CN112842604A - 一种光遗传学实验方法与系统 - Google Patents

一种光遗传学实验方法与系统 Download PDF

Info

Publication number
CN112842604A
CN112842604A CN201911184827.1A CN201911184827A CN112842604A CN 112842604 A CN112842604 A CN 112842604A CN 201911184827 A CN201911184827 A CN 201911184827A CN 112842604 A CN112842604 A CN 112842604A
Authority
CN
China
Prior art keywords
light
optical fiber
multimode
area array
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911184827.1A
Other languages
English (en)
Other versions
CN112842604B (zh
Inventor
赖溥祥
孙雷
仲天庭
丘志海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Research Institute HKPU
Original Assignee
Shenzhen Research Institute HKPU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Research Institute HKPU filed Critical Shenzhen Research Institute HKPU
Priority to CN201911184827.1A priority Critical patent/CN112842604B/zh
Priority to US16/843,674 priority patent/US11633620B2/en
Publication of CN112842604A publication Critical patent/CN112842604A/zh
Application granted granted Critical
Publication of CN112842604B publication Critical patent/CN112842604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0622Optical stimulation for exciting neural tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D1/00Surgical instruments for veterinary use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0083Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the administration regime
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/20Animal model comprising regulated expression system
    • A01K2217/203Animal model comprising inducible/conditional expression system, e.g. hormones, tet
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • A61N2005/0629Sequential activation of light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10041Use of virus, viral particle or viral elements as a vector
    • C12N2740/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Neurosurgery (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明适用于生物医学工程技术领域,提供了一种光遗传学实验方法与系统,基于波前整形技术,方法包括:求解一段形状固定的多模光纤的输入端和输出端之间的传输矩阵;将多模光纤的输出端植入实验目标颅内空间;根据所述光学刺激的空间位置,以及所述多模光纤的传输矩阵,对输入多模光纤的面阵光进行波前补偿,补偿面阵光在从输出端出射后,能够在光学刺激的空间位置处实现聚焦。本发明提供的光遗传学试验方法,可以在多模光纤的输出端的视场范围内的实现精确的光学刺激,大大加强了光遗传学实验中光刺激的空间选择性,使之提高到细胞尺寸的精确度,能够对特定的神经细胞实现精确的光刺激。

Description

一种光遗传学实验方法与系统
技术领域
本发明涉及生物医学工程技术领域,特别涉及一种光遗传学实验方法与系统。
背景技术
斯坦福大学Karl Deisseroth实验室通过在神经细胞中表达光敏蛋白,响应不同波长的光刺激实现对神经功能的调控,宣布人类正式拥有了精准操控大脑的工具—光遗传学(Optogenetics)。光遗传学是一门诞生于21世纪的生物医学工程科学,目前尚处于迅速发展时期,该领域整合了光学、生物基因操作技术、电生理以及软件编程等多门学科。以往,人们对神经元之间作用的相互理解仅仅停留在相关性上,而通过光遗传学,人们可以对特定的神经回路和大脑功能之间的因果关系一探究竟,这项微创、精准的神经操作技术,作为神经科学研究工具来说,无疑是个跨越式的进步。
实现具有细胞分辨率和高时间分辨率的神经细胞的选择性刺激是光遗传学的主要目标之一,这将有助于实现具有特定时间序列的精确大脑操作,以促进我们对人类大脑如何工作和治疗疾病的理解。神经元可以感知,传导和响应各种外部刺激,如电,磁,热和机械刺激,尽管可以直接刺激未修饰的神经元以通过诸如DBS(Deep Brain Stimulation,深部脑刺激)技术的外部场引起动作电位,但是这些技术缺乏对个体神经元的特异性和选择性。而光遗传学可以利用插入的已得到充分表征的光敏蛋白(例如视蛋白),所选择的神经元能够响应光控制,而其他细胞保持沉默。通过插入特定区域的细光纤可以将光传递到深层组织中,这使得能够在体内自由移动动物操作。在过去的几十年中,这些技术被用作解剖脑回路的黄金标准。
然而,传统的光遗传学刺激神经细胞的方案中,由于光纤的原理,从光纤出来的光是发散的,光线从光纤中射出后形成一个远大于细胞尺寸的光斑(单模光纤)或者散斑(多模光纤),而在控制特定行为的神经环路中,神经元的发放是有时空序列编码的,需要精确地刺激所选神经元子集中的神经元;同时现有的多光子等光刺激方法的有效工作范围受到客观条件限制,仅能在大脑表面一毫米深范围内进行光刺激,这对于光遗传学相关实验而言是远远不够的。因此以现有的技术对神经元进行光刺激无法实现光遗传学理想情景中的精确刺激。
发明内容
本发明的目的在于提供一种光遗传学试验方法,旨在解决传统的光遗传学实验方法空间选择性差,无法对选择的神经细胞进行精确刺激的技术问题。
本发明是这样实现的,一种光遗传学实验方法,所述光遗传学实验方法基于波前整形技术,包括以下步骤:
获得传输矩阵:以一段多模光纤作为刺激光信号的传输光纤,将所述多模光纤的形状固定后,求解所述形状下所述多模光纤的输入端和输出端之间的传输矩阵;
脑部植入手术:将所述输出端植入实验目标颅内空间,所述多模光纤的形状在所述脑部植入手术的步骤前后保持固定不变;
给予光学刺激:所述光学刺激的空间位置处于所述输出端的视场范围内,根据所述光学刺激的空间位置,以及所述多模光纤的传输矩阵,对输入所述输入端的光进行波前补偿,形成补偿面阵光,将所述补偿面阵光从所述输入端输入所述多模光纤,使得所述补偿面阵光在经所述多模光纤传输至所述输出端并出射后,能够在所述光学刺激的空间位置处实现聚焦。
在本发明的一个实施例中,在所述获得传输矩阵的步骤中,求解所述形状下所述多模光纤的输入端和输出端之间的传输矩阵包括:
多次收集向所述多模光纤输入端输入特定的所述补偿面阵光时,所述多模光纤的输出端光场的光分布信息;或者,多次收集向所述多模光纤输出端输入特定的所述补偿面阵光时,所述多模光纤的输入端光场的光分布信息;
基于传输矩阵求解算法,根据多次收集到的所述光分布信息求得所述多模光纤的传输矩阵。
在本发明的一个实施例中,光场的所述光分布信息包括光场的光强度和光相位信息。
在本发明的一个实施例中,在所述给予光学刺激的步骤中,所述补偿面阵光基于所述实验目标颅内空间的光学环境进行修正,所述补偿面阵光在所述多模光纤输出端植入所述实验目标颅内空间后在预定的空间坐标点聚焦。
在本发明的一个实施例中,在所述给予光学刺激的步骤之后还包括时序光学刺激步骤。
在本发明的一个实施例中,所述时序光学刺激步骤包括:根据所述光学刺激的空间位置和时间的关系函数,以及所述多模光纤的传输矩阵,对输入所述输入端的光进行时序变化的波前补偿,形成时序补偿面阵光,将所述时序补偿面阵光从所述输入端输入所述多模光纤,使得所述时序补偿面阵光在经所述多模光纤传输至所述输出端并出射后,能够根据所述光学刺激的空间位置和时间的关系函数在所述输出端的视场范围内实现动态聚焦。
在本发明的一个实施例中,对输入所述多模光纤输入端的光进行时序变化的波前补偿,形成时序补偿面阵光的步骤中,采用数字微镜器件进行空间光调制,所述数字微镜器件输出所述补偿面阵光,通过不断刷新所述数字微镜器件的输出图形,实现所述时序变化的波前补偿并形成所述时序补偿面阵光。
在本发明的一个实施例中,在所述脑部植入手术前的步骤还包括:向所述实验目标颅内空间转录光敏蛋白的表达基因。
在本发明的一个实施例中,向所述实验目标颅内空间转录光敏蛋白的表达基因的步骤包括:向所述实验目标颅内空间注射逆转录病毒,所述逆转录病毒的基因中包含能够表达为所述光敏蛋白的基因片段。
本发明的另一目的在于提供一种采用了如上所述的光遗传学实验方法的实验系统。
实施本发明的一种光遗传学试验方法,至少具有以下有益效果:
由于光遗传学试验方法基于波前整形技术,利用计算得到的多模光纤传输矩阵和空间光调制原理,在确定光刺激点的空间位置后,对进入输入端的面阵光的波前加以整形以进行相位补偿,由于多模光纤的形状被固定,传输矩阵是完全受控固定不变的,且可以通过计算得到,经波前整形得到的补偿面阵光,在进入输入端后经多模光纤的传播,可以在预定的光刺激点实现聚焦,也就是说,本发明提供的光遗传学试验方法,可以在多模光纤的输出端的视场范围内实现精确的光学刺激,大大加强了光遗传学实验中光刺激的空间选择性,使之提高到细胞尺寸的精确度,能够对特定的神经细胞实现精确的光刺激。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的光遗传学实验方法的流程示意图;
图2是本发明一个实施例提供的获得传输矩阵的流程示意图;
图3是本发明另一个实施例提供的获得传输矩阵的流程示意图;
图4是本发明一个实施例提供的具有时间选择性的光遗传学实验方法的流程示意图;
图5是本发明一个实施例提供的光遗传学实验系统的示意图。
上述附图中的标号的含义对应关系如下:
1-面阵光源;2-数字微镜器件;3-多模光纤;31-输入端;32-输出端;4-实验目标。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接或者间接位于该另一个部件上。当一个部件被称为“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置为基于附图所示的方位或位置,仅是为了便于描述,不能理解为对本技术方案的限制。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本发明所述的技术方案,以下结合具体附图及实施例进行详细说明。
请参阅图1和图5,本发明实施例提供的一种光遗传学实验方法,包括如下几个步骤:
S1:获得传输矩阵:以一段多模光纤3作为刺激光信号的传输光纤,将多模光纤3的形状固定后,求解该形状下多模光纤3的输入端31和输出端32之间的传输矩阵;
S2:脑部植入手术:将输出端32植入实验目标4颅内空间,多模光纤3的形状在脑部植入手术的步骤前后保持固定不变;
S3:给予光学刺激:光学刺激的空间位置处于输出端32的视场范围内,根据光学刺激的空间位置,以及多模光纤3的传输矩阵,利用诸如数字微镜器件2(DMD,DigitalMicromirror Device)的空间光调制器对输入多模光纤3输入端31的光进行波前补偿,形成补偿面阵光,将补偿面阵光从输入端31输入多模光纤3,使得补偿面阵光在经多模光纤3传输至输出端32并出射后,能够在光学刺激的空间位置处实现聚焦。
本发明实施例提供的光遗传学试验方法,通过波前整形技术对面阵光进行相位补偿,利用计算得到的多模光纤3传输矩阵和空间光调制原理,在确定光刺激点的空间位置后,对进入输入端31的面阵光的波前加以整形以进行相位补偿,由于多模光纤3的形状被固定,传输矩阵是完全受控固定不变的,且可以通过计算得到,经波前整形得到的补偿面阵光,在进入输入端31后经多模光纤3的传播,可以在预定的光刺激点实现聚焦,也就是说,本发明提供的光遗传学试验方法,可以在多模光纤3的输出端32的视场范围内的实现精确的光学刺激,大大加强了光遗传学实验中光刺激的空间选择性,使之提高到细胞尺寸的精确度,能够对特定的神经细胞实现精确的光刺激。
本实施例提供的光遗传学试验方法,除了上述优点,还至少具备以下技术效果:由于通过将多模光纤3植入实验目标4颅内空间进行光刺激,纤细的光纤能够最大化降低实验过程对实验目标4的神经细胞的损害,可以将光纤埋入实验目标4的大脑深处进行光刺激,最大化降低对实验目标4的脑部造成损害的同时,能够对实验目标4脑部深处的神经细胞进行精确地光学刺激;同时,对于光刺激点在与输出端32距离较远的神经细胞上的情景,可以将输出端32与目标神经元之间的颅内组织作为波前补偿内容的一部分,也就是说,在计算传输矩阵时可以将颅内物质对光的散射和相位损失考虑进去,这样计算得到的传输矩阵可以大大提高补偿面阵光的光刺激深度,能够对距离输出端32更远的神经细胞进行有效的光刺激。
作为本实施例的一个优选方案,补偿面阵光的强度应当满足两个条件,其一,光刺激点处聚焦的光能量密度能够达到激活该处的神经细胞上的离子通道的阈值;其二,在输出端32输出的光纤经过实验目标4颅内空间中其它神经细胞时,这些神经细胞上的离子通道不会被未聚焦的补偿面阵光激活,这样的光强度实现细胞精度的光学刺激,避免刺激光强度不足且不至于刺激光线路径上的其它神经细胞,从而能够通过光刺激操纵特定的某个神经细胞激活或者休眠。
作为本实施例的一个具体方案,在步骤S2:脑部植入手术中,可以利用空间定位仪等辅助器械,将光纤输出端置于目标区域前,以确保光纤输出端能够精确而稳定地植入实验目标4颅内空间的特定位置。
在本发明的一个实施例中,在获得传输矩阵的步骤中,求解该形状下多模光纤3的输入端31和输出端32之间的传输矩阵包括:多次收集向多模光纤3输入端31输入特定的补偿面阵光时,多模光纤3的输出端32光场的光分布信息;或者,多次收集向多模光纤3输出端32输入特定的补偿面阵光时,多模光纤3的输入端31光场的光分布信息;基于传输矩阵求解算法,根据多次收集到的光分布信息求得多模光纤3的传输矩阵。
请参阅图2和图5,获得传输矩阵步骤具体包括:
S11:以一段多模光纤3作为刺激光信号的传输光纤,将多模光纤3的形状固定;
S12A:多次收集向多模光纤3输入端31输入特定的补偿面阵光时,多模光纤3的输出端32光场的光分布信息;或者,多次收集向多模光纤3输出端32输入特定的补偿面阵光时,多模光纤3的输入端31光场的光分布信息;
S13:基于传输矩阵求解算法,根据多次收集到的光分布信息求得多模光纤3的传输矩阵。
作为本实施例的一个具体方案,可以利用诸如数字微镜器件2的空间光调制器在多模光纤3的其中一端根据算法不断改变入射光,同时利用高速相机记录另一端的输出光场的光分布信息。这样,在有限次的变换后(次数由算法决定),即可根据多次变换后的光场的光分布信息计算出传输矩阵,而由于采用数字微镜器件2和高速相机进行测量,该步骤可以在数分钟内完成,有助于提高获得传输矩阵的效率。
强散射介质的传输矩阵模型是十分复杂且信息量巨大的,完整求解多模光纤的传输矩阵并不是必须的。因此,本发明实施例提供的光遗传学实验方法,在计算传输矩阵时不需要使用空间光相位调制器(速度慢)求解完整的传输矩阵,只需使用二进制空间光调制器(DMD)进行高速调制,多次收集多模光纤3输出端32工作平面的光分布信息,结合对应的多模光纤3输入端31的调制信息,即可求出传输矩阵的近似解,根据该近似解实现对补偿面阵光进行波前整形,即可实现在输出端32视场范围内特定位置的聚焦成像。在完成多模光纤传输矩阵的求解后,针对不同目标位点的聚焦,并不需要再次优化。基于传输矩阵,即可计算出特定位点所需的补偿;利用空间光调制器实施补偿,即可在该位点实现聚焦,从而在几乎不损失聚焦位置的精确度的前提下,大大提高了传输矩阵的使用效率。
在本发明的一个实施例中,光场的光分布信息包括光场的光强度和光相位信息。
请参阅图3和图5,获得传输矩阵步骤具体包括:
S11:以一段多模光纤3作为刺激光信号的传输光纤,将多模光纤3的形状固定;
S12B:多次收集向多模光纤3输入端31输入特定的补偿面阵光时,多模光纤3的输出端32光场的光强度和光相位信息;或者,多次收集向多模光纤3输出端32输入特定的补偿面阵光时,多模光纤3的输入端31光场的光强度和光相位信息;
S13:基于传输矩阵求解算法,根据多次收集到的光分布信息求得多模光纤3的传输矩阵。
根据通过数字微镜器件向多模光纤3的一端输入补偿面阵光时,多模光纤3另一端光场的光强度和光相位信息计算出传输矩阵模型,进而根据该传输矩阵模型,采用SLM(Spatial Light Modulator,空间光调制器)对补偿面阵光上的光强度和光相位进行补偿,即可在输出端32视场范围内的任意特定空间坐标点实现光聚焦,从而大大提高了光刺激的空间精确度。
在本发明的一个实施例中,在给予光学刺激的步骤中,补偿面阵光基于实验目标4颅内空间的光学环境进行修正,使得补偿面阵光在多模光纤3输出端32植入实验目标4颅内空间后能够在预定的空间坐标点聚焦。
具体而言,光学刺激的空间位置处于输出端32的视场范围内,根据光学刺激的空间位置、多模光纤3的传输矩阵和实验目标4颅内空间的光学环境,利用诸如数字微镜器件2(DMD,Digital Micromirror Device)的空间光调制器对输入多模光纤3输入端31的光进行波前补偿,形成补偿面阵光,将补偿面阵光从输入端31输入多模光纤3,使得补偿面阵光在经多模光纤3传输至输出端32并出射后,能够在光学刺激的空间位置处实现聚焦。
本实施例提供的光遗传学实验方法,由于在其实际操作过程中,实验目标4的颅内环境是十分复杂的,对光线的散射能力强,散射复杂程度高,基于实验目标4颅内空间中的光学环境,在输入端32输入波前整形光的过程中进行补偿,能够在多模光纤3输出端32的视野范围内的多个空间坐标点的位置精准聚焦,实现高空间分辨率的光刺激,有助于提高传输矩阵对补偿面阵光在多模光纤3和颅内介质中传播、散射的拟真程度,这样,多模光纤3植入实验目标4颅内空间的固定位置后,能够在距离输出端32更远的位置实现高空间分辨率的光聚焦,还能够达到提高使用多模光纤3波前整形的光遗传学实验方法进行光刺激的聚焦深度的技术效果。
在本发明的一个实施例中,给予光学刺激步骤之后还包括时序光学刺激步骤,时序光学刺激步骤包括:根据光学刺激的空间位置和时间的关系函数,以及多模光纤3的传输矩阵,对输入输入端31的光进行时序变化的波前补偿,形成时序补偿面阵光,将时序补偿面阵光从输入端31输入多模光纤3,使得时序补偿面阵光在经多模光纤3传输至输出端32并出射后,能够根据光学刺激的空间位置和时间的关系函数在输出端32的视场范围内实现动态聚焦。对实验目标4颅内的细胞进行光刺激时,通过赋予补偿面阵光时序特性,使得进入输入端31的补偿面阵光根据需要的光学刺激的空间位置和时间之间的关系随时间变化,形成时序补偿面阵光,其输出端32输出的光线聚焦点随着时间推移而变化,能够对实验目标4颅内空间进行一系列的连续光学刺激,使得光学刺激具有时间分辨率,有助于对实验目标4在时序变化的一系列刺激下的神经学行为进行研究。
应当理解,所谓给予光学刺激步骤本身也可以视为时序光学刺激的一部分,不管是只对实验目标4颅内空间进行一次性的光学刺激的方案,还是对实验目标4颅内空间进行时序光学刺激的方案,都在本发明的权利保护范围之内。
请参阅图4和图5,作为本实施例的一个具体方案,本实施例提供的光遗传学实验方法可以是:
S1:获得传输矩阵:以一段多模光纤3作为刺激光信号的传输光纤,将多模光纤3的形状固定后,求解该形状下多模光纤3的输入端31和输出端32之间的传输矩阵;
S2:脑部植入手术:将输出端32植入实验目标4颅内空间,多模光纤3的形状在脑部植入手术的步骤前后保持固定不变;
S3A:根据光学刺激的空间位置和时间的关系函数,以及多模光纤3的传输矩阵,对输入输入端31的光进行时序变化的波前补偿,形成时序补偿面阵光,将时序补偿面阵光从输入端31输入多模光纤3,使得时序补偿面阵光在经多模光纤3传输至输出端32并出射后,能够根据光学刺激的空间位置和时间的关系函数在输出端32的视场范围内实现动态聚焦。
在本发明的一个实施例中,对输入多模光纤3输入端31的光进行时序变化的波前补偿,形成时序补偿面阵光的步骤中,采用数字微镜器件2进行空间光调制,数字微镜器件2输出补偿面阵光,通过不断刷新数字微镜器件2的输出图形,实现时序变化的波前补偿并形成时序补偿面阵光。本实施例提供的光遗传学实验方法中采取数字微反射镜(DigitalMicromirror Device,DMD)作为空间光调制器,能够以足够高的刷新速度(每50微秒刷新一次),向多模光纤3的输入端31投射经波前整形处理的补偿面阵光,并在输出端32实现高分辨率聚焦,且能够覆盖足够大的视野范围,在实验目标4的颅内空间实现动态光聚焦,提高了光遗传学实验方法的时空分辨率。
在本发明的一个实施例中,在脑部植入手术前的步骤还包括:向实验目标4颅内空间转录光敏蛋白的表达基因。通过向实验目标4颅内空间转录光敏蛋白的表达基因,从而在神经细胞中表达光敏蛋白,光敏蛋白在光脉冲的影响下打开或者关闭细胞膜上的离子通道,控制神经细胞膜电位或者钙离子浓度的变化,以此激活或者抑制神经细胞的兴奋,使得神经细胞能够响应相应波长的光刺激,实现对神经功能的调控。
在本发明的一个实施例中,向实验目标4颅内空间转录光敏蛋白的表达基因的步骤包括:向实验目标4颅内空间注射逆转录病毒,逆转录病毒的基因中包含能够表达为光敏蛋白的基因片段。向实验目标4颅内空间注射携带有能够表达为光敏蛋白的基因片段的逆转录病毒,能够让实验目标4在正常代谢过程中产生光敏蛋白,从而对多模光纤3传递到颅内空间的光刺激发生响应。
应当理解,向实验目标4颅内空间转录光敏蛋白的表达基因的步骤和获得传输矩阵步骤S1是并行的,二者之间不存在先后关系。
在本发明的一个实施例中,脑部植入手术步骤后,多模光纤3和实验目标4固定不动,保持多模光纤3的形状和位置不发生变化,且多模光纤3的输出端32在实验目标4颅内的位置也不发生变化,这样可以防止多模光纤3的传输矩阵以补偿面阵光与给予光刺激的点位关系不发生变化,避免多次计算多模光纤3的传输矩阵。
下面提供一个具体的光遗传学实验方法的实施方式:
本实施例提供了一种基于波前整形技术的光遗传学实验方法,包括:
获得传输矩阵:以一段多模光纤3作为刺激光信号的传输光纤,将多模光纤3的形状固定后,采用高速相机多次收集向多模光纤3输入端31输入特定的补偿面阵光时,多模光纤3的输出端32光场的光强度和光相位信息;或者,多次收集向多模光纤3输出端32输入特定的补偿面阵光时,多模光纤3的输入端31光场的光强度和光相位信息;
然后,基于传输矩阵求解算法,根据多次收集到的光分布信息求得多模光纤3的传输矩阵。
脑部植入手术:将多模光纤3的输出端32植入实验目标4颅内空间,多模光纤3的形状在脑部植入手术步骤前后保持固定不变;
脑部植入手术步骤前,通过注射包含能够表达为光敏蛋白的基因片段的逆转录病毒,向实验目标4颅内空间转录光敏蛋白的表达基因;脑部植入手术步骤后,多模光纤3和实验目标4固定不动。
给予时序光学刺激:根据光学刺激的空间位置和时间的关系函数,以及多模光纤3的传输矩阵和实验目标4颅内组织的光学环境,采用数字微镜器件2对输入多模光纤3输入端31的光进行时序变化的波前补偿,通过不断刷新数字微镜器件2的输出图案形成时序补偿面阵光,将时序补偿面阵光从输入端31输入多模光纤3,使得时序补偿面阵光在经多模光纤3传输至输出端32并出射后,能够根据光学刺激的空间位置和时间的关系函数在输出端32的视场范围内实现动态聚焦。
本实施例提供的光遗传学实验方法,由于在多模光纤3的输入端31输入经过波前整形的时序面阵光,可以在多模光纤3的输出端32输出具备极强的空间和时间精度的聚焦光点,可以实现动态精确刺激,刺激精度可以达到细胞水平;由于对实验目标4颅内空间的实际情况进行补偿,将颅内空间的散射场作为波前整形补偿的一部分,因而具有更深的刺激深度,可以在距离多模光纤3输出端32更远处实现光刺激;通过将纤细的多模光纤3埋入实验目标4颅内进行实验,对实验目标4的颅内损伤小,具有很高的实际应用价值;另外,由于多模光纤3始终被固定,无需多次测量传输矩阵即可实现动态的高精确度光刺激。
本发明的另一目的在于提供一种采用了如上所述的光遗传学实验方法的实验系统。请参阅图5,试验系统包括激光器1,数字微镜器件2,多模光纤3和实验目标4,激光器1发射出的激光经过光路调整,成为面阵光,在数字微镜器件2处进行波前整形成为补偿面阵光,补偿面阵光被耦合进入多模光纤3的输入端31,在多模光纤中按照传输矩阵进行传输,输出端32伸入实验目标4的颅内空间,补偿面阵光在输出端32的视场范围内会聚并对实验目标4的颅内神经元细胞进行光刺激。
以上所述仅为本发明的可选实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光遗传学实验方法,其特征在于,所述光遗传学实验方法基于波前整形技术,包括以下步骤:
获得传输矩阵:以一段多模光纤作为刺激光信号的传输光纤,将所述多模光纤的形状固定后,求解所述形状下所述多模光纤的输入端和输出端之间的传输矩阵;
脑部植入手术:将所述输出端植入实验目标颅内空间,所述多模光纤的形状在所述脑部植入手术的步骤前后保持固定不变;
给予光学刺激:所述光学刺激的空间位置处于所述输出端的视场范围内,根据所述光学刺激的空间位置,以及所述多模光纤的传输矩阵,对输入所述输入端的光进行波前补偿,形成补偿面阵光,将所述补偿面阵光从所述输入端输入所述多模光纤,使得所述补偿面阵光在经所述多模光纤传输至所述输出端并出射后,能够在所述光学刺激的空间位置处实现聚焦。
2.如权利要求1所述的光遗传学实验方法,其特征在于,在所述获得传输矩阵的步骤中,求解所述形状下所述多模光纤的输入端和输出端之间的传输矩阵包括:
多次收集向所述多模光纤输入端输入特定的所述补偿面阵光时,所述多模光纤的输出端光场的光分布信息;或者,多次收集向所述多模光纤输出端输入特定的所述补偿面阵光时,所述多模光纤的输入端光场的光分布信息;
基于传输矩阵求解算法,根据多次收集到的所述光分布信息求得所述多模光纤的传输矩阵。
3.如权利要求2所述的光遗传学实验方法,其特征在于,光场的所述光分布信息包括光场的光强度和光相位信息。
4.如权利要求1所述的光遗传学实验方法,其特征在于,在所述给予光学刺激的步骤中,所述补偿面阵光基于所述实验目标颅内空间的光学环境进行修正,所述补偿面阵光在所述多模光纤输出端植入所述实验目标颅内空间后在预定的空间坐标点聚焦。
5.如权利要求1-4任一项所述的光遗传学实验方法,其特征在于,在所述给予光学刺激的步骤之后还包括时序光学刺激步骤。
6.如权利要求5所述的光遗传学实验方法,其特征在于,所述时序光学刺激步骤包括:根据所述光学刺激的空间位置和时间的关系函数,以及所述多模光纤的传输矩阵,对输入所述输入端的光进行时序变化的波前补偿,形成时序补偿面阵光,将所述时序补偿面阵光从所述输入端输入所述多模光纤,使得所述时序补偿面阵光在经所述多模光纤传输至所述输出端并出射后,能够根据所述光学刺激的空间位置和时间的关系函数在所述输出端的视场范围内实现动态聚焦。
7.如权利要求6所述的光遗传学实验方法,其特征在于,对输入所述多模光纤输入端的光进行时序变化的波前补偿,形成时序补偿面阵光的步骤中,采用数字微镜器件进行空间光调制,所述数字微镜器件输出所述补偿面阵光,通过不断刷新所述数字微镜器件的输出图形,实现所述时序变化的波前补偿并形成所述时序补偿面阵光。
8.如权利要求1所述的光遗传学实验方法,其特征在于,在所述脑部植入手术前的步骤还包括:向所述实验目标颅内空间转录光敏蛋白的表达基因。
9.如权利要求8所述的光遗传学实验方法,其特征在于,向所述实验目标颅内空间转录光敏蛋白的表达基因的步骤包括:向所述实验目标颅内空间注射逆转录病毒,所述逆转录病毒的基因中包含能够表达为所述光敏蛋白的基因片段。
10.一种光遗传学实验系统,其特征在于,所述光遗传学实验系统采用如权利要求1-9任一项所述的光遗传学实验方法。
CN201911184827.1A 2019-11-27 2019-11-27 一种光遗传学实验方法与系统 Active CN112842604B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911184827.1A CN112842604B (zh) 2019-11-27 2019-11-27 一种光遗传学实验方法与系统
US16/843,674 US11633620B2 (en) 2019-11-27 2020-04-08 Method and system for optogenetics experiments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911184827.1A CN112842604B (zh) 2019-11-27 2019-11-27 一种光遗传学实验方法与系统

Publications (2)

Publication Number Publication Date
CN112842604A true CN112842604A (zh) 2021-05-28
CN112842604B CN112842604B (zh) 2022-12-06

Family

ID=75973584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911184827.1A Active CN112842604B (zh) 2019-11-27 2019-11-27 一种光遗传学实验方法与系统

Country Status (2)

Country Link
US (1) US11633620B2 (zh)
CN (1) CN112842604B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115868928A (zh) * 2022-11-25 2023-03-31 中国科学院深圳理工大学(筹) 兼具光遗传的脑介观水平荧光成像方法及其系统
CN117224859A (zh) * 2023-11-14 2023-12-15 浙江大学 一种焦虑状态评估和多靶点时序光刺激和成像系统

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050070987A1 (en) * 2003-09-25 2005-03-31 Advanced Neuromodulation Systems, Inc. System and method for implantable stimulation lead employing optical fibers
WO2005093793A1 (en) * 2004-03-26 2005-10-06 Fuji Photo Film Co., Ltd. Process for forming permanent pattern
CN101093360A (zh) * 2007-05-29 2007-12-26 芯硕半导体(合肥)有限公司 数字光刻技术的相位控制和补偿方法
CN102106722A (zh) * 2011-02-28 2011-06-29 华中科技大学 一种光基因气味仿真系统
JP2011128639A (ja) * 2011-01-26 2011-06-30 Mitsubishi Electric Corp スペックル除去光源および照明装置
CN106108858A (zh) * 2016-09-21 2016-11-16 中国科学院电子学研究所 一种光调控神经信息检测系统
EP3096171A1 (en) * 2015-05-22 2016-11-23 Universite Paris Descartes Optical system for shaping the wavefront of the electric field of an input light beam
CN107121772A (zh) * 2017-05-09 2017-09-01 浙江大学 简易光束聚焦增强方法与系统
CN206848565U (zh) * 2017-05-09 2018-01-05 浙江大学 一种基于数字微镜器件的快速精准光学聚焦增强系统
CN206876950U (zh) * 2017-05-09 2018-01-12 浙江大学 一种基于干涉增强的快速高效自适应光学成像补偿系统
US20180228375A1 (en) * 2015-11-18 2018-08-16 The Board Of Trustees Of The Leland Stanford Junior University Method and Systems for Measuring Neural Activity
WO2018148767A1 (de) * 2017-02-16 2018-08-23 Zkw Group Gmbh Verfahren und vorrichtung zur erzeugung einer lichtverteilung vor einem fahrzeug
US20180303573A1 (en) * 2015-11-05 2018-10-25 Inscopix, Inc. Systems and methods for optogenetic imaging
CN109060124A (zh) * 2018-08-10 2018-12-21 中南民族大学 基于数字微镜的通信光束轨道角动量模式的识别系统
US20180369607A1 (en) * 2017-06-26 2018-12-27 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and controlling optogenetic stimulation using optical stimulation systems
CN109350087A (zh) * 2018-11-29 2019-02-19 中国科学院深圳先进技术研究院 一种动物抓力测量方法及系统
US20190168021A1 (en) * 2016-07-28 2019-06-06 University Of Newcastle Upon Tyne Optogenetic System and Method
JP2019117684A (ja) * 2017-10-04 2019-07-18 ピクシーダストテクノロジーズ株式会社 フェムト秒レーザを用いて、インタラクティブな空中ボルメトリック画像及び空間オーディオを生成する方法及びシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2459101B8 (en) * 2009-07-29 2014-11-19 Mauna Kea Technologies Apparatus for brain fiber bundle microscopy
EP3518017B1 (de) * 2018-01-24 2020-06-17 Technische Universität Dresden Verfahren und faseroptisches system zur beleuchtung und detektion eines objekts mit licht

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050070987A1 (en) * 2003-09-25 2005-03-31 Advanced Neuromodulation Systems, Inc. System and method for implantable stimulation lead employing optical fibers
WO2005093793A1 (en) * 2004-03-26 2005-10-06 Fuji Photo Film Co., Ltd. Process for forming permanent pattern
CN101093360A (zh) * 2007-05-29 2007-12-26 芯硕半导体(合肥)有限公司 数字光刻技术的相位控制和补偿方法
JP2011128639A (ja) * 2011-01-26 2011-06-30 Mitsubishi Electric Corp スペックル除去光源および照明装置
CN102106722A (zh) * 2011-02-28 2011-06-29 华中科技大学 一种光基因气味仿真系统
EP3096171A1 (en) * 2015-05-22 2016-11-23 Universite Paris Descartes Optical system for shaping the wavefront of the electric field of an input light beam
US20180303573A1 (en) * 2015-11-05 2018-10-25 Inscopix, Inc. Systems and methods for optogenetic imaging
US20180228375A1 (en) * 2015-11-18 2018-08-16 The Board Of Trustees Of The Leland Stanford Junior University Method and Systems for Measuring Neural Activity
US20190168021A1 (en) * 2016-07-28 2019-06-06 University Of Newcastle Upon Tyne Optogenetic System and Method
CN106108858A (zh) * 2016-09-21 2016-11-16 中国科学院电子学研究所 一种光调控神经信息检测系统
WO2018148767A1 (de) * 2017-02-16 2018-08-23 Zkw Group Gmbh Verfahren und vorrichtung zur erzeugung einer lichtverteilung vor einem fahrzeug
CN107121772A (zh) * 2017-05-09 2017-09-01 浙江大学 简易光束聚焦增强方法与系统
CN206848565U (zh) * 2017-05-09 2018-01-05 浙江大学 一种基于数字微镜器件的快速精准光学聚焦增强系统
CN206876950U (zh) * 2017-05-09 2018-01-12 浙江大学 一种基于干涉增强的快速高效自适应光学成像补偿系统
US20180369607A1 (en) * 2017-06-26 2018-12-27 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and controlling optogenetic stimulation using optical stimulation systems
JP2019117684A (ja) * 2017-10-04 2019-07-18 ピクシーダストテクノロジーズ株式会社 フェムト秒レーザを用いて、インタラクティブな空中ボルメトリック画像及び空間オーディオを生成する方法及びシステム
CN109060124A (zh) * 2018-08-10 2018-12-21 中南民族大学 基于数字微镜的通信光束轨道角动量模式的识别系统
CN109350087A (zh) * 2018-11-29 2019-02-19 中国科学院深圳先进技术研究院 一种动物抓力测量方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115868928A (zh) * 2022-11-25 2023-03-31 中国科学院深圳理工大学(筹) 兼具光遗传的脑介观水平荧光成像方法及其系统
CN117224859A (zh) * 2023-11-14 2023-12-15 浙江大学 一种焦虑状态评估和多靶点时序光刺激和成像系统
CN117224859B (zh) * 2023-11-14 2024-02-06 浙江大学 包括焦虑状态评估装置和多靶点时序光刺激和成像装置的系统

Also Published As

Publication number Publication date
US11633620B2 (en) 2023-04-25
CN112842604B (zh) 2022-12-06
US20210154489A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
Adesnik et al. Probing neural codes with two-photon holographic optogenetics
Trautmann et al. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface
Aravanis et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology
Wang et al. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications
Ju et al. Long-term all-optical interrogation of cortical neurons in awake-behaving nonhuman primates
Pashaie et al. Closed-loop optogenetic brain interface
CN112842604B (zh) 一种光遗传学实验方法与系统
Weiss et al. Optogenetic stimulation of the cochlea—A review of mechanisms, measurements, and first models
Dai et al. Modified toolbox for optogenetics in the nonhuman primate
Zhang et al. A one-photon endoscope for simultaneous patterned optogenetic stimulation and calcium imaging in freely behaving mice
Shi et al. High-precision neural stimulation through optoacoustic emitters
Fernandez-Ruiz et al. High-resolution optogenetics in space and time
Griggs et al. Demonstration of an optimized large-scale optogenetic cortical interface for non-human primates
Meneghetti et al. Mapping whole brain effects of infrared neural stimulation with positron emission tomography
Lewis et al. Linking brain activity across scales with simultaneous opto-and electrophysiology
Chernov et al. Material considerations for optical interfacing to the nervous system
Chen et al. Flexible photonic probes for new-generation brain–computer interfaces
Shenoy et al. Brain enabled by next-generation neurotechnology: Using multiscale and multimodal models
CN117224859B (zh) 包括焦虑状态评估装置和多靶点时序光刺激和成像装置的系统
Zhang et al. All-optical imaging and patterned stimulation with a one-photon endoscope
CN110339448B (zh) 调控动物状态的方法、装置、计算机设备及存储介质
JP2018094399A (ja) 調整可能なニューロンネットワーク及び人工眼
Pashaie Optogenetics: Novel Brain Interface Technology That Originates in Bioprospecting
Hira Closed-loop experiments and brain machine interfaces with multiphoton microscopy
Ruan et al. Optogenetic control of neural activity with time-reversed ultrasound encoded light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant