CN112885722A - 基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法 - Google Patents

基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法 Download PDF

Info

Publication number
CN112885722A
CN112885722A CN202110027507.6A CN202110027507A CN112885722A CN 112885722 A CN112885722 A CN 112885722A CN 202110027507 A CN202110027507 A CN 202110027507A CN 112885722 A CN112885722 A CN 112885722A
Authority
CN
China
Prior art keywords
micro
metal layer
electrolyte
preparation
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110027507.6A
Other languages
English (en)
Inventor
朱国栋
王丛欢
陶鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange River Microsystem Technology Shanghai Co ltd
Fudan University
Original Assignee
Orange River Microsystem Technology Shanghai Co ltd
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange River Microsystem Technology Shanghai Co ltd, Fudan University filed Critical Orange River Microsystem Technology Shanghai Co ltd
Priority to CN202110027507.6A priority Critical patent/CN112885722A/zh
Publication of CN112885722A publication Critical patent/CN112885722A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于电子器件制备领域,具体为一种基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法。本发明方法结合电化学原理及微区自限域加工技术,具体利用装有电解液的微管在基底的特定区域形成一个弯液面,通过在电解液和基底导电金属层间施加电压并使针管相对基底按规划好的路径和速度移动来制备图案化的电极。本发明通过高效灵活地控制金属材料的微区电化学刻蚀,有效解决了现有掩模电极制造工艺(如光刻和真空蒸镀)中工艺复杂、成本高或分辨率低的问题,对实验室研究与工业生产具有重要意义。

Description

基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法
技术领域
本发明属于电子器件制备领域,具体涉及一种晶体管沟道及源漏电极制备方法。
背景技术
金属电极微图案是场效应晶体管等电子器件的重要组成部分,其中晶体管源极和漏极之间的沟道形状和尺寸控制是制备技术的关键。光刻工艺是目前最常用的电极制备技术,但它需定制多种掩模版以实现不同电极图案的制造,存在操作复杂、仪器昂贵等局限性。常用于实验室电极图案制备的真空沉积同样需使用掩模版,且一般分辨率较低,难以满足精度要求。此外,由于有机半导体的高敏感性,有机场效应晶体管沟道制备工艺需尽可能减小对有机半导体的负面影响,这使得许多工艺难以与该类器件兼容。因此,开发简便高效的无掩模微电极制备方法以作为对传统电极制备工艺的补充,对实验室研究与工业生产都具有重要意义。
发明内容
本发明的目的在于提供一种基于微区电化学刻蚀的晶体管沟道及源漏电极制备方法,以有效解决现有掩模电极制造中工艺复杂、成本高或分辨率低的问题。
本发明提供的基于微区电化学刻蚀的晶体管沟道及源漏电极制备方法,结合电化学原理及微区自限域加工技术,实现金属电极微纳尺度图案加工。本发明所建立的系统结构如图1所示,包括中空微管、电解液、电流表、电压源、光学显微镜、待加工试样(沉积在衬底上的金属层)、固定支架、电脑、手动调节台、电控位移台及位移控制器等部件,其中光学显微镜、电流表可选配。根据加工图案要求,电控位移台至少为平面一维或二维平移台,优选包含垂直Z方向的电控位移台,以便精确控制微管和试样表面间距。
本发明提供的基于微区电化学刻蚀的晶体管沟道及源漏电极制备方法,可以应用于不同晶体管结构,包括但不限于底栅底接触、底栅顶接触、顶栅底接触、顶栅顶接触等结构,半导体材料可为各类有机、无机半导体材料。根据所制备晶体管结构的不同,具体加工流程略有不同。下面以底栅顶接触结构晶体管沟道及源漏电极的制备为例,介绍本发明制备方法,工艺流程如图2所示。具体步骤如下:
(1)在衬底上沉积底栅金属层;
(2)在步骤(1)所述金属层上依次制备电介质层和半导体层;
(3)在步骤(2)所述半导体层上沉积金属层;
(4)将电解液装载入中空微管内,所选用电解液应能电化学刻蚀步骤(3)中所制备的金属层;
(5)经由手动调节台和/或电动Z向调节台,使微管靠近待加工金属层;靠近后,在毛细力作用下会在微管尖端和金属层之间形成弯液面,如图1b所示;
(6)在微管内电解液和待加工金属层之间施加以直流偏压或脉冲电压,为了保证电化学刻蚀的进行,待加工金属层应处于相对正电位;在正电位作用下,弯液面所覆盖的金属层将被电化学刻蚀掉;
(7)根据预设图案,控制弯液面在水平面内相对金属层位移,经由偏压、运动速度、电解液浓度等参数优化,即可在金属层上加工出特定形状的金属图案,完成沟道和源漏电极的制备。
其它结构晶体管沟道及源漏电极的加工可在此加工流程上加以微调即可实现,这里不做赘述。
本发明中,由于弯液面的自限域作用,电化学刻蚀仅在弯液面微区内进行,从而可实现较高的加工精度。加工精度由偏压大小、运动速度、电解液浓度、微管尖端直径等参数确定,微管尖端直径对打印精度有最大的影响。
本发明中,微管可为各类中空的能容纳电解液的管状物,可采用各种可行的加工工艺进一步减小微管直径。如对于玻璃材质的毛细管,可经由加热拉伸的工艺调节微管尖端直径。一般微管尖端直径在0.1微米至几百微米之间,对应所加工晶体管沟道的长度(对应于加工精度)可在亚微米至几百微米可调。
本发明中,运动速度应在加工过程中优化。运动速度过快,导致微区金属刻蚀不完全,无法形成有效沟道;运动速度过慢则会导致沟道长度展宽。通常运动速度在0.1微米/秒至100微米/秒范围内调节。
本发明中,偏压值也应在加工过程中优化。过大的偏压容易导致电解液中的水分解,产生的气体导致弯液面不稳定,影响加工效果;过小的偏压则影响加工效率,甚至导致金属层无法有效刻蚀。通常偏压值在0V至20V之间结合工作条件调节。
本发明中,根据所要加工图案的精度合理配置电控位移台。如加工精度10微米以上,则可考虑采用精密马达类的电控位移台;如要求几微米甚至更精细的加工精度,则可采用更高位移精度的压电类电控位移台。
本发明中,所适用的金属层包括各类可采用电化学加工的金属材料,包括但不限于铜、铂、镍、铑、锌等。
本发明中,晶体管结构可以制备于各种柔性和刚性基底,例如柔性聚酰亚胺衬底、刚性玻璃基底或SiO2/Si基底等。
本发明中,所述半导体层包括硅半导体,氧化物半导体,有机半导体,二维半导体等。制备工艺根据所用材料调整,有机半导体和氧化物半导体可采用溶液相关及真空相关工艺制备;二维半导体可采用机械剥离及分子束外延、化学气相沉积等工艺制备。
本发明通过高效灵活地控制金属材料的微区电化学刻蚀,有效解决了现有掩模电极制造工艺(如光刻和真空蒸镀)中工艺复杂、成本高或分辨率低的问题,对实验室研究与工业生产具有重要意义。
附图说明
图1为本发明所涉及的系统结构图。其中,图a微管远离试样表面;图b为微管靠试样表面,并在试样表面和微管尖端间建立起弯液面。
图2为本发明所述的基于微区电化学刻蚀工艺制备底栅顶接触晶体管沟道及源漏电极的流程图。其中,由a至e分别为:(a)制备底栅电极;(b)制备介质层;(c)制备半导体层;(d)制备金属层;(e) 基于微区电化学刻蚀的晶体管沟道及源漏电极制备。
图3为实施例1中所制备的插指电极局部的扫描电子显微镜图。
图4为实施例2中所制备有机晶体管器件的转移特性曲线。
具体实施方式
为了使本发明的目的、技术方案和优点更加清晰明白,以下结合具体实施例来详细说明本发明,但该实施例只是本发明的一部分,并不作为对本发明的限定。
实施例1
本实例以在SiO2/Si基板上制备插指电极为例,对本发明所述的基于微区电化学刻蚀的晶体管沟道及源漏电极制备方法进行解释说明。所用微管为经由加热拉伸处理的玻璃毛细管,毛细管尖端管径15微米。0.5M的CuSO4作为电解液,在电解液中插入一根铜线接地。SiO2/Si基板上采用真空热蒸发工艺沉积一层85纳米厚的铜层,铜层施加偏压2V。在制备好的微管中填充0.5M的CuSO4。将玻璃微管固定在基板上方,利用电动平移台控制基板向上运动,直至观察到电解液在玻璃微管的喷嘴和基板之间形成一个液体弯月面并监测到离子电流,使平移台在水平方向上沿设定的插指电极图案进行10μm/s的匀速运动。
本实施例刻蚀的铜插指沟道的扫描电子显微图如图3所示。
实施例2
本实例以在柔性聚酰亚胺基板上制备底栅顶接触结构晶体管为例上,对本发明所述的基于微区电化学刻蚀的晶体管沟道及源漏电极制备方法进行解释说明,具体步骤如下:
步骤一:在清洗过的聚酰亚胺基板上真空沉积制备宽度为1mm,厚度为50nm的铝底栅电极;
步骤二:使用旋涂法在步骤一所述的铝电极上制备PVDF-TrFE-CTFE电介质层,并在130℃下退火3h;
步骤三:采用旋涂法在步骤二所述的电介质层上制备机半导体DPP-DTT,并在130℃下退火3h;
步骤四:在步骤三所述的有机半导体层上真空沉积制备宽度为0.78mm,厚度为85nm的铜条纹;
步骤五:使用本发明的微区电化学刻蚀技术,在步骤一所述的铜条纹上制备插指电极,沟道有效长度为15μm,宽度为2.9mm,具体操作流程与实施例1中相同。
所制备有机晶体管器件的转移特性曲线如图4所示,器件开关比为3.4×103

Claims (8)

1.一种基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法,其特征在于,结合电化学原理及微区自限域加工技术,实现金属电极微纳尺度图案加工;使用的制备系统包括中空微管、电解液、电流表、电压源、光学显微镜、待加工试样、固定支架、电脑、手动调节台、电控位移台及位移控制器部件,根据加工图案要求,电控位移台至少为平面一维或二维平移台,优选包含垂直Z方向的电控位移台,以便精确控制微管和试样表面间距;
所述晶体管结构包括底栅底接触、底栅顶接触、顶栅底接触、顶栅顶接触,半导体材料为各类有机、无机半导体材料;
对于底栅顶接触结构晶体管沟道及源漏电极的制备,具体步骤如下:
(1)在衬底上沉积底栅金属层;
(2)在步骤(1)所述金属层上依次制备电介质层和半导体层;
(3)在步骤(2)所述半导体层上沉积金属层;
(4)将电解液装载入中空微管内,所选用电解液应能电化学刻蚀步骤(3)中所制备的金属层;
(5)由手动调节台和/或电动Z向调节台,使微管靠近待加工金属层;靠近后,在毛细力作用下会在微管尖端和金属层之间形成弯液面;
(6)在微管内电解液和待加工金属层之间施加以直流偏压或脉冲电压,为了保证电化学刻蚀的进行,待加工金属层应处于相对正电位;在正电位作用下,弯液面所覆盖的金属层被电化学刻蚀掉;
(7)根据预设图案,控制弯液面在水平面内相对金属层位移,经由偏压、运动速度、电解液浓度参数优化,即在金属层上加工出特定形状的金属图案,完成沟道和源漏电极的制备。
2.根据权利要求1所述的制备方法,其特征在于,所述微管为各类中空的能容纳电解液的管状物,微管尖端直径在0.1微米至几百微米之间,对应所加工晶体管沟道的长度在亚微米至几百微米之间,可调。
3.根据权利要求1所述的制备方法,其特征在于,调节台运动速度控制在0.1微米/秒至100微米/秒范围内。
4.根据权利要求1所述的制备方法,其特征在于,控制偏压值在0V至20V之间,结合工作条件调节。
5.根据权利要求1所述的制备方法,其特征在于,根据所要加工图案的精度合理配置电控位移台;对于加工精度10微米以上,则采用精密马达类的电控位移台;对于加工精度要求几微米甚至更精细的,则采用更高位移精度的压电类电控位移台。
6.根据权利要求1所述的制备方法,其特征在于,所用的金属层材料为铜、铂、镍、铑或锌。
7.根据权利要求1所述的制备方法,其特征在于,晶体管结构制备于各种柔性和刚性基底,包括柔性聚酰亚胺衬底、刚性玻璃基底或SiO2/Si基底。
8.根据权利要求1所述的制备方法,其特征在于,所述半导体层材料选自:硅半导体,氧化物半导体,有机半导体,二维半导体。
CN202110027507.6A 2021-01-10 2021-01-10 基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法 Pending CN112885722A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110027507.6A CN112885722A (zh) 2021-01-10 2021-01-10 基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110027507.6A CN112885722A (zh) 2021-01-10 2021-01-10 基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法

Publications (1)

Publication Number Publication Date
CN112885722A true CN112885722A (zh) 2021-06-01

Family

ID=76047542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110027507.6A Pending CN112885722A (zh) 2021-01-10 2021-01-10 基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法

Country Status (1)

Country Link
CN (1) CN112885722A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203954A (zh) * 2021-11-30 2022-03-18 华中科技大学 一种锂电池波纹式沟道结构正极极片及其制备方法和应用
CN115876994A (zh) * 2022-11-18 2023-03-31 北京大学 Dpp-dtt晶体管生物传感器及制造方法和检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850687A (zh) * 2006-05-18 2006-10-25 复旦大学 一种在玻璃基质上进行金属定位沉积的方法
CN105817723A (zh) * 2016-05-31 2016-08-03 南京工业职业技术学院 一种双液膜电化学刻蚀制备纳米工具电极的方法及装置
CN110565130A (zh) * 2019-09-11 2019-12-13 张家港博发纳米材料科技有限公司 一种激光增强三维微区电沉积方法及其对应的装置
CN110835090A (zh) * 2019-11-19 2020-02-25 中国工程物理研究院电子工程研究所 基于选择性刻蚀的无光刻制备导电薄膜图形的装置及方法
CN110980632A (zh) * 2019-11-18 2020-04-10 贺晶莹 一种纳米级薄膜图案电化学刻蚀加工系统及其加工方法
CN111663121A (zh) * 2020-05-15 2020-09-15 复旦大学 一种基于化学镀工艺的金属微纳三维打印装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850687A (zh) * 2006-05-18 2006-10-25 复旦大学 一种在玻璃基质上进行金属定位沉积的方法
CN105817723A (zh) * 2016-05-31 2016-08-03 南京工业职业技术学院 一种双液膜电化学刻蚀制备纳米工具电极的方法及装置
CN110565130A (zh) * 2019-09-11 2019-12-13 张家港博发纳米材料科技有限公司 一种激光增强三维微区电沉积方法及其对应的装置
CN110980632A (zh) * 2019-11-18 2020-04-10 贺晶莹 一种纳米级薄膜图案电化学刻蚀加工系统及其加工方法
CN110835090A (zh) * 2019-11-19 2020-02-25 中国工程物理研究院电子工程研究所 基于选择性刻蚀的无光刻制备导电薄膜图形的装置及方法
CN111663121A (zh) * 2020-05-15 2020-09-15 复旦大学 一种基于化学镀工艺的金属微纳三维打印装置和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203954A (zh) * 2021-11-30 2022-03-18 华中科技大学 一种锂电池波纹式沟道结构正极极片及其制备方法和应用
CN114203954B (zh) * 2021-11-30 2024-02-02 华中科技大学 一种锂电池波纹式沟道结构正极极片及其制备方法和应用
CN115876994A (zh) * 2022-11-18 2023-03-31 北京大学 Dpp-dtt晶体管生物传感器及制造方法和检测方法

Similar Documents

Publication Publication Date Title
US7528004B2 (en) Method for mounting anisotropically-shaped members
EP1243915B1 (en) Apparatus for evaluating electrical characteristics
CN112885722A (zh) 基于微区电化学刻蚀的晶体管沟道及源漏电极的制备方法
Hüsser et al. High‐resolution deposition and etching of metals with a scanning electrochemical microscope
CN1558868A (zh) 纳米夹具及其制造方法
CN110565130A (zh) 一种激光增强三维微区电沉积方法及其对应的装置
US8399334B2 (en) Method of manufacturing nano device by arbitrarily printing nanowire devices thereon and intermediate building block useful for the method
CN105810615A (zh) 通过晶振实现对刻蚀样品原位刻蚀监控的方法及系统
KR20220014297A (ko) 액체금속 기반 전극 제조방법
US7462864B2 (en) Thin film transistor and manufacturing method thereof, and liquid crystal display device having thin film transistor and manufacturing method thereof
CN110335943B (zh) 一种双栅有机薄膜晶体管及其制备方法
KR100822992B1 (ko) 나노선 전계효과 트랜지스터 및 그 제조 방법
CN102891083B (zh) 一种制备室温单电子晶体管的方法
KR101486956B1 (ko) 정렬된 산화물 반도체 나노와이어를 포함하는 전계효과 트랜지스터 어레이 및 그의 제조방법
KR100905405B1 (ko) 나노와이어의 물성측정장치 및 물성측정방법
KR101473693B1 (ko) 정렬된 구리산화물 반도체 나노와이어를 포함하는 전계효과 트랜지스터 어레이 및 그의 제조방법
US7867916B2 (en) Horizontal coffee-stain method using control structure to pattern self-organized line structures
CN111403290B (zh) 一种激光冲击减小场效应晶体管沟道长度的方法
Dong et al. Robotic prototyping of paper-based field-effect transistors with rolled-up semiconductor microtubes
KR101535725B1 (ko) 정렬된 구리 나노선을 이용한 대면적의 구리 나노선 전극 어레이의 제조방법
CN113140613B (zh) 一种二维电子气材料纳米沟道及其制备方法
CN116143064A (zh) 一种集成化的片上裂结系统及其测量方法
CN109946340B (zh) 一种二维层状材料样品电学测试微电极的制备方法
KR100522140B1 (ko) 병렬 프로브로 리소그래피하는 방법
CN101462693A (zh) 一种原位构建微纳器件的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210601