CN112882124A - 一种三维铀成矿有利部位的圈定方法 - Google Patents

一种三维铀成矿有利部位的圈定方法 Download PDF

Info

Publication number
CN112882124A
CN112882124A CN202110041965.5A CN202110041965A CN112882124A CN 112882124 A CN112882124 A CN 112882124A CN 202110041965 A CN202110041965 A CN 202110041965A CN 112882124 A CN112882124 A CN 112882124A
Authority
CN
China
Prior art keywords
dimensional
value
soil radon
data
uranium mineralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110041965.5A
Other languages
English (en)
Other versions
CN112882124B (zh
Inventor
赵丹
段书新
杨龙泉
吴儒杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Institute of Uranium Geology
Original Assignee
Beijing Research Institute of Uranium Geology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Institute of Uranium Geology filed Critical Beijing Research Institute of Uranium Geology
Priority to CN202110041965.5A priority Critical patent/CN112882124B/zh
Publication of CN112882124A publication Critical patent/CN112882124A/zh
Application granted granted Critical
Publication of CN112882124B publication Critical patent/CN112882124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及一种三维铀成矿有利部位的圈定方法,包括以下步骤:获取土壤氡气浓度值;对土壤氡气浓度值进行处理,获取土壤氡气浓度值异常范围和土壤氡气浓度衬值异常范围;根据土壤氡气浓度值异常范围和土壤氡气浓度衬值异常范围,获取地表平面铀成矿有利范围;在地表平面铀成矿有利范围内,开展三维广域电磁测量工作,获取三维广域电磁测量数据;根据三维广域电磁测量数据,计算视电阻率;对视电阻率数据进行三维反演,得到三维电阻率数据分布体;根据三维电阻率数据分布体,获取三维电阻率分布特征;根据三维电阻率分布特征和铀成矿地质特征,圈定三维铀成矿有利部位。通过该方法能够快速、准确地圈定沉积成岩型砂岩型铀矿三维铀成矿有利部位。

Description

一种三维铀成矿有利部位的圈定方法
技术领域
本发明涉及铀矿勘探技术领域,特别是涉及一种三维铀成矿有利部位的圈定方法。
背景技术
在沉积成岩型砂岩型铀矿勘查中,以往通过放射性测量方法,可粗略圈定地表平面上铀成矿有利范围,但难以较为准确地圈定三维铀成矿有利部位,使得该区域的铀矿勘查钻探见矿率较低,导致勘查成本较高,使得沉积成岩型砂岩型铀矿勘查的经济性差,严重制约了对沉积成岩型砂岩型铀矿勘查的力度。
因此,为准确、经济的圈定沉积成岩型砂岩型铀矿三维铀成矿有利部位,锁定铀矿体赋存的三维空间位置,为钻探目标提供较为准确的空间坐标,采取的关键的物化探方法和相应的数据处理技术是本领域技术人员亟需解决的关键问题。
发明内容
本发明的目的是提供一种三维铀成矿有利部位的圈定方法,能够解决现有技术难以准确地圈定沉积成岩型砂岩型铀矿三维铀成矿有利部位的问题。
为实现上述目的,本发明提供了如下方案:
一种三维铀成矿有利部位的圈定方法,包括以下步骤:
获取土壤氡气浓度值;
对所述土壤氡气浓度值进行处理,获取土壤氡气浓度值异常范围和土壤氡气浓度衬值异常范围;
根据所述土壤氡气浓度值异常范围和所述土壤氡气浓度衬值异常范围,获取地表平面铀成矿有利范围;
在所述地表平面铀成矿有利范围内,开展三维广域电磁测量工作,获取三维广域电磁测量数据;
根据所述三维广域电磁测量数据,计算视电阻率;
对所述视电阻率数据进行三维反演,得到三维电阻率数据分布体;
根据所述三维电阻率数据分布体,获取三维电阻率分布特征;
根据所述三维电阻率分布特征和铀成矿地质特征,圈定三维铀成矿有利部位。
可选的,所述获取土壤氡气浓度值具体包括:
在铀矿勘查区范围内,开展抽气式瞬时土壤氡气测量工作,获取各测点处的土壤氡气浓度值。
可选的,获取土壤氡气浓度值异常范围具体包括:
采用“径向基函数插值方法”对所述土壤氡气浓度值进行插值,得到网格化插值后的土壤氡气浓度值;
利用下式(1)计算出土壤氡气浓度异常下限值:
Figure BDA0002896244100000021
式中,
Imn(RnO)表示网格化插值后的土壤氡气浓度值在(m,n)点处的土壤氡气浓度值;
MI(RnO)表示所有Imn(RnO)的平均值;
δI(RnO)表示所有Imn(RnO)的标准偏差;
AT(RnO)表示土壤氡气浓度异常下限值;
i表示测线的数目;
j表示每条测线上的测点数目;
m为整数,取值为1,2,3,……,i;
n为整数,取值为1,2,3,……,j;
采用“范克里金插值方法”对所述土壤氡气浓度值进行插值计算得到第一网格化数据;
采用“矩形窗口滑动平均法”对所述第一网格化数据进行滤波;
将大于或等于土壤氡气浓度异常下限值的数据范围,定义为土壤氡气浓度值异常范围。
可选的,获取土壤氡气浓度衬值异常范围具体包括:
采用“距离反权重插值方法”对所述土壤氡气浓度值进行插值计算得到第二网格化数据;
对所述第二网格化数据采用“矩形窗口滑动法”计算土壤氡气浓度衬值,所述土壤氡气浓度衬值的计算公式如下:
Figure BDA0002896244100000031
式中,
D(RnC)表示土壤氡气浓度衬值;
DIDW-W(RnO)表示经网格化插值后,矩形窗口中心点处的土壤氡气浓度值;
MIDW-W(RnO)表示经网格化插值后,矩形窗口范围内所有测点的土壤氡气浓度的平均值;
利用下式(3)计算出土壤氡气浓度衬值异常下限值:
Figure BDA0002896244100000032
式中,
Dmn(RnC)表示土壤氡气浓度衬值在(m,n)点处的土壤氡气浓度衬值;
MD(RnC)表示所有Dmn(RnC)的平均值;
δD(RnC)表示所有Dmn(RnC)的标准偏差;
AT(RnC)表示土壤氡气浓度衬值异常下限值;
i表示测线的数目;
j表示每条测线上的测点数目;
m为整数,取值为1,2,3,……,i;
n为整数,取值为1,2,3,……,j;
采用“范克里金插值方法”对所述土壤氡气浓度衬值进行插值计算得到第三网格化数据;
采用“矩形窗口滑动平均法”对所述第三网格化数据进行滤波;
将大于或等于土壤氡气浓度衬值异常下限值的数据范围,定义为土壤氡气浓度衬值异常范围。
可选的,根据所述土壤氡气浓度值异常范围和所述土壤氡气浓度衬值异常范围,获取地表平面铀成矿有利范围具体包括:
将所述土壤氡气浓度值异常范围与所述土壤氡气浓度衬值异常范围重叠的区域圈定为地表平面铀成矿有利范围。
可选的,在所述地表平面铀成矿有利范围内,开展三维广域电磁测量工作,获取三维广域电磁测量数据具体包括:
通过铜棒电极采集测点上不同频率的电场数据;
设置接收端频率组合;明确目标体最大埋深d和测区平均电阻率
Figure BDA0002896244100000041
根据频率域电磁测深法勘探深度估算公式
Figure BDA0002896244100000042
计算得到最低频率f;选择比最低频率f再低1~3个频点的频率为采样最低频率F;选择包含所述采样最低频率F至最高发射频率的所有频组,作为接收端频率组合;
采用铝板作为接地供电极,布设发射偶极子;发射偶极子与测线方位平行,发射偶极子与测线距离为3~5倍的勘探深度,两个发射偶极子距离为1.5~2km;
选择JSDY-180广域电磁系统,按照设置的接收端频率组合逐组进行发射;发射过程中,发射电流不得高于100A,发射电压不得超过1000V;
在所述广域电磁系统进行发射的同时,在接收端频率组合逐组地记录对应的电场信息。
可选的,根据所述三维广域电磁测量数据,计算视电阻率具体包括:
在获取三维广域电磁测量数据基础上,将发射点和采样点坐标,采样点的电场文件和与之对应的电流文件输入《JSGY-2广域电磁仪接收机数据处理软件》中;
所述《JSGY-2广域电磁仪接收机数据处理软件》自动计算出各采样点的视电阻率。
可选的,对所述视电阻率数据进行三维反演,得到三维电阻率数据分布体具体包括:
采用MTpioneer软件,删除或平移所述视电阻率数据中不连续的频点和频段,得到处理后的视电阻率数据;
对所述处理后的视电阻率数据进行一维自适应正则化反演,得到一维自适应正则化反演数据;
对所述一维自适应正则化反演数据进行三维非线性共轭梯度反演,得到三维电阻率数据分布体。
可选的,根据所述三维电阻率数据分布体,获取三维电阻率分布特征具体包括:
对所述三维电阻率数据分布体,采用Surfer软件进行插值,获取三维电阻率分布特征。
可选的,根据所述三维电阻率分布特征和铀成矿地质特征,圈定三维铀成矿有利部位具体包括:
根据所述三维电阻率分布特征,按照沉积岩地区砂岩电阻率高、泥岩电阻率低的基本原则,结合勘查区地质概况,划分砂岩层和泥岩层;
根据划分的砂岩层、泥岩层的展布特征,结合勘查区铀成矿地质特征,对以泥岩层为主要含矿目的层的铀成矿区域,将埋深在500米以浅的泥岩层三维空间标记为三维铀成矿有利部位;对以砂岩层为主要含矿目的层的铀成矿区域,将埋深在1000米以浅的砂岩层三维空间标记为三维铀成矿有利部位。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
1)本发明提供的一种三维铀成矿有利部位的圈定方法,能够快速、准确地圈定沉积成岩型砂岩型铀矿三维铀成矿有利部位,解决了沉积成岩型砂岩型铀矿三维铀成矿有利部位难以圈定的难题,切实保障了砂岩型铀矿深部勘查的技术可行性。
2)本发明提供的一种三维铀成矿有利部位的圈定方法,为砂岩型铀矿深部勘查的钻孔布设提供了可靠依据,能够大量节约用于深部钻探前期勘查所需的人力、物力和财力。
3)本发明提供的一种三维铀成矿有利部位的圈定方法,有效提升了深部砂岩型铀矿勘查的经济性,为我国深部砂岩型铀矿勘查提供了经济可行的技术手段,从而有效地助力于我国军用和民用铀资源保障。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的一种三维铀成矿有利部位的圈定方法的工作流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种三维铀成矿有利部位的圈定方法,通过该方法可以准确、经济地圈定沉积成岩型砂岩型铀矿三维铀成矿有利部位,锁定铀矿体赋存的三维空间位置,为钻探目标提供较为准确的空间坐标。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1:
请参阅图1,本发明提供了一种三维铀成矿有利部位的圈定方法,包括以下步骤:
S1:获取土壤氡气浓度值;
具体的,在铀矿勘查区范围内,开展测网为20米×20米大小至50米×50米网度的抽气式瞬时土壤氡气测量工作,取气深度为0.7米-1.2米,获取各测点处的土壤氡气浓度值。
需要说明的是,在本实施例中,测网的网度为20米×20米,取气深度为1米。通过该测网的网度和取气的深度可以准确的得到土壤氡气浓度值。
S2:对所述土壤氡气浓度值进行处理,获取土壤氡气浓度值异常范围和土壤氡气浓度衬值异常范围;
S21:获取土壤氡气浓度值异常范围具体包括:
S211:计算网格化插值后的土壤氡气浓度值;
采用“径向基函数插值方法”对所述土壤氡气浓度值进行插值,然后以测网为20米×20米大小至50米×50米的网度进行数据采样,得到网格化插值后的土壤氡气浓度值。
需要说明的是,在本实施例中,测网的网度为20米×20米。其中,“径向基函数插值方法”是在近十余年来发展起来的一种微分方程数值求解的无网格方法,该方法在对微分方程数值离散时不需要网格,因此不仅避免了网格生成的复杂过程,还可以显著减少传统网格方法(如有限元法、有限差分法)等中因网格畸变带来的不利影响。因此,可以准确得到网格化插值后的土壤氡气浓度值。
S212:计算出土壤氡气浓度异常下限值;
利用下式(1)计算出土壤氡气浓度异常下限值:
Figure BDA0002896244100000071
式中,
Imn(RnO)表示网格化插值后的土壤氡气浓度值在(m,n)点处的土壤氡气浓度值;
MI(RnO)表示所有Imn(RnO)的平均值;
δI(RnO)表示所有Imn(RnO)的标准偏差;
AT(RnO)表示土壤氡气浓度异常下限值;
i表示测线的数目;
j表示每条测线上的测点数目;
m为整数,取值为1,2,3,……,i;
n为整数,取值为1,2,3,……,j;
采用“范克里金插值方法”对所述土壤氡气浓度值进行插值计算得到第一网格化数据;所述“范克里金插值方法”利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小。因此,“范克里金插值方法”是根据未知样点有限领域的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
采用“矩形窗口滑动平均法”对所述第一网格化数据进行滤波,矩形窗口大小为“100米×100米”;其中,通过“矩形窗口滑动平均法”可以对周期性干扰有良好的抑制作用,平滑度高。
将大于或等于土壤氡气浓度异常下限值的数据范围,定义为土壤氡气浓度值异常范围。
S22:获取土壤氡气浓度衬值异常范围具体包括:
S221:计算土壤氡气浓度衬值;
采用“距离反权重插值方法”对所述土壤氡气浓度值进行插值计算得到第二网格化数据;其中,通过“距离反权重插值方法”可以进行确切的或者圆滑的方式插值。
对所述第二网格化数据采用“矩形窗口滑动法”计算土壤氡气浓度衬值,矩形窗口的大小为“500米×500米”;
所述土壤氡气浓度衬值的计算公式如下:
Figure BDA0002896244100000081
式中,
D(RnC)表示土壤氡气浓度衬值;
DIDW-W(RnO)表示经网格化插值后,矩形窗口中心点处的土壤氡气浓度值;
MIDW-W(RnO)表示经网格化插值后,矩形窗口范围内所有测点的土壤氡气浓度的平均值。
S222:计算出土壤氡气浓度衬值异常下限值:
Figure BDA0002896244100000091
式中,
Dmn(RnC)表示土壤氡气浓度衬值在(m,n)点处的土壤氡气浓度衬值;
MD(RnC)表示所有Dmn(RnC)的平均值;
δD(RnC)表示所有Dmn(RnC)的标准偏差;
AT(RnC)表示土壤氡气浓度衬值异常下限值;
i表示测线的数目;
j表示每条测线上的测点数目;
m为整数,取值为1,2,3,……,i;
n为整数,取值为1,2,3,……,j;
采用“范克里金插值方法”对所述土壤氡气浓度衬值进行插值计算得到第三网格化数据;
采用“矩形窗口滑动平均法”对所述第三网格化数据进行滤波,矩形窗口大小为“200米×200米”;
由于此处的“范克里金插值方法”和“矩形窗口滑动平均法”与上边的方法一致,在此不再赘述。
将大于或等于土壤氡气浓度衬值异常下限值的数据范围,定义为土壤氡气浓度衬值异常范围。
S3:将所述土壤氡气浓度值异常范围与所述土壤氡气浓度衬值异常范围重叠的区域圈定为地表平面铀成矿有利范围。
S4:在所述地表平面铀成矿有利范围内,开展三维广域电磁测量工作,获取三维广域电磁测量数据。具体包括如下步骤:
S41:采集测点上不同频率的电场数据;
S411:布设铜棒电极。
具体的,在地表平面铀成矿有利范围内,以线距40米、点距20米的测网,在逐个测点上采用铜棒插入地下的方式采集电场信号,铜棒插入深度为55cm-65cm。
需要说明的是,在本实施例中铜棒插入深度为60cm,通过该布设方式可以准确采集测点上不同频率的电场数据。
S412:设置接收端频率组合。具体的,包括如下步骤:
S4121:明确目标体最大埋深d和测区平均电阻率
Figure BDA0002896244100000101
根据频率域电磁测深法勘探深度估算公式
Figure BDA0002896244100000102
计算得到最低频率f;
S4122:选择比最低频率f再低1~3个频点的频率为采样最低频率F;
S4123:选择包含所述采样最低频率F至最高发射频率的所有频组,作为接收端频率组合。
S413:采用铝板作为接地供电极,布设发射偶极子;发射偶极子与测线方位平行,发射偶极子与测线距离为3~5倍的勘探深度,两个发射偶极子距离为1.5~2km;
S414:选择JSDY-180广域电磁系统,按照设置的接收端频率组合逐组进行发射;发射过程中,发射电流不得高于100A,发射电压不得超过1000V;
S415:在所述广域电磁系统进行发射的同时,在接收端频率组合逐组地记录对应的电场信息。
通过开展该三维广域电磁测量工作,可以准确获取三维广域电磁测量数据。
S5:根据所述三维广域电磁测量数据,计算视电阻率;具体包括如下步骤:
S51:在获取三维广域电磁测量数据基础上,将发射点和采样点坐标,采样点的电场文件和与之对应的电流文件输入《JSGY-2广域电磁仪接收机数据处理软件》中;
S52:所述《JSGY-2广域电磁仪接收机数据处理软件》自动计算出各采样点的视电阻率。
S6:对所述视电阻率数据进行三维反演,得到三维电阻率数据分布体;具体包括如下步骤:
S61:采用MTpioneer软件,删除或平移所述视电阻率数据中不连续的频点和频段,得到处理后的视电阻率数据;
S62:对所述处理后的视电阻率数据进行一维自适应正则化反演,得到一维自适应正则化反演数据;
S63:对所述一维自适应正则化反演数据进行三维非线性共轭梯度反演,得到三维电阻率数据分布体。
通过对视电阻率数据进行进一步优化,可以得到可靠的三维电阻率数据分布体。
S7:对所述三维电阻率数据分布体,采用Surfer软件进行插值,获取三维电阻率分布特征。
S8:根据所述三维电阻率分布特征和铀成矿地质特征,圈定三维铀成矿有利部位,具体包括以下步骤:
S81:根据所述三维电阻率分布特征,按照沉积岩地区砂岩电阻率较高、泥岩电阻率较低的基本原则,结合勘查区地质概况,划分砂岩层和泥岩层;
S82:根据划分的砂岩层、泥岩层的展布特征,结合勘查区铀成矿地质特征,对以泥岩层为主要含矿目的层的铀成矿区域,将埋深在500米以浅的泥岩层三维空间标记为三维铀成矿有利部位;对以砂岩层为主要含矿目的层的铀成矿区域,将埋深在1000米以浅的砂岩层三维空间标记为三维铀成矿有利部位。
综上所述,本发明提供的三维铀成矿有利部位的圈定方法,能够快速、准确地圈定沉积成岩型砂岩型铀矿三维铀成矿有利部位,解决了沉积成岩型砂岩型铀矿三维铀成矿有利部位难以圈定的难题,切实保障了砂岩型铀矿深部勘查的技术可行性;同时为砂岩型铀矿深部勘查的钻孔布设提供了可靠依据,能够大量节约用于深部钻探前期勘查所需的人力、物力和财力。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种三维铀成矿有利部位的圈定方法,其特征在于,包括以下步骤:
获取土壤氡气浓度值;
对所述土壤氡气浓度值进行处理,获取土壤氡气浓度值异常范围和土壤氡气浓度衬值异常范围;
根据所述土壤氡气浓度值异常范围和所述土壤氡气浓度衬值异常范围,获取地表平面铀成矿有利范围;
在所述地表平面铀成矿有利范围内,开展三维广域电磁测量工作,获取三维广域电磁测量数据;
根据所述三维广域电磁测量数据,计算视电阻率;
对所述视电阻率数据进行三维反演,得到三维电阻率数据分布体;
根据所述三维电阻率数据分布体,获取三维电阻率分布特征;
根据所述三维电阻率分布特征和铀成矿地质特征,圈定三维铀成矿有利部位。
2.根据权利要求1所述的三维铀成矿有利部位的圈定方法,其特征在于,所述获取土壤氡气浓度值具体包括:
在铀矿勘查区范围内,开展抽气式瞬时土壤氡气测量工作,获取各测点处的土壤氡气浓度值。
3.根据权利要求1所述的三维铀成矿有利部位的圈定方法,其特征在于,获取土壤氡气浓度值异常范围具体包括:
采用“径向基函数插值方法”对所述土壤氡气浓度值进行插值,得到网格化插值后的土壤氡气浓度值;
利用下式(1)计算出土壤氡气浓度异常下限值:
Figure FDA0002896244090000011
式中,
Imn(RnO)表示网格化插值后的土壤氡气浓度值在(m,n)点处的土壤氡气浓度值;
MI(RnO)表示所有Imn(RnO)的平均值;
δI(RnO)表示所有Imn(RnO)的标准偏差;
AT(RnO)表示土壤氡气浓度异常下限值;
i表示测线的数目;
j表示每条测线上的测点数目;
m为整数,取值为1,2,3,……,i;
n为整数,取值为1,2,3,……,j;
采用“范克里金插值方法”对所述土壤氡气浓度值进行插值计算得到第一网格化数据;
采用“矩形窗口滑动平均法”对所述第一网格化数据进行滤波;
将大于或等于土壤氡气浓度异常下限值的数据范围,定义为土壤氡气浓度值异常范围。
4.根据权利要求1所述的三维铀成矿有利部位的圈定方法,其特征在于,获取土壤氡气浓度衬值异常范围具体包括:
采用“距离反权重插值方法”对所述土壤氡气浓度值进行插值计算得到第二网格化数据;
对所述第二网格化数据采用“矩形窗口滑动法”计算土壤氡气浓度衬值,所述土壤氡气浓度衬值的计算公式如下:
Figure FDA0002896244090000021
式中,
D(RnC)表示土壤氡气浓度衬值;
DIDW-W(RnO)表示经网格化插值后,矩形窗口中心点处的土壤氡气浓度值;
MIDW-W(RnO)表示经网格化插值后,矩形窗口范围内所有测点的土壤氡气浓度的平均值;
利用下式(3)计算出土壤氡气浓度衬值异常下限值:
Figure FDA0002896244090000031
式中,
Dmn(RnC)表示土壤氡气浓度衬值在(m,n)点处的土壤氡气浓度衬值;
MD(RnC)表示所有Dmn(RnC)的平均值;
δD(RnC)表示所有Dmn(RnC)的标准偏差;
AT(RnC)表示土壤氡气浓度衬值异常下限值;
i表示测线的数目;
j表示每条测线上的测点数目;
m为整数,取值为1,2,3,……,i;
n为整数,取值为1,2,3,……,j;
采用“范克里金插值方法”对所述土壤氡气浓度衬值进行插值计算得到第三网格化数据;
采用“矩形窗口滑动平均法”对所述第三网格化数据进行滤波;
将大于或等于土壤氡气浓度衬值异常下限值的数据范围,定义为土壤氡气浓度衬值异常范围。
5.根据权利要求1所述的三维铀成矿有利部位的圈定方法,其特征在于,根据所述土壤氡气浓度值异常范围和所述土壤氡气浓度衬值异常范围,获取地表平面铀成矿有利范围具体包括:
将所述土壤氡气浓度值异常范围与所述土壤氡气浓度衬值异常范围重叠的区域圈定为地表平面铀成矿有利范围。
6.根据权利要求1所述的三维铀成矿有利部位的圈定方法,其特征在于,在所述地表平面铀成矿有利范围内,开展三维广域电磁测量工作,获取三维广域电磁测量数据具体包括:
通过铜棒电极采集测点上不同频率的电场数据;
设置接收端频率组合;明确目标体最大埋深d和测区平均电阻率
Figure FDA0002896244090000041
根据频率域电磁测深法勘探深度估算公式
Figure FDA0002896244090000042
计算得到最低频率f;选择比最低频率f再低1~3个频点的频率为采样最低频率F;选择包含所述采样最低频率F至最高发射频率的所有频组,作为接收端频率组合;
采用铝板作为接地供电极,布设发射偶极子;发射偶极子与测线方位平行,发射偶极子与测线距离为3~5倍的勘探深度,两个发射偶极子距离为1.5~2km;
选择JSDY-180广域电磁系统,按照设置的接收端频率组合逐组进行发射;发射过程中,发射电流不得高于100A,发射电压不得超过1000V;
在所述广域电磁系统进行发射的同时,在接收端频率组合逐组地记录对应的电场信息。
7.根据权利要求1所述的三维铀成矿有利部位的圈定方法,其特征在于,根据所述三维广域电磁测量数据,计算视电阻率具体包括:
在获取三维广域电磁测量数据基础上,将发射点和采样点坐标,采样点的电场文件和与之对应的电流文件输入《JSGY-2广域电磁仪接收机数据处理软件》中;
所述《JSGY-2广域电磁仪接收机数据处理软件》自动计算出各采样点的视电阻率。
8.根据权利要求1所述的三维铀成矿有利部位的圈定方法,其特征在于,对所述视电阻率数据进行三维反演,得到三维电阻率数据分布体具体包括:
采用MTpioneer软件,删除或平移所述视电阻率数据中不连续的频点和频段,得到处理后的视电阻率数据;
对所述处理后的视电阻率数据进行一维自适应正则化反演,得到一维自适应正则化反演数据;
对所述一维自适应正则化反演数据进行三维非线性共轭梯度反演,得到三维电阻率数据分布体。
9.根据权利要求1所述的三维铀成矿有利部位的圈定方法,其特征在于,根据所述三维电阻率数据分布体,获取三维电阻率分布特征具体包括:
对所述三维电阻率数据分布体,采用Surfer软件进行插值,获取三维电阻率分布特征。
10.根据权利要求1所述的三维铀成矿有利部位的圈定方法,其特征在于,根据所述三维电阻率分布特征和铀成矿地质特征,圈定三维铀成矿有利部位具体包括:
根据所述三维电阻率分布特征,按照沉积岩地区砂岩电阻率高、泥岩电阻率低的基本原则,结合勘查区地质概况,划分砂岩层和泥岩层;
根据划分的砂岩层、泥岩层的展布特征,结合勘查区铀成矿地质特征,对以泥岩层为主要含矿目的层的铀成矿区域,将埋深在500米以浅的泥岩层三维空间标记为三维铀成矿有利部位;对以砂岩层为主要含矿目的层的铀成矿区域,将埋深在1000米以浅的砂岩层三维空间标记为三维铀成矿有利部位。
CN202110041965.5A 2021-01-13 2021-01-13 一种三维铀成矿有利部位的圈定方法 Active CN112882124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110041965.5A CN112882124B (zh) 2021-01-13 2021-01-13 一种三维铀成矿有利部位的圈定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110041965.5A CN112882124B (zh) 2021-01-13 2021-01-13 一种三维铀成矿有利部位的圈定方法

Publications (2)

Publication Number Publication Date
CN112882124A true CN112882124A (zh) 2021-06-01
CN112882124B CN112882124B (zh) 2024-02-20

Family

ID=76045366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110041965.5A Active CN112882124B (zh) 2021-01-13 2021-01-13 一种三维铀成矿有利部位的圈定方法

Country Status (1)

Country Link
CN (1) CN112882124B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113421414A (zh) * 2021-06-22 2021-09-21 陕西地矿第二综合物探大队有限公司 一种利用广域电磁法的全息电磁矿体勘探方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2225019C1 (ru) * 2002-12-30 2004-02-27 Шулейкин Владимир Николаевич Способ геофизического обнаружения участков аномального выхода на поверхность летучих газов (его варианты)
WO2016000666A1 (en) * 2014-06-29 2016-01-07 Státní Ústav Radiačni Ochrany V.V.I. Method and equipment for the monitoring of changes in the earth's lithosphere and atmosphere
CN108008456A (zh) * 2016-10-27 2018-05-08 核工业北京地质研究院 一种圈定热液型铀矿深部三维重点铀成矿有利靶区的方法
CN109581513A (zh) * 2018-12-25 2019-04-05 核工业北京地质研究院 一种基于多空间尺度的砂岩型铀矿成矿靶区圈定方法
CN109828316A (zh) * 2018-12-25 2019-05-31 核工业北京地质研究院 一种钙结岩型铀矿找矿勘查方法
CN111045110A (zh) * 2019-12-17 2020-04-21 核工业北京地质研究院 圈定砂岩型铀矿深部三维铀成矿靶区的综合物化探方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2225019C1 (ru) * 2002-12-30 2004-02-27 Шулейкин Владимир Николаевич Способ геофизического обнаружения участков аномального выхода на поверхность летучих газов (его варианты)
WO2016000666A1 (en) * 2014-06-29 2016-01-07 Státní Ústav Radiačni Ochrany V.V.I. Method and equipment for the monitoring of changes in the earth's lithosphere and atmosphere
CN108008456A (zh) * 2016-10-27 2018-05-08 核工业北京地质研究院 一种圈定热液型铀矿深部三维重点铀成矿有利靶区的方法
CN109581513A (zh) * 2018-12-25 2019-04-05 核工业北京地质研究院 一种基于多空间尺度的砂岩型铀矿成矿靶区圈定方法
CN109828316A (zh) * 2018-12-25 2019-05-31 核工业北京地质研究院 一种钙结岩型铀矿找矿勘查方法
CN111045110A (zh) * 2019-12-17 2020-04-21 核工业北京地质研究院 圈定砂岩型铀矿深部三维铀成矿靶区的综合物化探方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
柯丹 等: "土壤瞬时测氡在相山火山岩型铀矿勘查中的应用", 铀矿地质, pages 191 - 197 *
赵春江: "地气测量结合现场物化探方法勘查隐伏金属矿研究", 中国优秀硕士学位论文全文数据库基础科学辑, no. 12, pages 011 - 123 *
韩娟 等: "土壤氡测量在呼斯梁―柴登壕地区砂岩型铀矿勘查中的应用", 世界核地质科学, vol. 30, no. 01, pages 38 - 43 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113421414A (zh) * 2021-06-22 2021-09-21 陕西地矿第二综合物探大队有限公司 一种利用广域电磁法的全息电磁矿体勘探方法及系统
CN113421414B (zh) * 2021-06-22 2022-08-12 陕西地矿第二综合物探大队有限公司 一种利用广域电磁法的全息电磁矿体勘探方法及系统

Also Published As

Publication number Publication date
CN112882124B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
Okpoli Sensitivity and resolution capacity of electrode configurations
Webster Quantitative spatial analysis of soil in the field
Tronicke et al. Crosshole traveltime tomography using particle swarm optimization: A near-surface field example
CN112949134B (zh) 基于非结构有限元方法的地-井瞬变电磁反演方法
US20050156602A1 (en) System, apparatus, and method for conducting electromagnetic induction surveys
US7852088B2 (en) High resolution magnetotelluric method for removing static frequency domain
CN111708094B (zh) 一种基于广域电磁法的砂岩型铀矿砂体识别方法及系统
Christensen et al. Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking
CN110286416B (zh) 一种基于物性函数的快速二维密度反演方法
CN111221048B (zh) 基于跨孔电阻率ct多尺度反演的孤石边界识别与成像方法
Koike et al. Spatial correlation structures of fracture systems for deriving a scaling law and modeling fracture distributions
Gabàs et al. Combination of geophysical methods to support urban geological mapping
Kalscheuer et al. Delineation of a quick clay zone at Smørgrav, Norway, with electromagnetic methods under geotechnical constraints
Legault et al. Synthetic model testing and distributed acquisition dc resistivity results over an unconformity uranium target from the Athabasca Basin, northern Saskatchewan
CN115292890A (zh) 基于多源辅助数据开发的场地土壤污染物浓度三维空间预测方法
CN112882124B (zh) 一种三维铀成矿有利部位的圈定方法
CN108873073B (zh) 一种基于网络并行电法的三维跨孔电阻率层析成像方法
Li et al. One-dimensional full-waveform inversion for magnetic induction data in ground-based transient electromagnetic methods
CN113341467A (zh) 基于多插值方法的矿井瞬变电磁三维显示方法
CN114488327B (zh) 基于地面基点的水平磁场与井中垂直磁场联合测量方法
CN113868919B (zh) 一种随钻电磁波测井3d模拟简化方法
De Giorgi et al. Passive and active electric methods: new frontiers of application
CN113406707A (zh) 一种大地电磁多尺度、多时段探测方法
Santos et al. On the 3-D inversion of vertical electrical soundings: Application to the South Ismailia area—Cairo desert road, Cairo, Egypt
Inoue et al. Investigation of the line arrangement of 2D resistivity surveys for 3D inversion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant