CN112844300A - 用于去除水体草甘膦的磁性纳米颗粒及其制备方法 - Google Patents

用于去除水体草甘膦的磁性纳米颗粒及其制备方法 Download PDF

Info

Publication number
CN112844300A
CN112844300A CN201911191505.XA CN201911191505A CN112844300A CN 112844300 A CN112844300 A CN 112844300A CN 201911191505 A CN201911191505 A CN 201911191505A CN 112844300 A CN112844300 A CN 112844300A
Authority
CN
China
Prior art keywords
glyphosate
sio
adsorption
water
magnetic nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911191505.XA
Other languages
English (en)
Inventor
钱杰书
陈媛
施雪强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201911191505.XA priority Critical patent/CN112844300A/zh
Publication of CN112844300A publication Critical patent/CN112844300A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种用于去除水体草甘膦的磁性纳米颗粒及其制备方法。所述方法先将Fe3O4/SiO2核壳结构纳米粒子与镧系化合物混合在等体积的乙醇和水的混合溶剂中,超声分散后缓慢加入氢氧化钠溶液,搅拌反应得到磁性纳米颗粒Fe3O4/SiO2‑La。本发明方法简单方便,合成成本低,制得的磁性纳米颗粒吸附剂比表面积大,对草甘膦的吸附容量大,最大吸附量可达114.9mg/g,吸附速率较快,在2小时内即可达到吸附平衡,同时吸附剂有磁性,易于分离和回收,可重复利用,避免二次污染。

Description

用于去除水体草甘膦的磁性纳米颗粒及其制备方法
技术领域
本发明属于草甘膦吸附剂的制备技术领域,涉及一种用于去除水体草甘膦的磁性纳米颗粒及其制备方法,具体涉及在四氧化三铁/二氧化硅层表面负载氢氧化镧纳米颗粒的制备方法。
背景技术
草甘膦作为一种光谱灭生性除草剂,已成为用量最多的除草剂用品。虽然草甘膦最初被认定为“无害的除草剂”,但最近报道显示,草甘膦与人类癌症、内分泌系统疾病有密切的联系,而草甘膦除草剂的大量使用已经对地表水和地下水造成严重的环境威胁,因此,美国环境保护署(EPA)、世界卫生组织(WHO)等都对草甘膦在饮用水中的含量作出了严格的限定标准。
目前对草甘膦的处理方法主要有:高级氧化、臭氧处理、紫外辐射、电化学氧化、反渗透、微生物降解、吸附等。但这些方法普遍能耗较高,操作复杂且成本高,而且降解和氧化等方法使草甘膦降解为无机磷,会进一步导致水体的富营养化,从而带来二次污染。吸附法由于其经济、无二次污染、易分离等优点,一直是研究热点。吸附法去除草甘膦污染物主要是利用材料表面疏松多孔的结构或者材料本身的固有性质对水体中的草甘膦产生较强粘附力和其他作用力,以实现去除目的。常见的去除草甘膦的吸附材料有:活性炭、树脂、富含多金属的污泥、铁的氧化物等,但也存在着一些缺点,如吸附容量不高,吸附慢,回复差等。文献1(Yamaguchi et al,Chem Eng J,295(2016)391–402.)采用一步热溶剂法将复合氧化物铁酸锰固定在石墨烯纳米片上合成MnFe2O4-G,这种单层氧化石墨烯和铁锰氧化物的复合材料实现对草甘膦的最大吸附量为39mg/g,但在8小时内才完成吸附平衡。文献2(Herathet al,MicroporMesopor Mat,225(2016)280-288.)通过在700℃对稻壳进行缓慢热解产生蒸汽活性生物炭(RHBC),其对草甘膦的Langmuir最大吸附量为123.03mg/g,但是受溶液pH的影响很大,只有在pH=4时获得最佳吸附效果。
发明内容
本发明的目的在于提供一种用于去除水体草甘膦的磁性纳米颗粒及其制备方法。该方法将氢氧化镧纳米颗粒负载在具有磁性的铁硅球表面,制备高吸附速率和大吸附容量于一体的易分离的草甘膦吸附剂。
实现本发明目的的技术解决方案如下:
用于去除水体草甘膦的磁性纳米颗粒的制备方法,包括如下步骤:
将Fe3O4/SiO2核壳结构纳米粒子与镧系化合物混合在等体积的乙醇和水的混合溶剂中,进行超声分散,之后缓慢加入氢氧化钠溶液,搅拌反应,得到磁性纳米颗粒Fe3O4/SiO2-La。
优选地,所述的镧系化合物为La(NO3)3·6H2O,LaCl3·7H2O或La(OH)3
优选地,所述的镧系化合物与Fe3O4/SiO2的质量比为50%~300%,更优选为300%。
优选地,所述的氢氧化钠溶液的浓度为0.1~1mol/L,更优选为1mol/L。
优选地,所述的搅拌速度为300~500rpm。
本发明提供上述制备方法制得的磁性纳米颗粒。
进一步地,本发明提供上述磁性纳米颗粒在吸附去除水体草甘膦中的应用。
本发明首次将镧系材料应用在草甘膦吸附中,利用镧元素与草甘膦之间的强配位络合作用,吸附水体中的草甘膦污染物到吸附剂表面。
本发明与现有技术相比,其优点在于:
(1)本发明方法简单方便,合成成本低;
(2)本发明的磁性纳米颗粒吸附剂比表面积大,吸附容量大,例如Fe3O4/SiO2-300%La的最大吸附量为114.9mg/g,对草甘膦的吸附速率较快,在2小时内即可达到吸附平衡,同时吸附剂有磁性,易于分离和回收,可重复利用。
附图说明
图1是负载有氢氧化镧的磁性纳米颗粒Fe3O4/SiO2-300%La的扫描电镜图。
图2是负载有氢氧化镧的磁性纳米颗粒Fe3O4/SiO2-300%La的透射电镜图。
图3是实施例1~3的磁性纳米颗粒对草甘膦的吸附等温线图。
图4是实施例1~3的磁性纳米颗粒对草甘膦的吸附动力学图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细描述。
Fe3O4纳米颗粒的制备参考文献(Yang et al,Nano Res,8(2015)2503-2514.);
Fe3O4/SiO2的制备参考文献(Chen et al,Chem Eng J,360(2019)342-348.)。
实施例1
步骤1,取3.75g六水合三氯化铁与1.5g柠檬酸三钠分散在100ml的乙二醇中,随后立即加入6.5g的无水乙酸钠,通过磁子大力搅拌1小时后至淡黄色均匀澄清溶液,将液体转移到120-140ml的聚四氟乙烯的水热反应釜中,在烘箱中以200℃进行水热反应12小时,反应结束后,通过外加磁场分离,用乙醇和水交替润洗三次,得到黑色的Fe3O4纳米颗粒。
步骤2,取步骤1的Fe3O4纳米颗粒0.15g,加入到100ml异丙醇溶液中,超声处理30min,然后40℃加热,同时300~500rpm机械搅拌,使反应体系处于混匀状态,接着加入10ml氨水和20ml水,之后加入0.5ml的正硅酸四乙酯,反应时间为2小时,在外加磁铁的条件下分离得到Fe3O4/SiO2
步骤3,取0.1g步骤2得到的Fe3O4/SiO2颗粒与50mg的La(NO3)3·6H2O超声分散在30ml乙醇和30ml水中,超声30min后,在常温下以300~500rpm机械搅拌,接着将20ml,1mol/L的NaOH逐滴滴加到上述溶液中,反应4小时后,通过磁铁分离得到Fe3O4/SiO2-50%La。
实施例2
取实施例1中步骤2的颗粒Fe3O4/SiO20.1g,与La(NO3)3·6H2O按照质量比为2:3混合,即La(NO3)3·6H2O取0.15g,超声分散在30ml乙醇和30ml水中,超声30min后,在常温下以300~500rpm机械搅拌,接着将20ml,1M NaOH逐滴滴加到上述溶液中,反应4小时后,磁性分离得到Fe3O4/SiO2-150%La。
实施例3
取实施例1中步骤2的颗粒Fe3O4/SiO20.1g,与La(NO3)3·6H2O按照质量比为1:3混合,即La(NO3)3·6H2O取0.3g,超声分散在30ml乙醇和30ml水中,超声30min后,在常温下以300~500rpm机械搅拌,接着将20ml,1M NaOH逐滴滴加到上述溶液中,反应4小时后,磁性分离得到Fe3O4/SiO2-300%La。
实施例4
取实施例1中步骤2的颗粒Fe3O4/SiO20.1g,加入50mg LaCl3·7H2O,超声分散在30ml乙醇和30ml水中,超声30min后,在常温下以300~500rpm机械搅拌,接着将20ml,1MNaOH逐滴滴加到上述溶液中,反应4小时后,磁性分离后得到负载La的样品,记为Fe3O4/SiO2-50%La(2)。
实施例5
取实施例1中步骤2的颗粒Fe3O4/SiO20.1g,加入50mg La(OH)3,超声分散在30ml乙醇和30ml水中,超声30min后,在常温下以300~500rpm机械搅拌,接着将20ml,1M NaOH逐滴滴加到上述溶液中,反应4小时后,磁性分离后得到负载La的样品,记为Fe3O4/SiO2-50%La(3)。
对比例1
本对比例与实施例1前两个步骤相同,不同的是步骤3中,取0.1g步骤2得到的Fe3O4/SiO2颗粒与50mg的La(NO3)3·6H2O超声分散在30ml乙醇和30ml水中,超声30min后,在常温下以500rpm机械搅拌,接着将20ml,0.1M NaOH逐滴滴加到上述溶液中,反应4小时后,磁性分离得到另一组负载La的样品,记为Fe3O4/SiO2-50%La(1-1)。
对比例2
本对比例与实施例1前两个步骤相同,不同的是步骤3中,取0.1g步骤2得到的Fe3O4/SiO2颗粒与0.4g的La(NO3)3·6H2O超声分散在30ml乙醇和30ml水中,超声30min后,在常温下以300~500r机械搅拌,接着将20ml,0.1M NaOH逐滴滴加到上述溶液中,反应4小时后,磁性分离得到另一批负载La的样品,记为Fe3O4/SiO2-400%La。
实施例1~3中,将合成好的三组磁性纳米吸附剂对草甘膦的吸附效果用等温吸附实验和吸附动力学实验来评价,具体的吸附等温线实验步骤如下:取10mg吸附剂加入到20ml的不同初始浓度的草甘膦溶液中(30~300mg/L),经过10h的吸附时间后,利用国标紫外分光光度法测试溶液中剩余草甘膦的浓度,并计算吸附量,得到吸附等温线,并用Langmuir和Freundlich两种模型进行拟合,如图3所示,发现吸附等温线更加符合Langmuir模型,表明了吸附剂表面的化学均一性,以及吸附剂与草甘膦之间发生的单层吸附作用。吸附动力学实验如下:取50mg吸附剂加入到100ml,初始浓度为100mg/L的草甘膦溶液中,在不同的时间间隔取样,并记录各个时刻溶液中草甘膦的浓度,所得的动力学曲线用拟一级和拟二级动力学模型分别进行拟合,如图4所示,发现三组样品的吸附动力学更加符合拟二级动力学模型,表明发生了化学吸附。
实施例1,4,5选用了不同的镧系前驱体,在同一组吸附实验中,取5mg吸附剂加入到10ml的初始浓度为10mg/L的草甘膦溶液中,发现Fe3O4/SiO2-50%La,Fe3O4/SiO2-50%La(2),Fe3O4/SiO2-50%La(3)对草甘膦的平衡吸附量分别为17,14,10mg/g,发现同质量条件下,以六水合硝酸镧为前驱体进行负载,吸附效果最好。
对比例1中,将Fe3O4/SiO2-50%La(1-1)和Fe3O4/SiO2-50%La同时对100mg/L的草甘膦进行吸附实验,发现Fe3O4/SiO2-50%La(1-1)样品的吸附效果较差,可能在0.1mol/L的NaOH条件下,镧的氢氧化物部分未沉积完全,导致吸附效果不佳。
对比例2中,对样品Fe3O4/SiO2-400%La进行吸附等温线实验,但最终Langmuir模型拟合出的最大吸附量约为120mg/g,尽管镧的质量分数相比实施例3中Fe3O4/SiO2-300%La有增加,但结果表明更多的La并不会对吸附量有较大的提升,表明镧的有效活性位点的负载已达到饱和。
图1是负载有氢氧化镧的磁性纳米颗粒Fe3O4/SiO2-300%La的扫描电镜图。从图中可以看出,样品外观呈球形,颗粒直径在100~250nm范围,样品表面呈现一定的粗糙度,也表明了氢氧化镧的负载。
图2是负载有氢氧化镧的磁性纳米颗粒Fe3O4/SiO2-300%La的透射电镜图。从图中可以看出,负载氢氧化镧纳米颗粒后,样品不再呈现Fe3O4/SiO2的核壳形结构,单纯呈球形状态。表明了氢氧化镧对原有二氧化硅空间的争夺,因此破坏了核壳结构,侧面证实了氢氧化镧纳米颗粒的有效负载。
图3是实施例1~3的磁性纳米颗粒对草甘膦的Langmuir吸附等温线图,表明了吸附剂表面的化学均一性,以及吸附剂与草甘膦之间发生的单层吸附作用。
图4是实施例1~3的磁性纳米颗粒对草甘膦的拟二级吸附动力学图,表明吸附剂与草甘膦之间发生了化学吸附。

Claims (7)

1.用于去除水体草甘膦的磁性纳米颗粒的制备方法,其特征在于,包括如下步骤:
将Fe3O4/SiO2核壳结构纳米粒子与镧系化合物混合在等体积的乙醇和水的混合溶剂中,进行超声分散,之后缓慢加入氢氧化钠溶液,搅拌反应,得到磁性纳米颗粒Fe3O4/SiO2-La。
2.根据权利要求1所述的制备方法,其特征在于,所述的镧系化合物为La(NO3)3·6H2O,LaCl3·7H2O或La(OH)3
3.根据权利要求1所述的制备方法,其特征在于,所述的镧系化合物与Fe3O4/SiO2的质量比为50%~300%。
4.根据权利要求1所述的制备方法,其特征在于,所述的氢氧化钠溶液的浓度为0.1~1mol/L。
5.根据权利要求1所述的制备方法,其特征在于,所述的搅拌速度为300~500rpm。
6.根据权利要求1至5任一所述的制备方法制得的磁性纳米颗粒。
7.根据权利要求6所述的磁性纳米颗粒在吸附去除水体草甘膦中的应用。
CN201911191505.XA 2019-11-28 2019-11-28 用于去除水体草甘膦的磁性纳米颗粒及其制备方法 Pending CN112844300A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911191505.XA CN112844300A (zh) 2019-11-28 2019-11-28 用于去除水体草甘膦的磁性纳米颗粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911191505.XA CN112844300A (zh) 2019-11-28 2019-11-28 用于去除水体草甘膦的磁性纳米颗粒及其制备方法

Publications (1)

Publication Number Publication Date
CN112844300A true CN112844300A (zh) 2021-05-28

Family

ID=75995590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911191505.XA Pending CN112844300A (zh) 2019-11-28 2019-11-28 用于去除水体草甘膦的磁性纳米颗粒及其制备方法

Country Status (1)

Country Link
CN (1) CN112844300A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180535A (zh) * 2011-03-25 2011-09-14 中国科学院南京土壤研究所 金属化合物复合矿物材料去除有机磷农药废水中磷的方法
CN103964538A (zh) * 2014-05-23 2014-08-06 南京晓庄学院 一种氧化铈改性的磁性Fe3O4@SiO2颗粒吸附去除水体中磷酸盐的方法
CN104058516A (zh) * 2014-05-30 2014-09-24 安徽国星生物化学有限公司 一种在草甘膦生产过程产生的含磷废水的处理方法
CN107096494A (zh) * 2017-05-23 2017-08-29 太原理工大学 一种磁性核壳纳米复合吸附剂的制备与应用方法
CN108722448A (zh) * 2018-04-27 2018-11-02 中国农业科学院植物保护研究所 用于降解草甘膦的纳米Fe3O4-BiOBr的制备方法及在降解草甘膦中的应用
CN108940187A (zh) * 2018-06-29 2018-12-07 南京理工大学 用于除磷负载氢氧化镧的磁性介孔纳米球及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180535A (zh) * 2011-03-25 2011-09-14 中国科学院南京土壤研究所 金属化合物复合矿物材料去除有机磷农药废水中磷的方法
CN103964538A (zh) * 2014-05-23 2014-08-06 南京晓庄学院 一种氧化铈改性的磁性Fe3O4@SiO2颗粒吸附去除水体中磷酸盐的方法
CN104058516A (zh) * 2014-05-30 2014-09-24 安徽国星生物化学有限公司 一种在草甘膦生产过程产生的含磷废水的处理方法
CN107096494A (zh) * 2017-05-23 2017-08-29 太原理工大学 一种磁性核壳纳米复合吸附剂的制备与应用方法
CN108722448A (zh) * 2018-04-27 2018-11-02 中国农业科学院植物保护研究所 用于降解草甘膦的纳米Fe3O4-BiOBr的制备方法及在降解草甘膦中的应用
CN108940187A (zh) * 2018-06-29 2018-12-07 南京理工大学 用于除磷负载氢氧化镧的磁性介孔纳米球及其制备方法

Similar Documents

Publication Publication Date Title
Liu et al. A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems
Wu et al. Magnetic Fe3O4@ CuO nanocomposite assembled on graphene oxide sheets for the enhanced removal of arsenic (III/V) from water
You et al. A review of amino-functionalized magnetic nanoparticles for water treatment: Features and prospects
Zhou et al. Fabrication of Schiff base decorated PAMAM dendrimer/magnetic Fe3O4 for selective removal of aqueous Hg (II)
Chen et al. Enhanced removal of lead ions from aqueous solution by iron oxide nanomaterials with cobalt and nickel doping
Du et al. The behavior of phosphate adsorption and its reactions on the surfaces of Fe–Mn oxide adsorbent
Huang et al. Design and synthesis of core–shell Fe3O4@ PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater
Wang et al. Functional group-rich hyperbranched magnetic material for simultaneous efficient removal of heavy metal ions from aqueous solution
Reddy et al. Spinel ferrite magnetic adsorbents: alternative future materials for water purification?
Venkateswarlu et al. Core–shell ferromagnetic nanorod based on amine polymer composite (Fe3O4@ DAPF) for fast removal of Pb (II) from aqueous solutions
Fu et al. Adsorptive removal of Pb (II) by magnetic activated carbon incorporated with amino groups from aqueous solutions
Li et al. Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica
Hasanzadeh et al. Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@ Fe3O4 nanoparticles
US20210060522A1 (en) Graphene-based materials for the efficient removal of pollutants from water
Nodehi et al. Fe3O4@ NiO core–shell magnetic nanoparticle for highly efficient removal of Alizarin red S anionic dye
Xu et al. Fabrication of reduced glutathione functionalized iron oxide nanoparticles for magnetic removal of Pb (II) from wastewater
Wang et al. Behaviors and mechanisms of tannic acid adsorption on an amino-functionalized magnetic nanoadsorbent
Gong et al. Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres
Hui et al. Adsorption behavior and adsorption mechanism of Cu (II) ions on amino-functionalized magnetic nanoparticles
Huang et al. Tannin-based magnetic porous organic polymers as robust scavengers for methylene blue and lead ions
Huang et al. Hydroxyl-functionalized TiO2@ SiO2@ Ni/nZVI nanocomposites fabrication, characterization and enhanced simultaneous visible light photocatalytic oxidation and adsorption of arsenite
Zhang et al. Preparation of magnetic composite hollow microsphere and its adsorption capacity for basic dyes
Guo et al. Mechanism of Cd (II) and Cu (II) adsorption onto few-layered magnetic graphene oxide as an efficient adsorbent
Sajjadi et al. Double-layer magnetized/functionalized biochar composite: Role of microporous structure for heavy metal removals
Tripathy et al. L-Cysteine-functionalized mesoporous magnetite nanospheres: synthesis and adsorptive application toward arsenic remediation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528

RJ01 Rejection of invention patent application after publication