CN112849388A - 一种基于机翼后缘通气孔的跨声速抖振控制结构 - Google Patents

一种基于机翼后缘通气孔的跨声速抖振控制结构 Download PDF

Info

Publication number
CN112849388A
CN112849388A CN202110111122.8A CN202110111122A CN112849388A CN 112849388 A CN112849388 A CN 112849388A CN 202110111122 A CN202110111122 A CN 202110111122A CN 112849388 A CN112849388 A CN 112849388A
Authority
CN
China
Prior art keywords
trailing edge
vent hole
airfoil
buffeting
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110111122.8A
Other languages
English (en)
Inventor
雷娟棉
刘昱希
牛健平
吴志翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202110111122.8A priority Critical patent/CN112849388A/zh
Publication of CN112849388A publication Critical patent/CN112849388A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/36Structures adapted to reduce effects of aerodynamic or other external heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明公开了一种基于机翼后缘通气孔的跨声速抖振控制结构,属于飞行器流动控制技术领域。抖振控制结构为设置在机翼后缘内部的通气孔,通气孔的一端与翼型上表面相通,另一端与翼型钝后缘相通;通气孔的孔径与翼型后缘厚度为同一量级。本发明能够在控制抖振的同时,减少对原机翼升阻特性的影响。

Description

一种基于机翼后缘通气孔的跨声速抖振控制结构
技术领域
本发明属于飞行器流动控制技术领域,具体涉及一种基于机翼后缘通气孔的跨声速抖振控制结构。
背景技术
飞行器在跨声速飞行时,激波-边界层干扰可能造成流动分离以及激波周期性的自激振荡,引起跨声速抖振。抖振时往往产生较大的非定常载荷,对飞行品质和结构寿命造成不利影响。因此需要对流动进行控制,抑制跨声速抖振。
Mabey等人针对对称翼型(机翼截面)的激波振荡提出了一种抖振通气孔的概念,如附图1所示,通过在激波下游的翼型上、下表面穿孔并从内部连通,使得翼型上、下表面的压力实现传导,从而在零攻角下消除或减弱激波振荡。
Jiang等人在Mabey研究成果的基础上进行了发展,利用贯通翼型上、下表面的抖振通气孔,将超临界翼型上表面激波后的分离流与翼型后缘分离区隔开,阻碍了两者的融合和相互作用,从而抑制抖振。
对于Mabey和Jiang等人所研究的抖振通气孔流动控制技术,虽然能够有效减弱翼型和机翼绕流中的激波振荡,抑制跨声速抖振,但同时也对原翼型的气动特性产生了较大影响。根据数值模拟结果,在完全消除抖振载荷时,升力系数损失可达10%以上。这对于十分重视升力特性的相关飞行器设计,如民航客机来说,是难以接受的。
发明内容
有鉴于此,本发明提供了一种基于机翼后缘通气孔的跨声速抖振控制结构,能够在控制抖振的同时,减少对原机翼升阻特性的影响。
一种基于机翼后缘通气孔的跨声速抖振控制结构,所述抖振控制结构为设置在机翼后缘内部的通气孔,所述通气孔的一端与翼型上表面相通,另一端与翼型钝后缘相通;所述通气孔的孔径与翼型后缘厚度为同一量级。
进一步地,所述通气孔设置在机翼翼型内的中后部。
进一步地,所述通气孔在机翼后缘内在走向与翼型上表面的弧度一致。
进一步地,所述通气孔的截面形状为圆形或方形。
进一步地,所述通气孔对于三维机翼表现为通槽的形式。
有益效果:
1、本发明的抖振控制结构采用了连通翼后缘和翼上表面的通气孔,利用翼后缘与翼上表面的压差,在通气孔中产生从翼后缘流向上表面某处的射流,该射流能够阻碍激波脚分离泡与后缘分离区的融合,从而抑制跨声速抖振。
2、本发明的通气孔的入口位于翼型钝后缘处,且孔直径与翼型后缘厚度为同一量级,因此对翼型下表面高压的影响较小,从而能够减小流动控制对翼型造成的升力损失。
附图说明
图1为现有技术中抖振通气孔在翼型上的结构示意图;
图2为跨声速条件下翼型表面时均压力分布曲线图;
图3为本发明跨声速抖振控制结构示意图;
图4为后缘通气孔出口、入口处的局部放大图;
图5为翼型升力系数-时间曲线对比图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明提供了一种基于机翼后缘通气孔的跨声速抖振控制结构,对于超临界翼型,在跨声速条件下的表面时均压力分布如图2所示。翼型上表面压力相对较低,在低压区“平台”之后一直到后缘,翼型表面压力逐渐升高。本发明提出的机翼后缘通气孔示意图如图3所示,通气孔的截面形状为圆形,图中为便于展示,对翼型进行了增厚。后缘通气孔为在翼型内的中后部,将钝后缘B处与翼型上表面压力较低的A处连接起来的通孔。由于B处压力高于A处,在压差驱动下就会在孔中产生由B至A处的流动,并在A处形成与翼型弦长方向垂直的射流。这样形成的射流能够阻碍激波脚分离泡与翼型后缘分离区的融合,减弱分离区的非定常性,抑制翼型跨声速抖振。同时由于通气孔的入口位于翼型钝后缘处,且孔直径d与翼型后缘厚度t为同一量级,如附图4所示,因此对翼型下表面高压的影响较小,从而能够减小流动控制对翼型造成的升力损失。
附图5给出了数值模拟计算得到的利用本发明提出的翼后缘通气孔抖振控制结构进行流动控制,在跨声速飞行条件下(马赫数Ma=0.73,攻角α=3.5°),OAT15A翼型的升力系数-时间曲线与无控情况的对比。可以看出,在有后缘通气孔进行流动控制的情况下,翼型的非定常升力系数波动幅值减小约52%,说明抖振得到有效控制;同时升力系数时均值仅减小约0.7%,相对于传统的抖振通气孔技术,对升力特性的影响减小了一个数量级。由以上结果可见:本发明提出的基于后缘通气孔的抖振控制器能够在控制抖振的同时,大大减少对原翼型升阻特性的影响。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于机翼后缘通气孔的跨声速抖振控制结构,其特征在于,所述抖振控制结构为设置在机翼后缘内部的通气孔,所述通气孔的一端与翼型上表面相通,另一端与翼型钝后缘相通;所述通气孔的孔径与翼型后缘厚度为同一量级。
2.如权利要求1所述的基于机翼后缘通气孔的跨声速抖振控制结构,其特征在于,所述通气孔设置在机翼翼型内的中后部。
3.如权利要求2所述的基于机翼后缘通气孔的跨声速抖振控制结构,其特征在于,所述通气孔在机翼后缘内在走向与翼型上表面的弧度一致。
4.如权利要求3所述的基于机翼后缘通气孔的跨声速抖振控制结构,其特征在于,所述通气孔的截面形状为圆形或方形。
5.如权利要求4所述的基于机翼后缘通气孔的跨声速抖振控制结构,其特征在于,所述通气孔对于三维机翼表现为通槽的形式。
CN202110111122.8A 2021-01-27 2021-01-27 一种基于机翼后缘通气孔的跨声速抖振控制结构 Pending CN112849388A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110111122.8A CN112849388A (zh) 2021-01-27 2021-01-27 一种基于机翼后缘通气孔的跨声速抖振控制结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110111122.8A CN112849388A (zh) 2021-01-27 2021-01-27 一种基于机翼后缘通气孔的跨声速抖振控制结构

Publications (1)

Publication Number Publication Date
CN112849388A true CN112849388A (zh) 2021-05-28

Family

ID=76009561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110111122.8A Pending CN112849388A (zh) 2021-01-27 2021-01-27 一种基于机翼后缘通气孔的跨声速抖振控制结构

Country Status (1)

Country Link
CN (1) CN112849388A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2554081A1 (fr) * 1983-11-02 1985-05-03 Sirretta Raymond Dispositif pour ameliorer les conditions aerodynamiques de penetration et de sustentation des planeurs d'aeronefs
CN102009744A (zh) * 2010-07-01 2011-04-13 北京航空航天大学 飞机操纵舵面流动分离的吹/吸气控制方法
CN105173064A (zh) * 2015-09-22 2015-12-23 党会学 切向狭缝吹气控制跨声速抖振的方法及吹气装置
CN109533356A (zh) * 2018-11-21 2019-03-29 南京航空航天大学 一种激波边界层干扰控制器
CN109665093A (zh) * 2019-01-16 2019-04-23 西北工业大学 一种可延缓流动分离的翼型及置于翼型上的激励器
CN110104164A (zh) * 2019-05-16 2019-08-09 北京理工大学 一种用于跨声速机翼的前加载-吸气组合流动控制方法
CN110588957A (zh) * 2019-10-08 2019-12-20 江西洪都航空工业集团有限责任公司 一种机翼翼尖涡流动控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2554081A1 (fr) * 1983-11-02 1985-05-03 Sirretta Raymond Dispositif pour ameliorer les conditions aerodynamiques de penetration et de sustentation des planeurs d'aeronefs
CN102009744A (zh) * 2010-07-01 2011-04-13 北京航空航天大学 飞机操纵舵面流动分离的吹/吸气控制方法
CN105173064A (zh) * 2015-09-22 2015-12-23 党会学 切向狭缝吹气控制跨声速抖振的方法及吹气装置
CN109533356A (zh) * 2018-11-21 2019-03-29 南京航空航天大学 一种激波边界层干扰控制器
CN109665093A (zh) * 2019-01-16 2019-04-23 西北工业大学 一种可延缓流动分离的翼型及置于翼型上的激励器
CN110104164A (zh) * 2019-05-16 2019-08-09 北京理工大学 一种用于跨声速机翼的前加载-吸气组合流动控制方法
CN110588957A (zh) * 2019-10-08 2019-12-20 江西洪都航空工业集团有限责任公司 一种机翼翼尖涡流动控制方法

Similar Documents

Publication Publication Date Title
US7866609B2 (en) Passive removal of suction air for laminar flow control, and associated systems and methods
US4706910A (en) Combined riblet and lebu drag reduction system
EP2137068B1 (en) Laminar flow surfaces with selected roughness distributions, and associated methods
US4641796A (en) Airfoil
CN112572761B (zh) 一种具有低阻高发散马赫数高升力的跨空域稳健层流翼型
US5492289A (en) Lifting body with reduced-strength trailing vortices
CN105314096A (zh) 独立气源供气的无舵面飞行器
CN107933895B (zh) 一种用于超临界翼型减阻增升的微吹结构和方法
US8827201B2 (en) Rotorcraft structural element for reducing aerodynamic drag
CN109436293B (zh) 一种激波控制装置
CN106828933B (zh) 一种采用上下反角差的高空长航时串列翼飞行器气动布局
WO2021212707A1 (zh) 一种机翼碎涡结构、机翼及飞机
KR20200055036A (ko) 항공기용 큐폴라 페어링 및 이를 제조하기 위한 방법
US6905092B2 (en) Laminar-flow airfoil
Boermans Research on sailplane aerodynamics at Delft University of Technology
CN205186510U (zh) 独立气源供气的无舵面飞行器
CN106828872B (zh) 采用支撑尾翼的高后翼高空长航时串列翼飞行器气动布局
CN113859515A (zh) 一种飞机襟翼
CN113044205A (zh) 可变机翼前缘弯度
Dal Monte et al. A retrospective of high-lift device technology
CN112849388A (zh) 一种基于机翼后缘通气孔的跨声速抖振控制结构
CN207902734U (zh) 一种气动布局的无人机
CN216185999U (zh) 一种飞机襟翼
CN114735202A (zh) 机翼及通过吹气提升舵面控制效率的方法
Bocci A new series of aerofoil sections suitable for aircraft propellers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination