CN112858781A - Harmonic detection system - Google Patents

Harmonic detection system Download PDF

Info

Publication number
CN112858781A
CN112858781A CN202011620200.9A CN202011620200A CN112858781A CN 112858781 A CN112858781 A CN 112858781A CN 202011620200 A CN202011620200 A CN 202011620200A CN 112858781 A CN112858781 A CN 112858781A
Authority
CN
China
Prior art keywords
harmonic
value
dft
register
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011620200.9A
Other languages
Chinese (zh)
Inventor
陈建锋
王晓亮
张明
徐京生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holley Technology Co Ltd
Original Assignee
Holley Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holley Technology Co Ltd filed Critical Holley Technology Co Ltd
Priority to CN202011620200.9A priority Critical patent/CN112858781A/en
Publication of CN112858781A publication Critical patent/CN112858781A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

The invention relates to a harmonic detection system, comprising: a voltage harmonic analysis module: sampling external voltage by using a voltage sampling circuit, inputting the external voltage to the MCU for analysis, storing and outputting a result; a current harmonic analysis module: sampling external voltage by using a current sampling circuit, inputting the sampled external voltage to the MCU for analysis, storing and outputting a result; an alarm module: the sizes of the current harmonic component value and the preset value are judged by inquiring the relevant state bit or the interrupt output signal in the chip, and the values are used as the conditions for calculating whether the engine is started or not. The technical scheme provided by the invention can avoid the problem of communication interference between the two chips, and only one main chip is designed to complete harmonic detection and other functions of the intelligent ammeter, so that the cost is reduced.

Description

Harmonic detection system
Technical Field
The invention belongs to the technical field of electrical measurement, and particularly relates to a harmonic detection system.
Background
With the development of power systems, nonlinear loads are applied on a large scale, and a large amount of harmonic waves are injected into a power grid, so that the voltage and current waveform distortion of the power system is more and more serious, and the power quality and the power utilization safety are seriously influenced. Therefore, harmonic detection and suppression is of great practical and economic significance. At present, methods for detecting harmonics in an electric power system can be broadly classified into two broad categories, namely frequency domain-based detection methods and time domain-based detection methods. Frequency domain based detection methods are based on fourier transforms, including Fast Fourier Transform (FFT), Discrete Fourier Transform (DFT), and iterative fourier transform (RDFT).
A protection circuit of intelligent low pressure reactive compensation control system in patent publication No. CN202817707U, control system includes main control CPU and the three-phase switching circuit that links to each other with main control CPU, sampling circuit and input/output circuit, protection circuit links to each other with main control CPU, protection circuit includes the DSP control chip that links to each other with main control CPU, the relay, fundamental wave generating circuit and temperature sensor, be equipped with AD converting unit and harmonic detection unit in the DSP control chip, AD converting unit links to each other with harmonic detection unit, AD converting unit respectively with sampling circuit, fundamental wave generating circuit and temperature sensor link to each other, the relay links to each other with DSP control chip. When the equipment of the control system is in fault due to the fact that the equipment is over-temperature, abnormal in phase sequence or excessive in harmonic wave during operation, the control system sends alarm information through the DSP control chip, and the master control CPU controls the cut-off working circuit to guarantee normal operation of the system.
The harmonic detection in the above patent is realized by a DSP chip, and a main CPU is additionally needed to realize other functions of the intelligent electric meter, so that the cost is high, and the design is complex. And the communication between the two chips will have signal interference.
Disclosure of Invention
In order to solve the problems, the invention provides a harmonic detection system which can avoid the problem of communication interference between two chips, only one main chip is designed to complete harmonic detection and other functions of an intelligent electric meter, and the cost is reduced.
The technical scheme of the invention is as follows:
a harmonic detection system comprising:
a voltage harmonic analysis module: sampling external voltage by using a voltage sampling circuit, inputting the external voltage to the MCU for analysis, storing and outputting a result;
a current harmonic analysis module: sampling external voltage by using a current sampling circuit, inputting the sampled external voltage to the MCU for analysis, storing and outputting a result;
an alarm module: the sizes of the current harmonic component value and the preset value are judged by inquiring the relevant state bit or the interrupt output signal in the chip, and the values are used as the conditions for calculating whether the engine is started or not.
Preferably, the MCU utilizes a calculation engine to perform 2-32 harmonic analysis or 33-42 harmonic analysis on the input voltage and current.
Preferably, the calculation engine adopts a DFT calculation engine, and a preamplifier is arranged in front of the DFT calculation engine and is used for amplifying the input signal.
Preferably, the voltage sampling circuit and the current sampling circuit are both connected to the MCU through an AD detection port, the AD sampling frequency of the MCU is set between 1KHz and 20KHz, the DFT calculation is performed by intercepting sampling points, the number of the sampling points is set between 1028 and 8224, and the single calculation time of the DFT engine is set between 0.1 and 20 seconds.
Preferably, the specific process of 2-32 th harmonic analysis is as follows:
1) setting a DFT calculation engine, and writing the pre-amplification times of voltage and current into a register;
2) starting a DFT calculation engine, and writing 0001H into the control register;
3) detecting a DFT control register, and finishing DFT calculation when DFT _ CRUAL is equal to 0;
4) and reading the register value, and converting to obtain a harmonic component value, a fundamental voltage and a fundamental current.
Preferably, the harmonic component value is register value/163.84, and the register address is 100H to 1 BFH; the fundamental current is register value × 1.6328 × 10-3Current pre-amplification factor, register address 1C0H, 1C2H, 1C 4H; the fundamental wave voltage is equal to the register value × 1.6328 × 10-2Voltage pre-amplification factor, register addresses 1C1H, 1C3H, 1C 5H.
Preferably, the calculation formula of the harmonic component values is as follows:
Figure BDA0002878096360000021
where X (k) denotes the value of the kth harmonic component, and X (0) is the value of the fundamental wave.
Preferably, the specific process of 33 th-42 th harmonic analysis is as follows:
1) reading the value of the frequency register (1D 7H) and writing the value into the register (1D 4H);
2) converting the value of the frequency register (1D 7H) into an HEX format, writing high bytes into (1D 2H) and writing low bytes into (1D 3H);
3) starting a DFT calculation engine;
4) and writing the harmonic component values into the corresponding registers.
Preferably, the calculation formula of the harmonic component values is as follows:
Figure BDA0002878096360000031
where X (k) denotes the value of the kth harmonic component, and X (0) is the value of the fundamental wave.
Preferably, the specific process in the alarm module is as follows:
1) setting a THD + N identification mark;
2) inquiring the THD + N monitoring mark, judging whether the current harmonic component value is greater than a preset value, if so, starting a DFT calculation engine, otherwise, continuously inquiring the THD + N monitoring mark;
3) and inquiring the DFT completion identification, confirming whether the DFT calculation is completed, if so, directly reading the DFT calculation result, and otherwise, continuously inquiring the DFT completion identification.
The invention has the beneficial effects that:
according to the invention, through the design of the whole system, the problem of interference caused by communication between two chips in the traditional harmonic detection can be avoided, and only one main chip is designed to complete the harmonic detection and other functions of the intelligent ammeter, so that the cost is reduced.
Drawings
Fig. 1 is a block diagram of the overall structure of the present invention.
Fig. 2 shows a calculation flow of THD1 in the embodiment of the present invention.
Fig. 3 is a calculation flow of THD2 in the embodiment of the present invention.
Fig. 4 is a flowchart of a method in the early warning module according to an embodiment of the present invention.
Detailed Description
The embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
As shown in fig. 1, a harmonic detection system includes: the device comprises a voltage harmonic analysis module, a current harmonic analysis module and an alarm module, wherein the voltage harmonic analysis module is used for sampling external voltage by using a voltage sampling circuit, inputting the external voltage to an MCU (microprogrammed control Unit) for analysis, storing and outputting results, the current harmonic analysis module is used for sampling the external voltage by using a current sampling circuit, inputting the external voltage to the MCU for analysis, storing and outputting results, and the alarm module is used for judging the sizes of current harmonic component values and preset values by inquiring related state bits or interrupt output signals in a chip and is used as a condition for calculating whether an engine is.
In one embodiment of the invention, the MCU utilizes a calculation engine to perform 2-32 order harmonic analysis or 33-42 order harmonic analysis on the input voltage and current.
As an embodiment of the invention, the calculation engine adopts a DFT calculation engine, and a preamplifier is arranged in front of the DFT calculation engine for amplifying an input signal. The DFT calculation engine inside the MCU can complete harmonic analysis functions of 2-32 times or 33-42 times of 6 channels, and when an input signal is small, the calculation error of harmonic analysis becomes large, so that the signal needs to be processed by a preamplifier.
As an implementation mode of the invention, a voltage sampling circuit and a current sampling circuit are both connected to an MCU through an AD detection port, the AD sampling frequency of the MCU is set between 1KHz and 20KHz, DFT calculation is carried out by intercepting sampling points, the number of the sampling points is set between 1028 and 8224, and the single calculation time of the DFT engine is set between 0.1 and 20 seconds. In this embodiment, the AD sampling frequency of the MCU is set to 8KHZ, DFT computation is performed by intercepting 4096 sampling points, and the single computation time of the DFT engine is 0.5 seconds.
As an embodiment of the present invention, as shown in fig. 2, a specific flow of 2-32 th harmonic analysis is as follows:
1) setting a DFT calculation engine, and writing the pre-amplification times of voltage and current into a register;
2) starting a DFT calculation engine, and writing 0001H into the control register;
3) detecting a DFT control register, and finishing DFT calculation when DFT _ CRUAL is equal to 0;
4) and reading the register value, and converting to obtain a harmonic component value, a fundamental voltage and a fundamental current.
In this embodiment, the pre-magnification is set to 10 times.
As an embodiment of the present invention, the harmonic component value is register value/163.84, and the register address is 100H to 1 BFH; fundamental current is register value × 1.6328 × 10-3Current pre-amplification factor, register address 1C0H, 1C2H, 1C 4H; fundamental wave voltage is register value × 1.6328 × 10-2Voltage pre-amplification factor, register addresses 1C1H, 1C3H, 1C 5H.
As an embodiment of the present invention, the calculation formula of the harmonic component values is:
Figure BDA0002878096360000041
where X (k) denotes the value of the kth harmonic component, and X (0) is the value of the fundamental wave.
As an embodiment of the present invention, as shown in fig. 3, a specific flow of 33 th-42 th harmonic analysis is as follows:
1) reading the value of the frequency register (1D 7H) and writing the value into the register (1D 4H);
2) converting the value of the frequency register (1D 7H) into an HEX format, writing high bytes into (1D 2H) and writing low bytes into (1D 3H);
3) starting a DFT calculation engine;
4) and writing the harmonic component values into the corresponding registers.
As an embodiment of the present invention, the calculation formula of the harmonic component values is:
Figure BDA0002878096360000051
where X (k) denotes the value of the kth harmonic component, and X (0) is the value of the fundamental wave.
Total harmonic component THDTThe calculation formula of (2) is as follows:
Figure BDA0002878096360000052
as an implementation mode of the invention, in practical application, threshold alarm functions of the THDs 1-42 of three-phase voltage and current can be set, and whether the current THDs 1-42 are larger than a set value or not can be judged by inquiring related state bits or interrupt output signals in a chip. If the harmonic signal is greater than the set value, the DFT computation engine may be started to analyze and record the harmonic signal in the line, as shown in fig. 4, the specific process is as follows:
1) setting a THD + N identification mark;
2) inquiring the THD + N monitoring mark, and judging whether the current harmonic component value is greater than a preset value, wherein the preset value is 20H in the embodiment, if so, starting a DFT calculation engine, otherwise, continuously inquiring the THD + N monitoring mark;
3) and inquiring the DFT completion identification, confirming whether the DFT calculation is completed, if so, directly reading the DFT calculation result, and otherwise, continuously inquiring the DFT completion identification.
Finally, it should be noted that: the above-mentioned embodiments are only specific embodiments of the present invention, which are used for illustrating the technical solutions of the present invention and not for limiting the same, and the protection scope of the present invention is not limited thereto, although the present invention is described in detail with reference to the foregoing embodiments, those skilled in the art should understand that: any person skilled in the art can modify or easily conceive the technical solutions described in the foregoing embodiments or equivalent substitutes for some technical features within the technical scope of the present disclosure; such modifications, changes or substitutions do not depart from the spirit and scope of the present invention in its spirit and scope. Are intended to be covered by the scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.

Claims (10)

1. A harmonic detection system, comprising:
a voltage harmonic analysis module: sampling external voltage by using a voltage sampling circuit, inputting the external voltage to the MCU for analysis, storing and outputting a result;
a current harmonic analysis module: sampling external voltage by using a current sampling circuit, inputting the sampled external voltage to the MCU for analysis, storing and outputting a result;
an alarm module: the sizes of the current harmonic component value and the preset value are judged by inquiring the relevant state bit or the interrupt output signal in the chip, and the values are used as the conditions for calculating whether the engine is started or not.
2. The harmonic detection system of claim 1 wherein the MCU utilizes a computational engine to perform 2-32 harmonic analysis or 33-42 harmonic analysis on the input voltage and current.
3. The harmonic detection system of claim 2 wherein the computational engine employs a DFT computational engine preceded by a preamplifier for amplifying the input signal.
4. The harmonic detection system according to claim 3, wherein the voltage sampling circuit and the current sampling circuit are both connected to the MCU through the AD detection port, the AD sampling frequency of the MCU is set between 1KHz and 20KHz, the DFT calculation is performed by intercepting sampling points, the number of the sampling points is set between 1028 and 8224, and the single calculation time of the DFT engine is set between 0.1 and 20 seconds.
5. The harmonic detection system of claim 2 wherein the specific process of the 2-32 th harmonic analysis is:
1) setting a DFT calculation engine, and writing the pre-amplification times of voltage and current into a register;
2) starting a DFT calculation engine, and writing 0001H into the control register;
3) detecting a DFT control register, and finishing DFT calculation when DFT _ CRUAL is equal to 0;
4) and reading the register value, and converting to obtain a harmonic component value, a fundamental voltage and a fundamental current.
6. The harmonic detection system of claim 5 wherein the harmonic component values are register values/163.84 with register addresses of 100H-1 BFH; the fundamental current is register value × 1.6328 × 10-3Current pre-amplification factor, register address 1C0H, 1C2H, 1C 4H; the fundamental wave voltage is equal to the register value × 1.6328 × 10-2Voltage pre-amplification factor, register addresses 1C1H, 1C3H, 1C 5H.
7. The harmonic detection system as claimed in claim 6, wherein the calculation formula of the harmonic component values is:
Figure FDA0002878096350000011
where X (k) denotes the value of the kth harmonic component, and X (0) is the value of the fundamental wave.
8. The harmonic detection system of claim 2, wherein the specific process of the 33 th-42 th harmonic analysis is as follows:
1) reading the value of the frequency register (1D 7H) and writing the value into the register (1D 4H);
2) converting the value of the frequency register (1D 7H) into an HEX format, writing high bytes into (1D 2H) and writing low bytes into (1D 3H);
3) starting a DFT calculation engine;
4) and writing the harmonic component values into the corresponding registers.
9. The harmonic detection system as claimed in claim 8, wherein the calculation formula of the harmonic component values is:
Figure FDA0002878096350000021
where X (k) denotes the value of the kth harmonic component, and X (0) is the value of the fundamental wave.
10. The harmonic detection system of claim 2, wherein the specific process in the alarm module is as follows:
1) setting a THD + N identification mark;
2) inquiring the THD + N monitoring mark, judging whether the current harmonic component value is greater than a preset value, if so, starting a DFT calculation engine, otherwise, continuously inquiring the THD + N monitoring mark;
3) and inquiring the DFT completion identification, confirming whether the DFT calculation is completed, if so, directly reading the DFT calculation result, and otherwise, continuously inquiring the DFT completion identification.
CN202011620200.9A 2020-12-31 2020-12-31 Harmonic detection system Pending CN112858781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011620200.9A CN112858781A (en) 2020-12-31 2020-12-31 Harmonic detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011620200.9A CN112858781A (en) 2020-12-31 2020-12-31 Harmonic detection system

Publications (1)

Publication Number Publication Date
CN112858781A true CN112858781A (en) 2021-05-28

Family

ID=75999047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011620200.9A Pending CN112858781A (en) 2020-12-31 2020-12-31 Harmonic detection system

Country Status (1)

Country Link
CN (1) CN112858781A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114674A (en) * 1997-06-19 1999-01-22 Chubu Electric Power Co Inc Method for measuring higher harmonics of power system
US5889398A (en) * 1994-06-01 1999-03-30 Siemens Aktiengesellschaft Process for determining the harmonic oscillations of the fundamental component of an electrical signal
CN202033391U (en) * 2010-12-30 2011-11-09 上海协同科技股份有限公司 AC sampling device
CN202330511U (en) * 2011-11-29 2012-07-11 威胜集团有限公司 Three-phase harmonic electricity meter
CN103809021A (en) * 2012-11-13 2014-05-21 周瑞山 Harmonic analyzer
CN106154034A (en) * 2015-04-14 2016-11-23 艾默生网络能源有限公司 The harmonic measuring device of a kind of power model and method
CN206832864U (en) * 2016-12-30 2018-01-02 嘉兴东鸿电子科技有限公司 A kind of multichannel three-phase electric energy meter of distributed structure/architecture
CN110187176A (en) * 2019-05-31 2019-08-30 中国电力科学研究院有限公司 A kind of mains by harmonics measuring device and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889398A (en) * 1994-06-01 1999-03-30 Siemens Aktiengesellschaft Process for determining the harmonic oscillations of the fundamental component of an electrical signal
JPH1114674A (en) * 1997-06-19 1999-01-22 Chubu Electric Power Co Inc Method for measuring higher harmonics of power system
CN202033391U (en) * 2010-12-30 2011-11-09 上海协同科技股份有限公司 AC sampling device
CN202330511U (en) * 2011-11-29 2012-07-11 威胜集团有限公司 Three-phase harmonic electricity meter
CN103809021A (en) * 2012-11-13 2014-05-21 周瑞山 Harmonic analyzer
CN106154034A (en) * 2015-04-14 2016-11-23 艾默生网络能源有限公司 The harmonic measuring device of a kind of power model and method
CN206832864U (en) * 2016-12-30 2018-01-02 嘉兴东鸿电子科技有限公司 A kind of multichannel three-phase electric energy meter of distributed structure/architecture
CN110187176A (en) * 2019-05-31 2019-08-30 中国电力科学研究院有限公司 A kind of mains by harmonics measuring device and method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
李明勇 等: "基于FPGA的电力系统谐波分析仪", 仪表技术与传感器 *
李明勇等: "基于FPGA的电力系统谐波分析仪", 《仪表技术与传感器》 *
李维翰: "两种谐波分析仪设计方案的对比分析", 《黑龙江科技信息》 *
李维翰: "两种谐波分析仪设计方案的对比分析", 黑龙江科技信息 *

Similar Documents

Publication Publication Date Title
CN101839931A (en) Alternating current signal measurement device, system and method
CN105137164A (en) Voltage sag on-line monitoring device applied in power system
CN110780154B (en) Device and method for improving ground fault identification through fault duration transient characteristics
CN101192752B (en) High-voltage arc grounding recognition method based on spectrum analysis
CN112858781A (en) Harmonic detection system
CN209148771U (en) A kind of Measurement of Harmonics in Power System device based on synchronized sampling complete cycle
KR20210125313A (en) Fault recording device for monitoring power quality
CN116699282A (en) Power transmission and distribution line abnormality detection method based on multiple information extraction
CN2932398Y (en) Multichannel harmonic monitoring and analyzing device
CN112421773A (en) Remote electric energy quality information acquisition device of photovoltaic grid-connected system
CN110568290A (en) Real-time monitoring device for load working state of sound masking system under multi-load condition
CN105067979A (en) SF6 electrical equipment partial discharge decomposition product comprehensive detector and control method thereof
CN110988597A (en) Resonance type detection method based on neural network
CN113671239B (en) Intelligent overvoltage identification method, device and system for high-voltage switch PT cabinet
CN211928149U (en) On-spot checking device of current type on-line monitoring equipment
CN211718508U (en) Electric energy meter performance detection system
CN215340055U (en) Electric quantity detection filter system
CN113608031B (en) Impact impedance monitoring method and device for substation lightning arrester
CN111505420B (en) Online monitoring and diagnosing method and system for state of line arrester
CN115951114B (en) Current signal identification method in power supply monitoring system
CN203133169U (en) Device employing novel wiring method for detecting current harmonic quality
JP2000055953A (en) Apparatus for measuring circuit element
Shi et al. An Improved Real-Time Voltage Sag Detection Method Based on the Short-Time Delay Method
CN117370831A (en) Fault detection method for power distribution system comprising series reactors
CN117370830A (en) Fault detection classification method for power distribution system comprising series reactors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528