CN112877058A - 一种超分子荧光化合物及其制备方法和应用 - Google Patents

一种超分子荧光化合物及其制备方法和应用 Download PDF

Info

Publication number
CN112877058A
CN112877058A CN202110070820.8A CN202110070820A CN112877058A CN 112877058 A CN112877058 A CN 112877058A CN 202110070820 A CN202110070820 A CN 202110070820A CN 112877058 A CN112877058 A CN 112877058A
Authority
CN
China
Prior art keywords
compound
fluorescent compound
supramolecular
bipy
supramolecular fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110070820.8A
Other languages
English (en)
Other versions
CN112877058B (zh
Inventor
王军
路璐
吴宇
吴威平
谢斌
周珊合
王广莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN202110070820.8A priority Critical patent/CN112877058B/zh
Publication of CN112877058A publication Critical patent/CN112877058A/zh
Application granted granted Critical
Publication of CN112877058B publication Critical patent/CN112877058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种超分子荧光化合物及其制备方法和应用,该化合物的化学式为[(L)1(H3L)6(H4L)5(H2‑4,4'‑bipy)2(H‑4,4'‑bipy)2(CH3CN)6(H2O)4]n,4,4'‑bipy为4,4'‑联吡啶,CH3CN为乙腈。该化合物的不对称单元由1个完全失去质子的(L)4‑配体离子、6个失去1个质子的(H3L)配体离子、5个H4L配体分子、2个得到2个质子的4,4′‑bipy分子、2个得到1个质子的4,4′‑bipy分子、6个乙腈溶剂分子和4个水分子组成。本发明的超分子化合物对Fe3+离子和硝基芳烃化合物具有很好的选择性,用于检测Fe3+离子和硝基芳烃化合物。

Description

一种超分子荧光化合物及其制备方法和应用
技术领域
本发明涉及一种荧光化合物,具体涉及一种超分子荧光化合物及其制备方法和应用。
背景技术
硝基爆炸物具有较高的爆炸性和化学毒性,在许多工业生产中硝基爆炸物被应用于杀虫剂和烈性炸药的合成,过多硝基爆炸物的存在对自然环境和人体健康都有很大的危害。已有研究表明证实,硝基芳香类物质是一类具有直接致癌和致突变性的化合物。事实证明硝基爆炸物如硝基苯对人体具有很大的伤害:硝基苯容易引发形成高铁血红蛋白,出现青斑症;致使肝实质病变,严重者可发生亚急性肝坏死;间接引起红细胞的破裂,发生溶血。其次,硝基苯类化合物熔点较低,容易发生固体升华迁移,在贮存和运输中受环境影响较大,需要进行状态实时监测。面对日益严峻的公共安全威胁和环境保护需求,爆炸物检测技术发展日益迫切,特别是简单、有效、和灵敏的检测方法。
有机超分子材料通过有机配体的多样性和取代基结构的协调性等人为调控设计材料的骨架结构以及多方面的性能。由于有机配体的可控性,发光超分子材料使其展现出不同于传统的光学材料发光形式单一的优势。因此,发光超分子材料荧光探针因其具有高灵敏度、稳定性好、寿命长等特性,同时又具有结构多样性、性能多变性及合成条件温和可操作性等优点,使其在水污染物的分析检测识别方面具有良好的应用前景如:重金属离子、有机溶剂小分子、硝基芳香爆炸物、气体分子、pH传感、温度传感及离子交换等。
发明内容
本发明的目的是提供一种超分子荧光化合物及其制备方法和应用,该化合物对Fe3+离子和硝基芳烃化合物具有很好的选择性,能够用于检测Fe3+离子和硝基芳烃化合物。
为了达到上述目的,本发明提供了一种超分子荧光化合物,该化合物的化学式为[(L)1(H3L)6(H4L)5(H2-4,4'-bipy)2(H-4,4'-bipy)2(CH3CN)6(H2O)4]n,4,4'-bipy为4,4'-联吡啶,CH3CN为乙腈,,H4L的结构式如式1所示:
Figure BDA0002905908000000021
该化合物的不对称单元由1个完全失去质子的(L)4-配体离子、6个失去1个质子的(H3L)-配体离子、5个H4L配体分子、2个得到2个质子的4,4′-bipy分子、2个得到1个质子的4,4′-bipy分子、6个乙腈溶剂分子和4个水分子组成;该化合物单晶属于单斜晶系P21/n空间群,晶胞参数为:
Figure BDA0002905908000000022
Figure BDA0002905908000000023
α=90°,β=18.5168(4)°,γ=18.5168(4)°。
优选地,该化合物的分子式为C412H318N14O124
优选地,该化合物的分子量为7448.80。
优选地,所述配体通过氢键O-H…N和C-H…O的弱作用力与4,4′-bipy连接成一维链状结构,一维链状结构再通过C-H…π和π-π相互作用形成三维超分子网络结构。
本发明的另一目的是提供所述的超分子荧光化合物的制备方法,该方法包含:将5,5-[1,4-亚苯基双(甲基苯氧基)]间苯二甲酸、4,4'-联吡啶、Cd(NO3)2·4H2O与水-乙腈混合溶剂混合均匀,在常温下密封搅拌,然后升温至120℃后继续保持该温度,待反应结束后以恒定速度降至常温,得到超分子荧光化合物。在反应的过程中金属离子Cd2+没有配位,但是在合成的过程中,如果不加Cd2+就得不到本发明的超分子化合物。
优选地,所述水-乙腈混合溶剂的体积比为1:1;所述5,5-[1,4-亚苯基双(甲基苯氧基)]间苯二甲酸、4,4'-联吡啶和Cd(NO3)2·4H2O的摩尔比为0.05:0.10:0.15。
优选地,所述升温为在12h内升温至120℃,升温至120℃后继续保持该温度72h;所述恒定速度为5℃/h。
本发明的另一目的是提供所述的超分子荧光化合物在检测Fe3+离子方面的应用。
本发明的另一目的是提供所述的超分子荧光化合物在检测硝基芳烃化合物方面的应用。
优选地,所述硝基芳烃化合物包含:2,4-二硝基甲苯、2,6-二硝基甲苯、2-硝基甲苯、4-硝基甲苯、1,3-二硝基苯、间硝基酚、对硝基酚、三硝基苯酚、2,4-二硝基酚。
本发明的超分子荧光化合物及其制备方法和应用,具有以下优点:
本发明的超分子荧光化合物,可以在不同的金属离子溶液中高效检测出Fe3+离子,Fe3+的荧光淬灭常数为2.74×103M-1,荧光检测限为0.96ppm。不同的有机溶剂分子中识别检测硝基苯分子(NB),NB的荧光淬灭常数为5.13×104M-1,荧光检测限为1.84ppm,可以有效识别水溶液中硝基苯酚类爆炸物。其中,PNP的荧光淬灭常数为1.26×104M-1,荧光检测限为0.075ppm。超分子材料可作为多功能光学传感识别金属Fe3+和硝基苯酚类爆炸物,为检测水体环境提供新的可能。
附图说明
图1为本发明的超分子荧光化合物中的不对称环境图。
图2为本发明的超分子荧光化合物中的3D超分子网络结构。
图3为本发明的超分子荧光化合物的红外光谱图。
图4为本发明的超分子荧光化合物的实验测试与计算机模拟的X-粉末衍射图。
图5为本发明的超分子荧光化合物的热重分析图。
图6为本发明的超分子荧光化合物的UV-vis漫反射光谱。
图7为本发明的超分子荧光化合物和有机配体H4L的固态荧光发射光谱。
图8为本发明的超分子荧光化合物对金属离子的检测结果曲线图。
图9为本发明的超分子荧光化合物对金属离子的检测结果柱状图。
图10为本发明的超分子荧光化合物对不同浓度Fe3+的淬灭结果。
图11为本发明的超分子荧光化合物发光浓度淬灭百分比与Fe3+的浓度之间的关系图。
图12为本发明的超分子荧光化合物对不同有机溶剂的检测结果曲线图。
图13为本发明的超分子荧光化合物对不同有机溶剂的检测结果柱状图。
图14为本发明的超分子荧光化合物对不同浓度硝基苯的检测结果。
图15为本发明的超分子荧光化合物荧光发光强度的淬灭与NB浓度的线性关系图。
图16为本发明的超分子荧光化合物对1,3-DNB的检测结果。
图17为本发明的超分子荧光化合物对2-NT的检测结果。
图18为本发明的超分子荧光化合物对4-NT的检测结果。
图19为本发明的超分子荧光化合物对2,4-DNT的检测结果。
图20为本发明的超分子荧光化合物对2,6-DNT的检测结果。
图21为本发明的超分子荧光化合物对2,4-DNP的检测结果。
图22为本发明的超分子荧光化合物对MNP的检测结果。
图23为本发明的超分子荧光化合物对PNP的检测结果。
图24为本发明的超分子荧光化合物对TNP的检测结果。
图25为本发明的超分子荧光化合物对NB的检测结果。
图26为本发明的超分子荧光化合物对1,2,4-TMB的检测结果。
图27为本发明的超分子荧光化合物对1,3,5-TMB的检测结果。
图28为本发明的超分子荧光化合物对不同硝基芳烃化合物的检测结果的柱状图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实验例1超分子荧光化合物的合成
称取5,5-[1,4-亚苯基双(甲基苯氧基)]间苯二甲酸(0.05mmol,0.027g)、4,4'-联吡啶(0.10mmol,0.019g)、Cd(NO3)2·4H2O(0.15mmol,0.046g)与6mL溶剂(V:V乙腈=1:1)混合均匀置于反应釜的内胆中。
上述混合液在常温下密封搅拌30min,再将混合液移至25mL的反应釜中。将反应釜静置安置在控温鼓风干燥箱内,将干燥箱的温度在12h内程序升温至120℃后继续保持该温度72h,反应时间后再以5℃/h程序缓缓降至常温,反应釜中得无色晶体,过滤,清洗,得到超分子荧光化合物[(L)1(H3L)6(H4L)5(H2-4,4'-bipy)2(H-4,4'-bipy)2(CH3CN)6(H2O)4]n,该晶体的产率为72%。
实验例2超分子荧光化合物的表征实验
1、超分子荧光化合物的X-射线单晶衍射
利用X-射线单晶衍射对超分子荧光化合物的晶体结构和物相组成进行定性分析,解析得到超分子荧光化合物晶体精准的晶体结构和拓扑结构。
超分子荧光化合物的晶体结构测定结果:筛选出晶体表明无裂纹且其适宜大小的超分子荧光化合物单晶,将晶体粘于BRUKER D8 ADVANCE单晶衍射仪上,选择不同温度ω的扫描方式以Mo-Kα射线收集单晶晶体学数据,超分子荧光化合物的晶体学数据见如下表1。
表1超分子荧光化合物的晶体学参数
Figure BDA0002905908000000051
Figure BDA0002905908000000061
*R=∑(Fo–Fc)/∑(Fo),用于计算R1,**wR2={∑[w(Fo 2–Fc 2)2]/∑(Fo 2)2}1/2,R是残差因子,wR2是加权残差因子值,F0是表观结构因子,Fc是理论结构因子。
超分子荧光化合物的单晶X射线分析表明样品属于单斜晶系P21/n空间群。化合物的不对称单元由1个完全失去质子的(L)4-配体离子、6个失去1个质子的(H3L)-配体离子、5个H4L配体分子、2个得到2个质子的4,4′-bipy(4,4'-联吡啶)分子、2个得到1个质子的4,4′-bipy分子、6个乙腈溶剂分子和4个水分子组成(参见图1)。羧酸配体通过氢键O-H…N和C-H…O的弱作用力与4,4′-bipy连接成一维链状结构。一维链再通过C-H…π和π-π相互作用形成三维超分子网络结构(参见图2)。
2、超分子荧光化合物的元素分析
利用化学反应对超分子荧光化合物样品(以下简称样品)的百分含量以及元素组成进行测试。主要是对样品中C、H、N的百分含量进行测试,以此可以得知样品的纯度。
超分子荧光化合物C412H318N14O124的元素分析结果:理论值(%):C,66.43;H,1.01;N,2.63;实验值(%):C,66.35;H,1.03;N,2.66。
3、超分子荧光化合物的红外光谱
样品中有机配体和溶剂分子等的官能团可以通过其在不同频率的吸收峰而显示不同,可以得出样品中基团、官能团以及化学键的种类。
参见图3,结果表明在3423cm-1附近出现一个宽峰,为v(O-H)的特征峰,这与配体中一个酚羟基未脱质子的实验事实相吻合。在3088cm-1附近出现一个尖峰,为v(Ar-H)的特征峰。羧酸配体在1693cm-1出现v(C=O)的特征峰,4,4'-bipy配体的v(C=N)出现在1596cm-1的特征峰。
4、超分子荧光化合物的X-射线粉末衍射
X-射线粉末衍射用于测定超分子荧光化合物的粉末样品的晶型,通过实验测试结果与理论计算结果对比分析,可对超分子荧光化合物样品的组成进行定性分析。
参见图4,结果表明在5-50范围内(2θ)理论数据图和样品的实验实测图在XRD的峰形以及峰所处于的2θ位置均一致,表明样品为纯相。
5、超分子荧光化合物的热重分析
在N2保护作用下,通过控制温度测试待测样品的质量与温度之间的变化,从而来得到样品的热稳定性和组分变化。
参见图5,样品在25-243℃范围内存在第一步重量损失,这是由于样品中游离水分子和乙腈分子的损失(理论4.27%,计算4.19%)。当温度升高超过271℃时,样品中有机配体H4L和bip开始慢慢发生分解,406℃时样品中的有机配体分子的骨架垮塌出现高峰,直至样品最后分解为氧化物。
6、超分子荧光化合物的荧光光谱
将固体或液体超分子荧光化合物样品放置样品池中,样品电子吸收能量后从低能态跃迁至高能态,此时超分子荧光化合物分子不稳定,须要辐射跃迁形式跃迁回基态。
测试固态样品在室温下的UV-vis漫反射光谱,参见图6,从漫反射图谱知,样品在230-320nm的范围内有出强的吸收,这是由于有机配体中苯环电子跃迁。
室温下测试了有机配体H4L和超分子荧光化合物的固态荧光发射光谱,参见图7,羧酸配体H4L利用300nm光源激发时在338nm处显示发射峰。在相同的激发下(300nm激发),样品在340nm处有明显强的发射峰。与羧酸配体的发射峰对比,样品的发射峰明显的增强,这是因为样品中通过弱相互作用力使得整个分子结构的共轭体系得到加强,致使样品的荧光发射峰强度增强。
实验例3超分子荧光化合物对金属离子的检测
将超分子荧光化合物样品浸泡到0.01mol/L的硝酸金属盐水溶液M(NO3)x中,M=Li+、Na+、K+、Ca2+、Mg2+、Al3+、Zn2+、Cd2+、Co2+、Ni2+、Fe3+和Ag+,对不同的金属离子之间进行荧光检测。将5mg超分子荧光化合物样品研成粉末状浸泡到5mL硝酸金属盐水溶液进行超声振荡30min后形成悬浮液。把混合溶液进行静置24h之后,继续进行超声振荡30min后开始荧光性质实验。
参见图8和9,样品中金属离子Al3+和Ni2+的荧光强度增强最明显,Na+离子的发光强度稍微减弱,Fe3+离子的荧光强度淬灭,表明本发明的超分子荧光化合物可以作为潜在的荧光探针进行选择性识别Fe3+离子。
参见图10,利用浓度的滴定实验研究样品对Fe3+的淬灭,结果发现发光强度会随着Fe3+离子浓度的增加然而荧光强度在慢慢减弱。
对样品的荧光浓度滴定利用Stern-Volmer方程式处理样品发光浓度淬灭百分比与Fe3+的浓度之间的关系,参见图11。利用线性公式I0/I=1+Ksv[Q],其中Ksv代表为样品荧光淬灭常数,Q为不同的样品淬灭浓度,I0为样品空白样的荧光强度,I为样品某一浓度时的荧光强度。样品荧光发光强度的淬灭与Fe3+离子的浓度(从0ppm至200ppm)是理想的线性关系,通过Stern-Volmer线性方程的计算,Fe3+离子的荧光淬灭常数(Ksv)为2.74×103M-1,荧光检测限(LOD)为0.96ppm,明显优于目前已报道对于Fe3+离子的检测浓度。
实验例4超分子荧光化合物对有机溶剂分子的检测
将5mg超分子化合物样品研细并浸泡到5mL不同的有机溶剂(乙腈、硝基苯、N,N-二甲基甲酰胺、甲醛、丙酮、二甲基乙酰胺、四氢呋喃、乙醇、甲醇、异丙醇、二甲亚砜、1,4-二氧六环、二氯甲烷、甲苯和水)中,超声波振荡30min,样品溶液静置24h后再将混合溶液继续超声30min形成悬浮液用于对溶剂分子检测。
参见图12和13,样品在不同有机溶剂中的荧光强度各不相同。但是与其它有机溶剂对比,硝基苯NB的样品荧光强度完全淬灭消失。
参见图14,将硝基苯NB分子缓慢滴加至样品悬浮液中,随着硝基苯NB浓度的增大,样品的荧光强度也慢慢减弱。
样品荧光发光强度的淬灭与NB的浓度(从0ppm至200ppm)是理想的线性关系,参见图15,通过Stern-Volmer线性方程的计算,NB的荧光淬灭常数(Ksv)为5.13×102M-1,荧光检测限(LOD)为1.84ppm。因此,样品可以用于检测NB分子。
实验例5超分子荧光化合物对硝基爆炸物分子的检测
样品对其它硝基芳烃化合物的检测,如:2,4-DNT(2,4-二硝基甲苯)、2,6-DNT(2,6-二硝基甲苯)、2-NT(2-硝基甲苯)、4-NT(4-硝基甲苯)、1,3-DNB(1,3-二硝基苯)、MNP(间硝基酚)、PNP(对硝基酚)、TNP(三硝基苯酚)、2,4-DNP(2,4-二硝基酚)、1,2,4-TMB(1,2,4-三甲基苯)、1,3,5-TMB(1,3,5-三甲基苯)、NB(硝基苯),研究样品的发光与含-NO2基团化合物之间的关系。
在一定条件下用不同的硝基化合物滴定至波峰消失,滴定浓度依次为0ppm、20ppm、40ppm、65ppm、90ppm、130ppm、160ppm、200ppm、240ppm、280ppm、330ppm、400ppm、500ppm,为了探究不同硝基化合物的荧光淬灭程度,计算硝基化合物淬灭效率(200ppm)浓度如下PNP>2,4-DNP>MNP>TNP>2,4-DNT>4-NT>NB>2-NT>2,6-DNP>1,3-DNB>1,2,4-TMB>1,3,5-TMB(200ppm时不同硝基化合物的淬灭百分比对比或淬灭效率),参见图16-28。
淬灭百分比方程为QP=(I0-I)/I0×100%,其中I0和I分别是硝基化合物之前和之后的发光强度。淬灭百分比最高的是PNP以及其他三类硝基苯酚类爆炸物,样品荧光发光强度的淬灭与PNP的浓度(从0ppm至200ppm)是理想的线性关系,通过Stern-Volmer线性方程的计算,PNP的荧光淬灭常数(Ksv)为1.26×104M-1,荧光检测限(LOD)为0.075ppm。1,2,4-三甲苯和1,3,5-三甲苯的荧光淬灭百分比为负值(参见图28),下图表明随着三甲苯浓度的增加样品的荧光强度也随着增强,这是因为硝基属于吸电子基团,样品荧光强度慢慢淬灭,而甲基属于供电子基团,它促使样品的荧光强度慢慢增强。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

1.一种超分子荧光化合物,其特征在于,该化合物的化学式为[(L)1(H3L)6(H4L)5(H2-4,4'-bipy)2(H-4,4'-bipy)2(CH3CN)6(H2O)4]n,4,4'-bipy为4,4'-联吡啶,CH3CN为乙腈,H4L的结构式如式1所示:
Figure FDA0002905907990000011
该化合物的不对称单元由1个完全失去质子的(L)4-配体离子、6个失去1个质子的(H3L)-配体离子、5个H4L配体分子、2个得到2个质子的4,4′-bipy分子、2个得到1个质子的4,4′-bipy分子、6个乙腈溶剂分子和4个水分子组成;
该化合物单晶属于单斜晶系P21/n空间群,晶胞参数为:
Figure FDA0002905907990000012
α=90°,β=18.5168(4)°,γ=18.5168(4)°。
2.根据权利要求1所述的超分子荧光化合物,其特征在于,该化合物的分子式为C412H318N14O124
3.根据权利要求1所述的超分子荧光化合物,其特征在于,该化合物的分子量为7448.80。
4.根据权利要求1所述的超分子荧光化合物,其特征在于,所述配体通过氢键O-H…N和C-H…O的弱作用力与4,4′-bipy连接成一维链状结构,一维链状结构再通过C-H…π和π-π相互作用形成三维超分子网络结构。
5.如权利要求1-4中任意一项所述的超分子荧光化合物的制备方法,其特征在于,该方法包含:
将5,5-[1,4-亚苯基双(甲基苯氧基)]间苯二甲酸、4,4'-联吡啶、Cd(NO3)2·4H2O与水-乙腈混合溶剂混合均匀,在常温下密封搅拌,然后升温至120℃后继续保持该温度,待反应结束后以恒定速度降至常温,得到超分子荧光化合物。
6.根据权利要求5所述的制备方法,其特征在于,所述水-乙腈混合溶剂的体积比为1:1;所述5,5-[1,4-亚苯基双(甲基苯氧基)]间苯二甲酸、4,4'-联吡啶和Cd(NO3)2·4H2O的摩尔比为0.05:0.10:0.15。
7.根据权利要求5所述的制备方法,其特征在于,所述升温为在12h内升温至120℃,升温至120℃后继续保持该温度72h;所述恒定速度为5℃/h。
8.如权利要求1-4中任意一项所述的超分子荧光化合物在检测Fe3+离子方面的应用。
9.如权利要求1-4中任意一项所述的超分子荧光化合物在检测硝基芳烃化合物方面的应用。
10.根据权利要求9所述的应用,其特征在于,所述硝基芳烃化合物包含:2,4-二硝基甲苯、2,6-二硝基甲苯、2-硝基甲苯、4-硝基甲苯、1,3-二硝基苯、间硝基酚、对硝基酚、三硝基苯酚、2,4-二硝基酚。
CN202110070820.8A 2021-01-19 2021-01-19 一种超分子荧光化合物及其制备方法和应用 Active CN112877058B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110070820.8A CN112877058B (zh) 2021-01-19 2021-01-19 一种超分子荧光化合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110070820.8A CN112877058B (zh) 2021-01-19 2021-01-19 一种超分子荧光化合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112877058A true CN112877058A (zh) 2021-06-01
CN112877058B CN112877058B (zh) 2022-08-12

Family

ID=76049953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110070820.8A Active CN112877058B (zh) 2021-01-19 2021-01-19 一种超分子荧光化合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112877058B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004261A (zh) * 2019-12-19 2020-04-14 渤海大学 基于羧酸配体的三维多功能荧光型锌配合物及其在酸/碱条件下水污染检测中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004261A (zh) * 2019-12-19 2020-04-14 渤海大学 基于羧酸配体的三维多功能荧光型锌配合物及其在酸/碱条件下水污染检测中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO ZHANG ET AL.: "Highly Selective and Sensitive Detection of Nitroaromatic Compounds and Metal Ions by Supramolecular Assemblies of 3,3’,5,5’-Azobenzenetetracarboxylic Acid and 4,4’-Bipyridine", 《J FLUORESC》 *

Also Published As

Publication number Publication date
CN112877058B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Xiao et al. Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid
Qin et al. Aqueous-and vapor-phase detection of nitroaromatic explosives by a water-stable fluorescent microporous MOF directed by an ionic liquid
Nagarkar et al. Aqueous phase selective detection of 2, 4, 6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site
Nagarkar et al. Highly selective detection of nitro explosives by a luminescent metal-organic framework
Jiang et al. Self-assembly of luminescent 12-metal Zn–Ln planar nanoclusters with sensing properties towards nitro explosives
Qi et al. A luminescent heterometallic metal–organic framework for the naked-eye discrimination of nitroaromatic explosives
Khan et al. Three-in-one is really better: exploring the sensing and adsorption properties in a newly designed metal–organic system incorporating a copper (II) ion
Cao et al. Selective sensing of Fe3+ and Al3+ ions and detection of 2, 4, 6‐trinitrophenol by a water‐stable terbium‐based metal–organic framework
Wei et al. Highly cross-linked fluorescent poly (cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase
Kumar et al. New 1, 8-naphthalimide-conjugated sulfonamide probes for TNP sensing in water
Yang et al. A multifunctional Eu-CP as a recyclable luminescent probe for the highly sensitive detection of Fe 3+/Fe 2+, Cr 2 O 7 2−, and nitroaromatic explosives
He et al. An o-phthalimide-based multistimuli-responsive aggregation-induced emission (AIE) system
Tan et al. A gadolinium MOF acting as a multi-responsive and highly selective luminescent sensor for detecting o-, m-, and p-nitrophenol and Fe 3+ ions in the aqueous phase
Jiang et al. Polyurethane derivatives for highly sensitive and selective fluorescence detection of 2, 4, 6-trinitrophenol (TNP)
Mantasha et al. A novel sustainable metal organic framework as the ultimate aqueous phase sensor for natural hazards: detection of nitrobenzene and F− at the ppb level and rapid and selective adsorption of methylene blue
Singha et al. Visible detection of explosive nitroaromatics facilitated by a large stokes shift of luminescence using europium and terbium doped yttrium based MOFs
Wang et al. Fluorescence detection of anilines and photocatalytic degradation of Rhodamine B by a multifunctional metal–organic framework
Goel et al. A dual-functional luminescent Tb (III) metal–organic framework for the selective sensing of acetone and TNP in water
Zhu et al. Metal–organic frameworks assembled from flexible alicyclic carboxylate and bipyridyl ligands for sensing of nitroaromatic explosives
Xia et al. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework
Liu et al. A novel dual-functional fluorescent chemosensor for the selective detection of 2, 4, 6-trinitrotoluene and Hg 2+
Kumar et al. Aggregation induced emission enhancement behavior of conformationally rigid pyreneamide-based probe for ultra-trace detection of picric acid (PA)
Zhang et al. A thermal and pH stable fluorescent metal-organic framework sensor for high selectively and sensitively sensing nitro aromatic compounds in aqueous media
Sahoo et al. Selective and sensitive detection of picric acid in aqueous, sol-gel and solid support media by Ln (III) probes
Cheng et al. Tunable emission and selective luminescence sensing for nitro-pollutants and metal ions based on bifunctional lanthanide metal-organic frameworks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant