CN112897595A - 一种水相中制备中空棒状纳米Fe3O4的方法 - Google Patents

一种水相中制备中空棒状纳米Fe3O4的方法 Download PDF

Info

Publication number
CN112897595A
CN112897595A CN202110254113.4A CN202110254113A CN112897595A CN 112897595 A CN112897595 A CN 112897595A CN 202110254113 A CN202110254113 A CN 202110254113A CN 112897595 A CN112897595 A CN 112897595A
Authority
CN
China
Prior art keywords
feooh
nano
sio
preparation
hollow rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110254113.4A
Other languages
English (en)
Other versions
CN112897595B (zh
Inventor
邵斌
马毅龙
陈登明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN202110254113.4A priority Critical patent/CN112897595B/zh
Publication of CN112897595A publication Critical patent/CN112897595A/zh
Application granted granted Critical
Publication of CN112897595B publication Critical patent/CN112897595B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种水相中制备中空棒状纳米Fe3O4的方法,按以下过程进行:准备纳米棒状核壳结构的FeOOH@SiO2复合物,将所述FeOOH@SiO2复合物均匀分散于水合联胺的水溶液中,进行水热还原反应以除去SiO2壳层同时还原FeOOH得到Fe3O4中空纳米棒。本发明的有益效果:本发明制备Fe3O4的方法步骤简单,工艺条件相对温和,制得的Fe3O4中空纳米棒形貌均匀、结构完整性好,饱和磁化强度高达82.0emu·g‑1,高于现有技术报道的采用其他方法制备的同类产物,具有大规模、批量化生产前景。

Description

一种水相中制备中空棒状纳米Fe3O4的方法
技术领域
本发明属于磁性纳米材料技术领域,具体涉及一种水相中制备中空棒状纳米Fe3O4的方法。
背景技术
Fe3O4是一种被广泛研究的功能材料,纳米Fe3O4粒子不仅具有磁性,且比表面积大、生物相容性好,因而在催化、环境污染物处理以及生物医药领域具有重要应用价值。特别是具有中空结构的Fe3O4颗粒,由于其内部具有较大空腔,在显影、载药、蛋白质检测、污染物吸附处理等领域有很大的应用价值。相比常见的球形颗粒,具有棒状结构的Fe3O4在磁场中能够产生较大的力矩以及更大的比表面积,因此更有应用前景。
制备中空结构纳米棒状Fe3O4具有相当大的难度,尤其是大范围合成尤其困难。目前最简单的方法是在还原气体下低温热处理,将棒状FeOOH直接还原为棒状Fe3O4,但是由于热处理过程中,FeOOH脱水生成Fe3O4,所以无法得到完整的Fe3O4纳米棒,而且极易团聚、破碎。Piao等(Piao Y,Kim J,HYON BIN N A,et al.Wrap-bake-peel process fornanostructural transformation from beta-FeOOH nanorods to biocompatible ironoxide nanocapsules.Nature Materials,2008.)在FeOOH上包裹十数纳米的SiO2,经还原热处理和碱溶液清洗的方法得到Fe3O4中空纳米棒,但由于还原生成的Fe3O4与SiO2结合紧密,一旦清洗SiO2将导致Fe3O4破裂,实际操作中SiO2极难清除干净,导致饱和磁化强度不高。Mohapatra等(Mohapatra J,Mitra A,Tyagi H,et al.Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents.Nanoscale,2015.)使用油胺在200℃以上的高温下还原FeOOH纳米棒,同非极性有机溶媒正己烷和丙酮去除部分油胺后加入亲水性表面活性剂,例如PEI,进行亲水性的表面改性,得到棒状Fe3O4,但是亲油性的油胺一旦吸附在Fe3O4上极难去除,即便经过清洗和亲水性表面改性,仍残余大量的有机物,另外油胺的还原温度需要精细控制,一旦温度过高还原速度过快将导致Fe3O4破碎,而还原温度过低FeOOH还原程度不足导致饱和磁化强度低,实验测得的最高饱和磁化强度为60emug-1。Xu等(Xu W,Wang M,Li Z,et al.Chemical Transformation of ColloidalNanostructures with Morphological Preservation by Surface-Protection withCapping Ligands.Nano Letters,2017.)先在棒状FeOOH表面包覆PCC、PVP等软模版,再在弱还原剂二乙二醇溶液中将FeOOH还原为棒状中空Fe3O4,但是该方法只能在弱还原剂氛围下得到Fe3O4,其饱和磁化强度最高为40emu·g-1,而且制得的Fe3O4纳米棒很难从二乙二醇中分离。
所以,目前仍缺少一种简单、易操作,而且能够大批量稳定合成高饱和磁化强度的中空棒状Fe3O4的技术手段。
发明内容
有鉴于此,本发明提供一种水相中制备中空棒状纳米Fe3O4的方法。
其技术方案如下:
一种水相中制备中空棒状纳米Fe3O4的方法,其关键在于按以下过程进行,准备纳米棒状核壳结构的FeOOH@SiO2复合物,将所述FeOOH@SiO2复合物分散在水合联胺的水溶液中进行水热还原反应,除去SiO2壳层同时还原FeOOH,得到Fe3O4中空纳米棒。
在一种实施方式中,上述FeOOH@SiO2复合物与水合联胺的用量比为50mg:1-2mL。
在一种实施方式中,上述FeOOH@SiO2复合物的SiO2壳层厚度为2-5nm。
在一种实施方式中,上述还原反应温度为180-220℃。
在一种实施方式中,上述还原反应的温度为200℃。
在一种实施方式中,上述还原反应的时间为3-8h。
在一种实施方式中,上述FeOOH@SiO2复合物与水合联胺的水溶液混合后,采用超声分散10min。
在一种实施方式中,上述FeOOH@SiO2复合物的制备方法为,取干燥的FeOOH纳米棒,分散于乙醇和水的混合溶液中,随后加入氨水和正硅酸四乙酯(TEOS),室温下搅拌反应,反应完成后清洗,高速离心得到所述FeOOH@SiO2复合物。
在一种实施方式中,上述FeOOH纳米棒与TEOS用量比为100mg:10-20μL。
附图说明
图1为实施例1、实施例5制得的FeOOH@SiO2复合物与Fe3O4中空纳米棒的XRD图谱,其中实施例1还原反应时间为8h,实施例5还原反应时间为6h;
图2为FeOOH@SiO2复合物的TEM图和EDS表征的图片;
图3为产物的SEM图片,其中(a)为实施例1的产物,(b)为对照例1的产物;
图4为实施例1的产物的TEM图片,其中:(a)低倍TEM图片;(b)高倍TEM图片;(c)高分辨图像;
图5为实施例1的产物的磁滞回线。
具体实施方式
以下结合实施例和附图对本发明作进一步说明。
一种水相中制备中空棒状纳米Fe3O4的方法,按以下过程进行:
首先准备FeOOH@SiO2复合物。原料FeOOH@SiO2复合物可以外购,也可以实验室合成。一种制备FeOOH@SiO2复合物的过程为,取100mg干燥的FeOOH纳米棒,加入15mL水,再加入150mL乙醇,随后加入10mL的27wt.%的氨水,投入10-20μL的TEOS,室温下搅拌反应4h,反应完成后,离心分离,先后用水和酒精清洗,真空干燥得到所述FeOOH@SiO2复合物,所述FeOOH@SiO2复合物的长径为300nm,SiO2层厚度约为5nm。通过调整反应物FeOOH纳米棒和TEOS的用量,可以调节壳层SiO2的厚度,本实施例中,FeOOH纳米棒与TEOS的用量比为100mg:10-20μL较为合适,得到的SiO2壳层厚度2~5nm。
接着,取纳米棒状核壳结构的FeOOH@SiO2复合物,将所述FeOOH@SiO2复合物与水合联胺(碱性)、水混合,并超声10min使之均匀分散,在180-220℃条件下还原反应3-8h以除去SiO2壳层,并还原FeOOH得到Fe3O4中空纳米棒,采用磁分离方法分离并清洗干燥。所述FeOOH@SiO2复合物与水合联胺的用量比为50mg:1-2mL。
原料FeOOH纳米棒可外购或通过氯化铁直接水解得到。一种实验室制备方法为:取0.1M三价氯化铁溶液,加热于100℃条件下反应4-12h,可以用水热反应釜也可以用回流装置,水解得到长度约300nm的棒状FeOOH,离心分离,水和酒精清洗,真空干燥。
表1列出了采用不同反应条件制备Fe3O4中空纳米棒的实施例。
表1采用不同反应条件的实施例
Figure BDA0002962371330000041
Figure BDA0002962371330000051
上述反应条件下均能成功制得中空棒状纳米Fe3O4。反应完成后,经磁吸附分离、水和乙醇清洗,干燥得到样品。以实施例1和5为例,对得到的FeOOH@SiO2复合物以及Fe3O4中空纳米棒,采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)进行结构和形貌表征,采用能谱分析仪(EDS)对元素分布进行表征,采用振动样品磁强计(VSM)检测其磁性能。
为研究SiO2对产物形貌的影响,对照例1以未包覆SiO2的FeOOH为原料进行还原反应,其余反应条件与实施例1相同。反应过程为:取50mg干燥的FeOOH纳米棒,与水合联胺、水混合,并超声10min使之均匀分散,在200℃条件下还原反应8h,分离得到产物。
如图1,对比FeOOH@SiO2复合物以及实施例1和5的产物的XRD图谱,可知还原反应后得到了纯相的Fe3O4
图2是FeOOH@SiO2复合物的TEM图和EDS表征的图片。图中可以看到,厚度约5nm的SiO2均匀包覆在FeOOH外层。
图3(a)为实施例1的产物的大尺度SEM图片,可以看到产物为形貌均匀的棒状Fe3O4。图3(b)是对照例1的反应制备得到的产物SEM图片,该产物由未包覆SiO2的棒状FeOOH直接在水合肼溶液中还原得到,该产物为多边形Fe3O4颗粒。
采用TEM对实施例1的产物进行表征,结果如图4(a、b),比较纳米棒不同部位的衬度可知,得到的纳米棒存在孔洞,内部有中空结构。如图4(c),高分辨图像观察到其晶面间距0.297nm,与Fe3O4的(104)晶面间距一致,进一步证实其为Fe3O4。分析上述现象出现的原因在于,该反应利用水合肼溶液的碱性和还原性,在去除SiO2纳米包覆层的同时实现FeOOH向Fe3O4的转换,同时在FeOOH脱水后生成的Fe3O4将在棒状物表面再结晶,从而生成中空结构。
如图5,实施例1的产物磁滞回线显示,其具有优异的磁性能,饱和磁化强度为Ms=82.0emu·g-1,矫顽力为Hc=129.5Oe。
与现有技术相比,本发明的有益效果:本发明制备Fe3O4的方法步骤简单,工艺条件相对温和,制备过程中未加入难去除的亲油性或难分离的高密度有机还原剂和分散剂,无需对SiO2进行二次清洗,制得的Fe3O4中空纳米棒形貌均匀、结构完整性好,饱和磁化强度高达82.0emu·g-1,高于现有技术报道的采用其他方法制备的同类产物,具有大规模、批量化生产前景。
最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

Claims (9)

1.一种水相中制备中空棒状纳米Fe3O4的方法,其特征在于按以下过程进行:准备纳米棒状核壳结构的FeOOH@SiO2复合物,将所述FeOOH@SiO2复合物分散在水合联胺的水溶液中进行水热还原反应,除去SiO2壳层同时还原FeOOH,得到Fe3O4中空纳米棒。
2.根据权利要求1所述的一种水相中制备中空棒状纳米Fe3O4的方法,其特征在于:所述FeOOH@SiO2复合物与水合联胺的用量比为50mg:1-2mL。
3.根据权利要求1所述的一种水相中制备中空棒状纳米Fe3O4的方法,其特征在于:所述FeOOH@SiO2复合物的SiO2壳层厚度为2-5nm。
4.根据权利要求1所述的一种水相中制备中空棒状纳米Fe3O4的方法,其特征在于:所述还原反应温度为180-220℃。
5.根据权利要求4所述的一种水相中制备中空棒状纳米Fe3O4的方法,其特征在于:所述还原反应的温度为200℃。
6.根据权利要求1所述的一种水相中制备中空棒状纳米Fe3O4的方法,其特征在于:所述还原反应的时间为3-8h。
7.根据权利要求1所述的一种水相中制备中空棒状纳米Fe3O4的方法,其特征在于:所述FeOOH@SiO2复合物与水合联胺的水溶液混合后,采用超声分散10min。
8.根据权利要求1所述的一种水相中制备中空棒状纳米Fe3O4的方法,其特征在于:所述FeOOH@SiO2复合物的制备方法为,取干燥的FeOOH纳米棒,分散于乙醇和水的混合溶液中,随后加入氨水和正硅酸四乙酯(TEOS),室温下搅拌反应,反应完成后清洗,高速离心得到所述FeOOH@SiO2复合物。
9.根据权利要求8所述的一种水相中制备中空棒状纳米Fe3O4的方法,其特征在于:所述FeOOH纳米棒与TEOS的用量比为100mg:10-20μL。
CN202110254113.4A 2021-03-04 2021-03-04 一种水相中制备中空棒状纳米Fe3O4的方法 Active CN112897595B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110254113.4A CN112897595B (zh) 2021-03-04 2021-03-04 一种水相中制备中空棒状纳米Fe3O4的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110254113.4A CN112897595B (zh) 2021-03-04 2021-03-04 一种水相中制备中空棒状纳米Fe3O4的方法

Publications (2)

Publication Number Publication Date
CN112897595A true CN112897595A (zh) 2021-06-04
CN112897595B CN112897595B (zh) 2023-04-14

Family

ID=76108061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110254113.4A Active CN112897595B (zh) 2021-03-04 2021-03-04 一种水相中制备中空棒状纳米Fe3O4的方法

Country Status (1)

Country Link
CN (1) CN112897595B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162536A (ja) * 1986-12-25 1988-07-06 Toda Kogyo Corp 等方的形状を呈した磁性酸化鉄粒子粉末の製造法
WO2008069561A1 (en) * 2006-12-05 2008-06-12 Seoul National University Industry Foundation Metal oxide hollow nanocapsule and a method for preparing the same
CN103771535A (zh) * 2013-12-31 2014-05-07 惠州学院 一种多面体纳米四氧化三铁及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162536A (ja) * 1986-12-25 1988-07-06 Toda Kogyo Corp 等方的形状を呈した磁性酸化鉄粒子粉末の製造法
WO2008069561A1 (en) * 2006-12-05 2008-06-12 Seoul National University Industry Foundation Metal oxide hollow nanocapsule and a method for preparing the same
CN103771535A (zh) * 2013-12-31 2014-05-07 惠州学院 一种多面体纳米四氧化三铁及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENUKA ADHIKARI等: ""Synthesis of Magnetite Nanorods from the Reduction of Iron Oxy-Hydroxide with Hydrazine"", 《ACS OMEGA》 *

Also Published As

Publication number Publication date
CN112897595B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
Xuan et al. A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites
Wang et al. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction
Zhang et al. An improved Stöber method towards uniform and monodisperse Fe 3 O 4@ C nanospheres
KR100846839B1 (ko) 산화금속 중공 나노캡슐 및 이의 제조방법
Liu et al. Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid–liquid interface using oleate as surfactant and reactant
Zhao et al. Synthesis and characterization of carbon nanotubes decorated with strontium ferrite nanoparticles
Zhang et al. Synthesis and characterization of Fe 3 O 4@ SiO 2 magnetic composite nanoparticles by a one-pot process
Hao et al. Sandwich Fe 2 O 3@ SiO 2@ PPy ellipsoidal spheres and four types of hollow capsules by hematite olivary particles
Sivakumar et al. Ultrasonic cavitation induced water in vegetable oil emulsion droplets–A simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization
WO2013029200A1 (zh) 一种中空镍锌铁氧体微球的制备方法
Park et al. Microwave enhanced silica encapsulation of magnetic nanoparticles
Chairam et al. Starch vermicelli template for synthesis of magnetic iron oxide nanoclusters
CN105655078B (zh) 具有核壳结构的磁性复合材料及其制备方法
Liu et al. Comparison of the effects of microcrystalline cellulose and cellulose nanocrystals on Fe 3 O 4/C nanocomposites
Sun et al. Synthesis and magnetic properties of hollow α-Fe2O3 nanospheres templated by carbon nanospheres
Morales et al. One-step chemical vapor deposition synthesis of magnetic CNT–hercynite (FeAl2O4) hybrids with good aqueous colloidal stability
Zhang et al. Facile synthesis of α-Fe 2 O 3 hollow sub-microstructures, morphological control and magnetic properties
CN112897595B (zh) 一种水相中制备中空棒状纳米Fe3O4的方法
Chen et al. Magnetic hollow mesoporous silica nanospheres: Facile fabrication and ultrafast immobilization of enzymes
Li et al. Synthesis of ellipsoidal hematite/polymer/titania hybrid materials and the corresponding hollow ellipsoidal particles
Shao et al. Characterization of Fe 3 O 4/SiO 2 composite core-shell nanoparticles synthesized in isopropanol medium
Xuan et al. Novel method to fabricate magnetic hollow silica particles with anisotropic structure
Srivastava et al. The processing and characterization of magnetic nanobowls
Huang et al. Physical–Chemical Coupling Coassembly Approach to Branched Magnetic Mesoporous Nanochains with Adjustable Surface Roughness
CN109215921B (zh) 一种具有一维核壳纳米结构的Co3Fe7/SiO2复合材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant