CN112886890A - 一种数据驱动的异步电机动力学模型建模方法 - Google Patents
一种数据驱动的异步电机动力学模型建模方法 Download PDFInfo
- Publication number
- CN112886890A CN112886890A CN202110176141.9A CN202110176141A CN112886890A CN 112886890 A CN112886890 A CN 112886890A CN 202110176141 A CN202110176141 A CN 202110176141A CN 112886890 A CN112886890 A CN 112886890A
- Authority
- CN
- China
- Prior art keywords
- data
- model
- motor
- asynchronous motor
- dynamic model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000005312 nonlinear dynamic Methods 0.000 claims abstract description 6
- 239000013598 vector Substances 0.000 claims description 29
- 239000011159 matrix material Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 238000013528 artificial neural network Methods 0.000 abstract description 6
- 238000012706 support-vector machine Methods 0.000 abstract description 3
- 238000011160 research Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
本发明涉及一种数据驱动的异步电机动力学模型建模方法,使用异步电机的实际运行数据来建立异步电机的动力学模型,并且使用数据驱动型非线性动力学稀疏表征方法来辨识动力学模型中的系数;与传统基于等效电路的异步电机动力学建模方法相比,本发明所建立的异步电机动力学模型不会受到模型误差的影响,且对噪声的鲁棒性更高;另一方面,相较于其他的数据驱动型动力学建模方法,例如神经网络、支持向量机等,本发明所建立的异步电机动力学模型结构更为简洁,且更具有可解释性。
Description
技术领域
本发明涉及电机控制技术领域,特别涉及一种数据驱动的异步电机动力学模型建模方法。
背景技术
电机控制的首要问题就是电机的建模问题,电机的数学模型是电机控制理论研究和电机控制系统产品研发中最为重要的工具。在电机控制领域中,学者和工程师往往会根据应用场景的不同建立两种电机数学模型:一种为稳态模型,或者称之为静态模型;另一种为动力学模型,或者称之为动态模型。稳态模型只考虑电机的稳态过程而不考虑电机的动态过程,这种模型一般为y=f(u)的形式,其中y为输出变量,u为输入变量。稳态模型的建模方法往往较为简单,既可以使用基于机理的电机稳态模型建模方法(例如等效电路方法),也可以使用基于数据的电机稳态模型建模方法(例如神经网络、支持向量机、随机森林等方法),在此不再赘述。相较于稳态模型,电机动力学模型的建立过程往往更加复杂,其原因在于动力学模型不仅要包含电机稳定运行时的稳态信息,同时也要包含电机状态发生变化时的动态信息。在学术界和工业界一般采用基于机理的状态方程形式来描述电机的动力学模型,即dx/dt=Ax+Bu的形式,其中x为电机的状态变量,u为电机的输入变量,A和B分别是x和u的系数矩阵。迄今为止,学者们研究的电机动力学模型的建模方法往往都是基于机理的,称之为模型驱动方法,具体来说,就是在等效电路模型的基础上,使用小信号分析法进行电机动力学模型的建立。而对于数据驱动型的电机动力学模型建模方法的研究,至今仍处于空白状态。究其原因,是因为现阶段对数据驱动型的系统的动力学模型建模方法研究仍不够深入,特别是还不能建立起一种结构简洁,具有可解释性的数据驱动型动力学模型的建模方法。例如,微分神经网络是近两年提出的数据驱动动力学模型建模方法,这种方法可以建立系统的神经网络型动力学模型,然而这种模型结构往往过于复杂,也缺乏可解释性,无法满足电机领域内高实时性、高可靠性和高鲁棒性的要求。
发明内容
本发明技术解决问题:克服现有技术的不足,提供一种数据驱动的异步电机动力学模型建模方法,具有结构简单、易于解释、不受模型误差影响、以及对噪声鲁棒性高等优势。
本发明方法的思路为:本发明一种数据驱动的异步电机动力学模型建模方法为:①在异步电机实际运行过程中,采集电机各个时刻的运行数据,包括:电机的d-q轴电压数据vsd、vsq;电机的d-q轴电流数据isd、isq,电机的转子位置数据θ以及电机的转速数据ωr;②建立的电机动力学模型为dx/dt=ΞΘ(x,u)的形式,其中x为动力学模型的状态向量,u为动力学模型中的输入向量,Θ(x,u)为状态x和输入u组成的字典库,Ξ为稀疏系数矩阵,同时,将vsd、vsq以及ωr作为动力学模型的输入向量u,记为u=[vsd,vsq,ωr],将isd、isq以及θ作为动力学模型的状态x,记为x=[isd,isq,θ];③使用①中采集的数据,利用数据驱动型非线性动力学稀疏表征方法进行②中动力学模型的稀疏系数矩阵Ξ的辨识,从而建立最终的数据驱动异步电机动力学模型,该模型可以作为传统电机模型的替代模型或改进模型,从而指导研究人员进行新的电机控制技术的研究开发。
具体方法分为三个阶段:
①数据采集阶段,此阶段在异步电机实际运行过程中,采集电机各个时刻的运行数据,包括:采集t个时刻的电机d-q轴电压数据,记为[vsd1,vsq1,…,vsdt,vsqt];采集t个时刻的电机d-q轴电流数据,记为[isd1,isq1,…,isdt,isqt],采集t个时刻的电机的转子位置数据[θ1,…,θt]以及电机的转速数据[ωr1,…,ωrt];
②动力学模型建立阶段,此阶段建立的电机动力学模型,结构为dx/dt=ΞΘ(x,u)的形式,其中x为动力学模型的状态向量,u为动力学模型中的输入向量,Θ(x,u)为状态x和输入u组成的字典库,Ξ为稀疏系数矩阵。将vsd、vsq以及ωr作为动力学模型的输入向量u,记为u=[vsd,vsq,ωr],将isd、isq以及θ作为动力学模型的状态x,记为x=[isd,isq,θ];
③稀疏系数矩阵辨识阶段,此阶段使用数据驱动非线性动力学稀疏表征方法来进行稀疏系数矩阵Ξ中数值的辨识。其实施的具体步骤为:
2,建立动力学模型dx/dt=ΞΘ(x,u),其中Ξ是稀疏矩阵,记作Ξ=[ξ1,ξ2,ξ3],其中ξ1,2,3称为稀疏向量,且ξ1,2,3=[0,0,0,…,a,…,0],a表示某个特定数值,注意到每个ξ维度与Θ(x,u)相同,也为23维;
3,使用统计学理论中的LASSO回归来确定稀疏向量的具体形式,计算公式为:
4,将估计完成的ξ1,2,3代入步骤2中的动力学模型,从而获得最终模型,记为:
注意到虽然Θ(x,u)有23个维度,但是由于ξ1,2,3是稀疏的,即ξ1,2,3中的大部分元素都是0,因此最终的结果往往只有4到5维,复杂度大大降低,使得建立的模型具有结构简单,易于解释的特性。
本发明与现有技术相比的优势有:相较于传统的模型驱动型异步电机动力学建模方法,本发明所建立的数据驱动型异步电机动力学模型不会受到模型误差的影响,对实际工况的模拟准确度更高。相较于现有的数据驱动型动力学建模方法,本发明所建立的数据驱动型异步电机动力学模型结构简单,易于解释。
附图说明
图1为本发明一种数据驱动的异步电机动力学模型建模方法;
图2为电机运行数据采集阶段所需环境;
图3为在同一工况下,使用本发明方法建立的异步电机动力学模型和使用传统方法建立的动力学模型之间的比较结果。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
如图1所示,本发明一种数据驱动的异步电机动力学模型建模方法具体步骤如下:
1、电机运行数据采集
电机运行数据采集阶段所需环境如图2所示,被测电机安装在电机对拖台架上,被测电机运行于转速环模式,测功机用于给被测电机提供负载转矩。测功机可以是运行于转矩环模式的电机,也可以是磁粉制动器或是电涡流制动器。
被测电机运行后,使用数据采集器采集电机d-q轴电压数据vsd,vsq,电机d-q轴电流数据isd,isq,电机转子位置数据θ以及电机的转速数据ωr。让电机在不同转速、不同转矩下运行,共1000秒。其中每10毫秒采集一次数据,共计采集100000组数据,记为[[vsd1,vsq1,…,vsdt,vsqt],[isd1,isq1,…,isdt,isqt],[θ1,…,θt],[ωr1,…,ωrt]],其中t=100000。数据采集完毕后,通过数据采集器将数据送入计算机用于算法计算。
2、电机动力学模型建立
此阶段建立的电机动力学模型,结构为dx/dt=ΞΘ(x,u)的形式,其中x=[isd,isq,θ]为动力学模型的状态向量,u=[vsd,vsq,ωr]为动力学模型中的输入向量,Θ(x,u)为状态x和输入u组成的字典库,Ξ为稀疏系数矩阵。
3、稀疏系数矩阵的求解
此阶段使用数据驱动非线性动力学稀疏表征方法来进行稀疏系数矩阵Ξ的数值求解。首先构建字典库其中表示x和u中的所有可能的两两组合情况,具体写作 共23维;再令Ξ=[ξ1,ξ2,ξ3],其中ξ1,2,3称为稀疏向量,且ξ1,2,3=[0,0,0,…,a,…,0],a表示某个特定数值,注意到每个ξ维度与Θ(x,u)相同,也为23维;再对电机运行数据采集阶段中采集的每一组数据使用统计学理论中的LASSO回归算法进行迭代,计算公式为:
使用上述公式,迭代100000次,最后求得ξ1,ξ2,ξ3,并代入dx/dt=ΞΘ(x,u),最终获得异步电机的动力学模型为:
将本发明方法建立的异步电机动力学模型和传统方法建立的动力学模型之间进行比较。传统模型是基于异步电机等效电路的,其具体模型形式为:
其中ψrd为电机转子侧的d轴磁链,ωr为电机的机械转速。Ts=Ls/Rs、Tr=Lr/Rr分别称为异步电机的定、转子时间常数,其中Ls、Lr表示定、转子电感,Rs、Rr分别表示定、转子电阻。定、转子电感又可拆分为Ls=Lm+Lσs及Lr=Lm+Lσr,其中Lm为激磁电感,Lσs、Lσr分别为定、转子漏感,最后,称为漏磁系数。
图3所示为在同一工况下,使用本发明方法建立的异步电机动力学模型和使用传统方法建立的动力学模型之间的比较结果。比较的工况为从电机的电动状态到发电状态的切换到过程中,q轴电流的变化情况。其中实线为电机运行的真实数据;长虚线为使用本发明方法建立的异步电机动力学模型条件下,模拟的q轴电流数据;短虚线为使用传统的异步电机动力学模型条件下,模拟的q轴电流数据。可以发现,使用本发明方法建立的异步电机动力学模型能够更好的描述电机的真实运行状况,而使用传统方法建立的异步电机动力学模型模拟出的数据较真实数据还有一些差别。具体来说,使用传统的异步电机动力学模型对真实情况的模拟准确率为78.4%,而使用本发明方法建立的异步电机动力学模型的模拟准确率为84.8%。这是因为传统的建模方法是基于异步电机的等效电路的,由于异步电机的等效电路是对电机真实模型的一种近似和线性化,这与强耦合、非线性的电机真实模型还有一定的差距。而本发明是基于实际电机运行数据的,可以更精确的描述电机运行的真实情况。
表1所示为本发明的方法与其他数据驱动动力学建模方法的比较结果,比较方法有随机森林、支持向量机、微分神经网络。比较指标有模型复杂度O(n)(n越大表示模型越复杂)、模型阶数(阶数越高,代表模型越复杂)、以及是否是显式模型还是隐式模型(显式模型是指该模型的结构可以表述成解析的形式,即可以写成dx/dt=f(x)+g(u)的形式,而隐式模型是指该模型没有解析的表述形式,而只能用二叉树或是神经网络这种结构来表示)。可以发现,相较于其他的数据驱动动力学建模方法,本发明建立的异步电机动力学模型结构更为简单,并且为显式模型,更加具有可解释性。
表1
Claims (3)
1.一种数据驱动的异步电机动力学模型建模方法,其特征在于:所述方法使用异步电机的实际运行数据来建立异步电机运行时的动力学模型dx/dt=ΞΘ(x,u),其中x为动力学模型的状态向量,u为动力学模型中的输入向量,Θ(x,u)为状态向量x和输入向量u组成的字典库,Ξ为稀疏系数矩阵,同时,使用数据驱动型非线性动力学稀疏表征方法来辨识所建立的动力学模型中的稀疏系数矩阵Ξ,从而得到最终的数据驱动异步电机动力学模型。
2.根据权利要求1所述的一种数据驱动的异步电机动力学模型建模方法,其特征在于,所述使用异步电机的实际运行数据来建立异步电机的动力学模型的步骤如下:
(1)数据采集阶段,此阶段在异步电机实际运行过程中,采集电机各个时刻的运行数据,包括:采集t个时刻的电机d-q轴电压数据,记为[vsd1,vsq1,…,vsdt,vsqt];采集t个时刻的电机d-q轴电流数据,记为[isd1,isq1,…,isdt,isqt],采集t个时刻的电机的转子位置数据[θ1,…,θt],以及电机的转速数据[ωr1,…,ωrt];
(2)动力学模型建立阶段,此阶段建立的电机动力学模型的结构为:dx/dt=ΞΘ(x,u),其中x为动力学模型的状态向量,u为动力学模型中的输入向量,Θ(x,u)为状态x和输入u组成的字典库,Ξ为稀疏系数矩阵;将vsd、vsq及ωr作为动力学模型的输入向量u,记为u=[vsd,vsq,ωr],将isd、isq以及θ作为动力学模型的状态向量x,记为x=[isd,isq,θ]。
3.根据权利要求1所述的一种数据驱动的异步电机动力学模型建模方法,其特征在于,所使用的数据驱动型非线性动力学稀疏表征方法具体步骤为:
(2)建立动力学模型dx/dt=ΞΘ(x,u),其中稀疏系数矩阵Ξ记作Ξ=[ξ1,ξ2,ξ3],其中ξ1,2,3称为稀疏系数向量,且ξ1,2,3=[0,0,0,…,a,…,0],a表示某个特定数值,每个ξ维度与Θ(x,u)相同,也为23维;
(3)使用统计学理论中的LASSO回归来确定稀疏系数向量中的具体数值,具体计算公式为:
(4)将估计完成的ξ1,2,3代入动力学模型,获得最终模型,记为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110176141.9A CN112886890B (zh) | 2021-02-07 | 2021-02-07 | 一种数据驱动的异步电机动力学模型建模方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110176141.9A CN112886890B (zh) | 2021-02-07 | 2021-02-07 | 一种数据驱动的异步电机动力学模型建模方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112886890A true CN112886890A (zh) | 2021-06-01 |
CN112886890B CN112886890B (zh) | 2022-11-11 |
Family
ID=76056254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110176141.9A Active CN112886890B (zh) | 2021-02-07 | 2021-02-07 | 一种数据驱动的异步电机动力学模型建模方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112886890B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116822089A (zh) * | 2023-07-07 | 2023-09-29 | 深圳希哈科技有限公司 | 一种基于数据驱动的电动机内部扰动分析及建模方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130191104A1 (en) * | 2012-01-19 | 2013-07-25 | Vladimir Ceperic | System, method and computer program product for modeling electronic circuits |
CN104462019A (zh) * | 2014-12-18 | 2015-03-25 | 江西理工大学 | 一种稀疏表示下支持向量机核函数选择方法及其应用 |
CN105353306A (zh) * | 2015-11-24 | 2016-02-24 | 珠海格力电器股份有限公司 | 电机故障诊断方法和装置及电器 |
CN107861061A (zh) * | 2017-10-27 | 2018-03-30 | 安徽大学 | 一种数据驱动的感应电机参数在线辨识方法 |
DE102018110380A1 (de) * | 2017-04-28 | 2018-10-31 | Intel Corporation | Tool zum Ermöglichen der Effizienz beim Maschinenlernen |
CN109167546A (zh) * | 2018-09-25 | 2019-01-08 | 安徽大学 | 一种基于数据生成模型的异步电机参数在线辨识方法 |
CN110096730A (zh) * | 2019-03-15 | 2019-08-06 | 国网辽宁省电力有限公司 | 一种电网电压快速评估方法及系统 |
-
2021
- 2021-02-07 CN CN202110176141.9A patent/CN112886890B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130191104A1 (en) * | 2012-01-19 | 2013-07-25 | Vladimir Ceperic | System, method and computer program product for modeling electronic circuits |
CN104462019A (zh) * | 2014-12-18 | 2015-03-25 | 江西理工大学 | 一种稀疏表示下支持向量机核函数选择方法及其应用 |
CN105353306A (zh) * | 2015-11-24 | 2016-02-24 | 珠海格力电器股份有限公司 | 电机故障诊断方法和装置及电器 |
DE102018110380A1 (de) * | 2017-04-28 | 2018-10-31 | Intel Corporation | Tool zum Ermöglichen der Effizienz beim Maschinenlernen |
CN107861061A (zh) * | 2017-10-27 | 2018-03-30 | 安徽大学 | 一种数据驱动的感应电机参数在线辨识方法 |
CN109167546A (zh) * | 2018-09-25 | 2019-01-08 | 安徽大学 | 一种基于数据生成模型的异步电机参数在线辨识方法 |
CN110096730A (zh) * | 2019-03-15 | 2019-08-06 | 国网辽宁省电力有限公司 | 一种电网电压快速评估方法及系统 |
Non-Patent Citations (2)
Title |
---|
J. WANG ET AL.: "Wind turbine bearing fault diagnosis based on sparse representation of condition monitoring signals", 《2017 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE)》 * |
张周磊等: "基于深度学习的永磁同步电机故障诊断方法", 《计算机应用与软件》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116822089A (zh) * | 2023-07-07 | 2023-09-29 | 深圳希哈科技有限公司 | 一种基于数据驱动的电动机内部扰动分析及建模方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112886890B (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112926728B (zh) | 一种永磁同步电机小样本匝间短路故障诊断方法 | |
CN111505500B (zh) | 一种工业领域基于滤波的电机智能故障检测方法 | |
CN117269754B (zh) | 基于卷积神经网络术的ipmsm转子退磁和偏心故障诊断方法 | |
CN112886890B (zh) | 一种数据驱动的异步电机动力学模型建模方法 | |
CN110276139A (zh) | 一种基于深度确信策略梯度算法的感应电机关键参数获取方法 | |
CN111814408B (zh) | 一种基于条件变分自编码器的电机数据生成模型建模方法 | |
Ding et al. | An elastic expandable fault diagnosis method of three-phase motors using continual learning for class-added sample accumulations | |
CN107861061A (zh) | 一种数据驱动的感应电机参数在线辨识方法 | |
CN113283063B (zh) | 摩擦力识别方法、模组、设备及计算机可读介质 | |
CN113780151B (zh) | 一种双线性特征融合的轴承故障诊断方法及系统 | |
CN114547963A (zh) | 一种基于数据驱动的轮胎建模方法和介质 | |
CN115114964B (zh) | 一种基于数据驱动的传感器间歇性故障诊断方法 | |
Delgado-Prieto et al. | Novelty detection based condition monitoring scheme applied to electromechanical systems | |
CN116432117A (zh) | 一种基于多源信息融合的电机故障分类方法及装置 | |
CN116224062A (zh) | 一种基于卷积神经网络的伺服电机故障诊断方法 | |
CN112965461B (zh) | 一种基于最小保守性区间滤波的电机系统故障估计方法 | |
CN111510041B (zh) | 一种永磁同步电机的运行状态评估方法及系统 | |
JP2024524676A (ja) | 適応型交流サーボモーター電流制御方法及びシステム | |
CN111061153A (zh) | 一种电动汽车飞轮电池磁轴承系统多模型位移鲁棒控制器 | |
CN118381406B (zh) | 一种永磁同步电机矢量解耦控制方法及相关设备 | |
CN114355186B (zh) | 异步电机系统转子断条及速度传感器故障的诊断方法 | |
CN110504876B (zh) | 一种三相直流无刷电机的仿真模拟方法、装置及其应用 | |
CN113824379B (zh) | 永磁同步电机的单位电流最大转矩角测试方法及装置 | |
Jin et al. | Application of genetic algorithms in parameters identification of asynchronous motor | |
CN116305642B (zh) | 永磁同步电机公差敏感度的分析方法及其装置及计算机可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |