元故障诊断方法,其特征在于,所述对可变负载箱的二次侧负载电阻和电抗多次赋值为,对可变负载箱负载阻抗的阻抗角在±90°范围内变化。
3.根据权利要求1所述的一种电容式电压互感器电磁单元故障诊断方法,其特征在于,所述电容式电压互感器电磁单元等效模型的参数值包括:
补偿电抗器电抗和中间变压器一次侧漏抗之和,用X1表示;
补偿电抗器电阻和中间变压器一次侧电阻之和,用R1表示;
激磁回路电抗,用Xm表示;
激磁回路电阻,用Rm表示;
折算到一次侧的中间变压器二次侧漏抗,用X2表示;
折算到一次侧的中间变压器二次侧电阻,用R2表示;
所述参数原始值包括:X1′、R1′、Xm′、Rm′、X2′、R2′。
4.根据权利要求3所述的一种电容式电压互感器电磁单元故障诊断方法,其特征在于,等效模型的参数值的变化值包括:
补偿电抗器电抗和中间变压器原边电抗变化,用Kx1表示,计算公式为:
Figure FDA0002899672900000011
补偿电抗器电阻和中间变压器原边电阻变化,用KR1表示,计算公式为:
Figure FDA0002899672900000012
激磁回路电抗变化,用Kxm表示,计算公式为:
Figure FDA0002899672900000013
激磁回路电阻变化,用KRm表示,计算公式为:
Figure FDA0002899672900000014
二次侧电抗变化,用Kx2表示,计算公式为:
Figure FDA0002899672900000015
二次侧电阻变化,用KR2表示,计算公式为:
Figure FDA0002899672900000016
5.根据权利要求1所述的一种电容式电压互感器电磁单元故障诊断方法,其特征在于,所述电容式电压互感器各类故障包括:补偿电抗器故障、避雷器故障、中间变压器故障。
6.根据权利要求5所述的一种电容式电压互感器电磁单元故障诊断方法,其特征在于,所述中间变压器故障包括:原边绕组匝间短路和副边绕组匝间短路。
7.根据权利要求1所述的一种电容式电压互感器电磁单元故障诊断方法,其特征在于,对故障类型及故障现象进行模糊综合评估,其关系矩阵R为:
Figure FDA0002899672900000021
CN202110058305.8A 2021-01-15 2021-01-15 一种电容式电压互感器电磁单元故障诊断方法 Active CN112904108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110058305.8A CN112904108B (zh) 2021-01-15 2021-01-15 一种电容式电压互感器电磁单元故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110058305.8A CN112904108B (zh) 2021-01-15 2021-01-15 一种电容式电压互感器电磁单元故障诊断方法

Publications (2)

Publication Number Publication Date
CN112904108A true CN112904108A (zh) 2021-06-04
CN112904108B CN112904108B (zh) 2023-03-31

Family

ID=76114004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110058305.8A Active CN112904108B (zh) 2021-01-15 2021-01-15 一种电容式电压互感器电磁单元故障诊断方法

Country Status (1)

Country Link
CN (1) CN112904108B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325466A (zh) * 2021-11-25 2022-04-12 中国大唐集团科学技术研究院有限公司火力发电技术研究院 一种发电机出口互感器匝间短路自检系统
CN114358092A (zh) * 2022-03-10 2022-04-15 武汉格蓝若智能技术有限公司 一种电容式电压互感器内绝缘性能在线诊断方法及系统
CN114818817A (zh) * 2022-05-06 2022-07-29 国网四川省电力公司电力科学研究院 一种电容式电压互感器微弱故障识别系统及方法
CN117147938A (zh) * 2023-09-06 2023-12-01 中山市华讯电器有限公司 一种无高压熔断器的高压电压互感器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038573A1 (en) * 2004-05-04 2006-02-23 Sarkozi Janos G Low current ac partial discharge diagnostic system for wiring diagnostics
WO2016058435A1 (zh) * 2014-10-16 2016-04-21 江苏省电力公司泰州供电公司 变压器外部故障下绕组状态评估方法
CN105808941A (zh) * 2016-03-04 2016-07-27 重庆大学 一种基于油中溶解气体的高压并联电抗器模糊综合诊断方法
CN106019081A (zh) * 2016-05-24 2016-10-12 长沙理工大学 一种基于波形反演的输电线路故障电压行波精确检测方法
CN106199305A (zh) * 2016-07-01 2016-12-07 太原理工大学 煤矿井下供电系统用干式变压器绝缘健康状态评估方法
CN106772009A (zh) * 2016-12-26 2017-05-31 新疆天成鲁源电气工程有限公司 基于分合闸线圈电流波形的断路器机械特性分析方法
US20190033345A1 (en) * 2016-01-22 2019-01-31 Safran Electrical & Power A current measuring device protected against electrical surges when opening the circuit
US20190195918A1 (en) * 2017-09-22 2019-06-27 Schweitzer Engineering Laboratories, Inc. High-fidelity voltage measurement using a capacitance-coupled voltage transformer
CN110082698A (zh) * 2019-04-16 2019-08-02 贵州电网有限责任公司 一种电容式电压互感器综合运行状态评估仿真系统
US20190391191A1 (en) * 2016-07-08 2019-12-26 Abb Schweiz Ag A method and system for locating a fault in a mixed power transmission line

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038573A1 (en) * 2004-05-04 2006-02-23 Sarkozi Janos G Low current ac partial discharge diagnostic system for wiring diagnostics
WO2016058435A1 (zh) * 2014-10-16 2016-04-21 江苏省电力公司泰州供电公司 变压器外部故障下绕组状态评估方法
US20190033345A1 (en) * 2016-01-22 2019-01-31 Safran Electrical & Power A current measuring device protected against electrical surges when opening the circuit
CN105808941A (zh) * 2016-03-04 2016-07-27 重庆大学 一种基于油中溶解气体的高压并联电抗器模糊综合诊断方法
CN106019081A (zh) * 2016-05-24 2016-10-12 长沙理工大学 一种基于波形反演的输电线路故障电压行波精确检测方法
CN106199305A (zh) * 2016-07-01 2016-12-07 太原理工大学 煤矿井下供电系统用干式变压器绝缘健康状态评估方法
US20190391191A1 (en) * 2016-07-08 2019-12-26 Abb Schweiz Ag A method and system for locating a fault in a mixed power transmission line
CN106772009A (zh) * 2016-12-26 2017-05-31 新疆天成鲁源电气工程有限公司 基于分合闸线圈电流波形的断路器机械特性分析方法
US20190195918A1 (en) * 2017-09-22 2019-06-27 Schweitzer Engineering Laboratories, Inc. High-fidelity voltage measurement using a capacitance-coupled voltage transformer
CN110082698A (zh) * 2019-04-16 2019-08-02 贵州电网有限责任公司 一种电容式电压互感器综合运行状态评估仿真系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M ZHOU 等: "Research on CVT fault diagnosis system based on artificial neural network", 《IEEE VEHICLE POWER AND PROPULSION CONFERENCE》 *
陈斌: "电容式电压互感器的误差特性分析及评估", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325466A (zh) * 2021-11-25 2022-04-12 中国大唐集团科学技术研究院有限公司火力发电技术研究院 一种发电机出口互感器匝间短路自检系统
CN114358092A (zh) * 2022-03-10 2022-04-15 武汉格蓝若智能技术有限公司 一种电容式电压互感器内绝缘性能在线诊断方法及系统
CN114818817A (zh) * 2022-05-06 2022-07-29 国网四川省电力公司电力科学研究院 一种电容式电压互感器微弱故障识别系统及方法
CN117147938A (zh) * 2023-09-06 2023-12-01 中山市华讯电器有限公司 一种无高压熔断器的高压电压互感器
CN117147938B (zh) * 2023-09-06 2024-04-09 中山市华讯电器有限公司 一种无高压熔断器的高压电压互感器

Also Published As

Publication number Publication date
CN112904108B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN112904108B (zh) 一种电容式电压互感器电磁单元故障诊断方法
Masoum et al. Online transformer internal fault detection based on instantaneous voltage and current measurements considering impact of harmonics
Venikar et al. A novel offline to online approach to detect transformer interturn fault
Islam Detection of mechanical deformation in old aged power transformer using cross correlation co-efficient analysis method
Lu et al. Effects of converter harmonic voltages on transformer insulation ageing and an online monitoring method for interlayer insulation
Yasid et al. Interpretation of sweep frequency response analysis traces on inter-turn short circuit fault
Li et al. Diagnosis of interturn faults of voltage transformer using excitation current and phase difference
Nurmanova et al. Confidence level estimation for advanced decision-making in transformer short-circuit fault diagnosis
Meng et al. Internal insulation condition identification for high-voltage capacitor voltage transformers based on possibilistic fuzzy clustering
Chang et al. Fuzzy theory-based partial discharge technique for operating state diagnosis of high-voltage motor
Zhang et al. Leakage inductance variation based monitoring of transformer winding deformation
CN112526306B (zh) 一种发电机出口侧电压互感器绝缘状态监测系统
Hashemi-Dezaki et al. Optimal techno-economic sequence-based set of diagnostic tests for distribution transformers using genetic algorithm
JP2014006191A (ja) 変圧器の健全性診断方法、健全性診断装置及び健全性診断プログラム
CN112904263A (zh) 一种基于电阻电容电感矢量的cvt电磁单元的参数确定方法
JP3847556B2 (ja) 電磁誘導機器の健全性評価方法および試験方法
Hajiaghasi et al. Transformer leakage flux frequencies analysis under internal windings faults
He Fault Early Warning and Location of Dry-Type Air-Core Reactor Based on Neural Networks
CN113792636B (zh) 基于故障录波的特高压直流输电换流变隐性故障预测方法
CN112379223B (zh) 一种配电变压器绕组匝间绝缘劣化的等效电路模型
Jiang et al. Fault indicator based on stator current under early stage SISC in synchronous condensers
Budiyanto et al. 1 X 1000 kVA Transformer Measurement Analysis using Dyn-11 Vector Group and Off Load Tap Changer
Mahvi et al. Power Auto-transformer Mechanical Faults Diagnosis‎ Using Finite Element based FRA
Li et al. Research on Voltage Inductive Heated Defect Detection Technology Based on Temperature Width Intelligent Adjustment
Tang et al. An Online Diagnosis Method for EMU Traction Transformer Winding Faults Based on Voltage and Current Signals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant