CN112893865A - 一种双层金纳米颗粒修饰的柔性sers基底及其制备方法 - Google Patents
一种双层金纳米颗粒修饰的柔性sers基底及其制备方法 Download PDFInfo
- Publication number
- CN112893865A CN112893865A CN202110324174.3A CN202110324174A CN112893865A CN 112893865 A CN112893865 A CN 112893865A CN 202110324174 A CN202110324174 A CN 202110324174A CN 112893865 A CN112893865 A CN 112893865A
- Authority
- CN
- China
- Prior art keywords
- film
- nps
- silicon wafer
- nano
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种双层金纳米颗粒修饰的柔性SERS基底的制备方法,通过由连续的逐层沉积并转移的方式获得紧密堆积的三维Au粒子纳米结构,并置于透明且具柔性的PDMS薄膜表面。两层金纳米颗粒的紧密堆积,减少了纳米颗粒之间的间隙,使得纳米粒子之间的电磁场增强,从而提高了SERS的灵敏度。同时,PDMS膜为纳米颗粒的自组装提供了平坦的表面,其灵活而透明的特性可用于原位检测任意待测表面上的分析物。
Description
技术领域
本发明涉及SERS基底,具体涉及一种以聚二甲基硅氧烷(PDMS)膜为负载模板,通过连续的逐层沉积并转移的方式获得紧密堆积的三维Au纳米颗粒薄膜结构。
背景技术
等离激元“热点”在表面增强拉曼散射(SERS)过程中起着关键作用,使得SERS技术在光谱分析中具有超高的表面灵敏度。由于金和银纳米颗粒(Au NPs和Ag NPs)是构筑“热点”的主要物质已被最广泛地用作拉曼增强基底。相较于Ag NPs,Au NPs尺寸和形态容易可控,稳定性好和优异的生物相容性等优点。
发明内容
本发明的目的是提供一种新型的具有双层金纳米颗粒修饰的柔性SERS基底。
为实现上述发明目的,本发明的技术方案具体如下:
一种双层金纳米颗粒修饰的柔性SERS基底的制备方法,包括以下步骤:
S1.将金种子加入超纯水中,冰浴搅拌一段时间,再依次加入柠檬酸钠、抗坏血酸,持续冰浴搅拌,然后加入HAuCl4,在冰浴中持续搅拌,最后在水浴锅加热,制备出Au NPs胶体;
S2.将环己烷滴加到装有Au NPs胶体的容器中,以产生有机-水界面,再滴入无水乙醇使有机-水界面形成Au NPs单层膜,待环己烷完全蒸发后,将硅片以小角度浸入纳米颗粒单层膜中并缓慢拉出,使纳米颗粒单层膜转移到硅片表面;纳米颗粒薄膜干燥后,进行重复转移,生成三维纳米颗粒薄膜结构;
S3.将PDMS膜从一端放置表面并轻压,然后直接剥离,将三维Au纳米颗粒薄膜转移到PDMS膜的表面,制备出两层金纳米粒子改性的柔性SERS基底。
进一步的,所述步骤S1包括:用移液枪移取3mL的45nm金种子到装有20mL超纯水的圆底烧瓶中,-5℃冰浴搅拌10min,再依次加入30uL 1%柠檬酸钠、0.4mL 1%抗坏血酸,持续冰浴搅拌15min,然后加入0.654mL 1%HAuCl4,在冰浴中持续搅拌20min,最后在70℃水浴锅加热30min,制备出120nm的Au NPs胶体。
进一步的,所述步骤S2包括:将2mL环己烷滴加到装有Au NPs胶体的烧杯中,以产生有机-水界面;接着,将无水乙醇滴加该烧杯中;在乙醇的诱导下,Au NPs单层膜立即在有机-水界面形成,显示出闪亮的金黄色;待环己烷完全蒸发后,将硅片以小角度浸入纳米颗粒单层膜中并缓慢拉出,从而将纳米颗粒单层膜转移到硅片表面;纳米颗粒薄膜干燥后,进行重复转移,生成了三维纳米颗粒薄膜结构。
进一步的,所述硅片浸入角度为5-10°。
进一步的,所述步骤S2之前还包括步骤S2':将Au NPs胶体以8000rpm离心5min,取其沉淀,将浓缩的颗粒再分散适量的超纯水中。
进一步的,所述步骤S3中,制备PDMS膜的固化剂与基础弹性体体积之比为1:13。
本发明还提供了由上述方法制备的双层金纳米颗粒修饰的柔性SERS基底。
与现有技术相比,本发明的有益效果:
本发明的方法通过硅辅助界面自组装转移和连续的逐层沉积技术,制备了一种新颖的金纳米粒子改性的柔性SERS基底。两层金纳米颗粒的紧密堆积,可实现高的SERS增强。预成型的PDMS薄膜作为负载模板,简化基底的制作过程。相较于刚性基板易碎、不易弯曲,PDMS膜具有出色的透明度和柔韧性且基板能够与非平面表面进行保形接触,解决了在不规则非平面表面上原位检测分析物的问题。
本发明的方法不需要对金纳米颗粒和PDMS膜进行任何表面改性,大大缩短了基板的制备时间。另外,该基材成本低廉且对环境友好,并且显示出良好的灵敏度和可重复性以及可接受的时间稳定性。它具有原位、实时检测农药残留的巨大潜力。
附图说明
图1转移在硅片上的单层金膜的平面扫描电镜图;
图2转移在硅片上的单层金膜的截面扫描电镜图;
图3转移在硅片上的两层金膜的截面扫描电镜图;
图4氯菊酯在Au@PDMS三维柔性SERS基底的拉曼光谱。
具体实施方式:
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
一种双层金纳米颗粒修饰的柔性SERS基底的制备方法,包括以下步骤:
1.首先用移液枪移取3mL的45nm金种子到装有20mL超纯水的圆底烧瓶中,冰浴搅拌10min,再依次加入30uL 1%柠檬酸钠、0.4mL 1%抗坏血酸,持续冰浴搅拌15min,然后加入0.654mL 1%HAuCl4,在冰浴中持续搅拌20min,最后在70℃水浴锅加热30min,制备出120nm的Au NPs胶体;
2.将2mL环己烷滴加到装有Au NPs胶体的烧杯中,以产生有机-水界面。接着,将无水乙醇滴加该烧杯中。在乙醇的诱导下,Au NPs单层膜立即在有机-水界面形成,显示出闪亮的金黄色。待环己烷完全蒸发后,将硅片以小角度(5-10°)浸入纳米颗粒单层膜中并缓慢拉出,从而将纳米颗粒单层膜转移到硅片表面。纳米颗粒薄膜干燥后,重复上述过程,便可获得三维纳米颗粒薄膜结构;图1和2分别是由上述步骤制备的单层金膜的平面电镜图和单层金膜的截面电镜图,可以看出单层金纳米颗粒堆积并不足够紧密,纳米颗粒之间会有较大的间隙,双层颗粒的组装便可有效解决这一问题,使得粒子之间排列紧密;图3则是通过连续的逐层沉积并转移的方式获得紧密堆积的Au纳米颗粒单层膜来制备三维SERS基底的截面电镜图,可以看出通过逐层沉积方法制备的两层金膜,金纳米颗粒之间紧密堆积,使得纳米粒子之间的电磁场增强,从而达到提高基底的SERS活性。
3.将准备好的PDMS膜从一端放置表面并轻压,然后直接剥离,将三维Au纳米颗粒薄膜转移到PDMS的表面。从而制备出两层金纳米粒子改性的柔性SERS基底。
实施例2
以氯菊酯作为测试对象,所得氯菊酯在本发明的Au@PDMS三维柔性SERS基底的拉曼光谱如图4所示。
Claims (7)
1.一种双层金纳米颗粒修饰的柔性SERS基底的制备方法,其特征在于,包括以下步骤:
S1.将金种子加入超纯水中,冰浴搅拌一段时间,再依次加入柠檬酸钠、抗坏血酸,持续冰浴搅拌,然后加入HAuCl4,在冰浴中持续搅拌,最后在水浴锅加热,制备出Au NPs胶体;
S2.将环己烷滴加到装有Au NPs胶体的容器中,以产生有机-水界面,再滴入无水乙醇使有机-水界面形成Au NPs单层膜,待环己烷完全蒸发后,将硅片以小角度浸入纳米颗粒单层膜中并缓慢拉出,使纳米颗粒单层膜转移到硅片表面;纳米颗粒薄膜干燥后,进行重复转移,生成三维纳米颗粒薄膜结构;
S3.将PDMS膜从一端放置表面并轻压,然后直接剥离,将三维Au纳米颗粒薄膜转移到PDMS膜的表面,制备出两层金纳米粒子改性的柔性SERS基底。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤S1包括:用移液枪移取3mL的45nm金种子到装有20mL超纯水的圆底烧瓶中,-5℃冰浴搅拌10min,再依次加入30uL1%柠檬酸钠、0.4mL 1%抗坏血酸,持续冰浴搅拌15min,然后加入0.654mL 1%HAuCl4,在冰浴中持续搅拌20min,最后在70℃水浴锅加热30min,制备出120nm的Au NPs胶体。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤S2包括:将2mL环己烷滴加到装有Au NPs胶体的烧杯中,以产生有机-水界面;接着,将无水乙醇滴加该烧杯中;在乙醇的诱导下,Au NPs单层膜立即在有机-水界面形成,显示出闪亮的金黄色;待环己烷完全蒸发后,将硅片以小角度浸入纳米颗粒单层膜中并缓慢拉出,从而将纳米颗粒单层膜转移到硅片表面;纳米颗粒薄膜干燥后,进行重复转移,生成了三维纳米颗粒薄膜结构。
4.根据权利要求3所述的制备方法,其特征在于,所述硅片浸入角度为5-10°。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤S2之前还包括步骤S2':将AuNPs胶体以8000rpm离心5min,取其沉淀,将浓缩的颗粒再分散适量的超纯水中。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤S3中,制备PDMS膜的固化剂与基础弹性体体积之比为1:13。
7.由上述任一权利要求所述方法制备的一种双层金纳米颗粒修饰的柔性SERS基底。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110324174.3A CN112893865A (zh) | 2021-03-26 | 2021-03-26 | 一种双层金纳米颗粒修饰的柔性sers基底及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110324174.3A CN112893865A (zh) | 2021-03-26 | 2021-03-26 | 一种双层金纳米颗粒修饰的柔性sers基底及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112893865A true CN112893865A (zh) | 2021-06-04 |
Family
ID=76108707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110324174.3A Pending CN112893865A (zh) | 2021-03-26 | 2021-03-26 | 一种双层金纳米颗粒修饰的柔性sers基底及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112893865A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114672858A (zh) * | 2022-04-27 | 2022-06-28 | 安徽大学 | 一种增强拉曼散射活性的纳米金薄膜及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104730062A (zh) * | 2015-04-16 | 2015-06-24 | 苏州大学 | 一种透明柔性表面增强拉曼光谱基底、制备方法及应用 |
CN104749161A (zh) * | 2015-04-16 | 2015-07-01 | 苏州大学 | 检测弱吸附物质的表面增强拉曼光谱基底材料、制备方法及应用 |
CN106645087A (zh) * | 2016-12-22 | 2017-05-10 | 东南大学 | 无需表面修饰的pdms基单层sers基底及其制备方法 |
CN108414492A (zh) * | 2017-12-30 | 2018-08-17 | 厦门稀土材料研究所 | 利用自组装三维纳米结构为基底进行sers定量分析的方法 |
CN109030453A (zh) * | 2018-07-04 | 2018-12-18 | 浙江工业大学 | 一种柔性透明sers基底的制备方法和应用 |
CN109060762A (zh) * | 2018-07-27 | 2018-12-21 | 山东师范大学 | 基于银纳米颗粒的复合柔性表面增强拉曼基底及其制备方法 |
-
2021
- 2021-03-26 CN CN202110324174.3A patent/CN112893865A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104730062A (zh) * | 2015-04-16 | 2015-06-24 | 苏州大学 | 一种透明柔性表面增强拉曼光谱基底、制备方法及应用 |
CN104749161A (zh) * | 2015-04-16 | 2015-07-01 | 苏州大学 | 检测弱吸附物质的表面增强拉曼光谱基底材料、制备方法及应用 |
CN106645087A (zh) * | 2016-12-22 | 2017-05-10 | 东南大学 | 无需表面修饰的pdms基单层sers基底及其制备方法 |
CN108414492A (zh) * | 2017-12-30 | 2018-08-17 | 厦门稀土材料研究所 | 利用自组装三维纳米结构为基底进行sers定量分析的方法 |
CN109030453A (zh) * | 2018-07-04 | 2018-12-18 | 浙江工业大学 | 一种柔性透明sers基底的制备方法和应用 |
CN109060762A (zh) * | 2018-07-27 | 2018-12-21 | 山东师范大学 | 基于银纳米颗粒的复合柔性表面增强拉曼基底及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114672858A (zh) * | 2022-04-27 | 2022-06-28 | 安徽大学 | 一种增强拉曼散射活性的纳米金薄膜及其制备方法 |
CN114672858B (zh) * | 2022-04-27 | 2023-09-19 | 安徽大学 | 一种增强拉曼散射活性的纳米金薄膜及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106373664B (zh) | 一种高性能金属网格透明导电薄膜制备方法及其制品 | |
Wang et al. | Advances in the development of liquid metal-based printed electronic inks | |
US8715536B2 (en) | Conductive material formed using light or thermal energy, method for forming the same and nano-scale composition | |
US20200251401A1 (en) | Methods for reducing thermal resistance of carbon nanotube arrays or sheets | |
KR101142416B1 (ko) | 금속박막의 제조방법 | |
CN107848803A (zh) | 二维混杂复合材料的制备方法 | |
CN109795979B (zh) | 具有内嵌金属环的纳米孔阵列结构的制备方法 | |
CN112893865A (zh) | 一种双层金纳米颗粒修饰的柔性sers基底及其制备方法 | |
CN107610814B (zh) | 一种基于超薄金属网格的透明电极及其制备方法 | |
Nichkalo et al. | Silicon nanostructures produced by modified MacEtch method for antireflective Si surface | |
TW200717622A (en) | Nanodot memory and fabrication method thereof | |
CN110176541A (zh) | 一种基于对流组装沉积法的硫化铅胶体量子点太阳能电池及制备方法 | |
CN110364628A (zh) | 一种混合维度柔性透明电极及其制备方法和应用 | |
CN112279290B (zh) | 一种氧化铜微米球-纳米线微纳分级结构及其制备方法 | |
Gong et al. | Janus particles with tunable coverage of zinc oxide nanowires | |
Baranov et al. | Synthesis and characterization of azidoalkyl-functionalized gold nanoparticles as scaffolds for “click”-chemistry derivatization | |
Nishimura et al. | Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers | |
WO2013039180A1 (ja) | 金属ナノ粒子を用いた呈色膜および呈色方法 | |
Zhang et al. | Fabrication of superhydrophobic coatings by low-temperature sintering of Ag nanoparticle paste | |
Ling et al. | High-adhesion vertically aligned gold nanowire stretchable electrodes via a thin-layer soft nailing strategy | |
TW201238013A (en) | Ceramic substrate and method for fabricating the same | |
KR101079664B1 (ko) | 탄소나노튜브 박막 후처리 공정 | |
CN110010770A (zh) | 一种金双棱锥等离子增强的钙钛矿太阳能电池的制备 | |
Yang et al. | Green fabrication of highly conductive paper electrodes via interface engineering with aminocellulose | |
EP4324029A1 (en) | Direct plasmonic photovoltaic cells with inverted architecture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210604 |