CN112817049A - 一种声波时差的计算方法 - Google Patents

一种声波时差的计算方法 Download PDF

Info

Publication number
CN112817049A
CN112817049A CN202011584687.XA CN202011584687A CN112817049A CN 112817049 A CN112817049 A CN 112817049A CN 202011584687 A CN202011584687 A CN 202011584687A CN 112817049 A CN112817049 A CN 112817049A
Authority
CN
China
Prior art keywords
target
time
wave
signal
depth point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011584687.XA
Other languages
English (en)
Other versions
CN112817049B (zh
Inventor
范川
祁晓
徐大年
樊官民
张聪慧
张志强
尹璐
王俊华
王猛
刘海波
王文文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Oilfield Services Ltd
Original Assignee
China Oilfield Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Oilfield Services Ltd filed Critical China Oilfield Services Ltd
Priority to CN202011584687.XA priority Critical patent/CN112817049B/zh
Publication of CN112817049A publication Critical patent/CN112817049A/zh
Priority to MX2023007286A priority patent/MX2023007286A/es
Priority to CA3203426A priority patent/CA3203426A1/en
Priority to PCT/CN2021/129860 priority patent/WO2022142755A1/zh
Application granted granted Critical
Publication of CN112817049B publication Critical patent/CN112817049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本申请实施例公开了一种声波时差的计算方法。所述方法包括:确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界;按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号;计算所述目标波信号的频域信息和时域信息;利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差。

Description

一种声波时差的计算方法
技术领域
本申请实施例涉及测井资料处理领域,尤指一种声波时差的计算方法。
背景技术
声波时差指声波信号在地层中传播单位距离用的时间,是测井解释中的重要参数,具有十分重要的用途,可用于计算孔隙度、识别地层岩层、计算岩石力学特性参数、指示超压层、估算地层强度、预测地层采油出砂压力、估算地层渗透率、评价地层各向异性、分析井眼稳定性等,是阵列声波测井资料处理解释的基础和关键点。
相关技术中,声波时差的计算是采用由Kimball于1984年提出慢度-时间相关法(Slowness Time Coherence,STC),该方法通过对不同接收器的波形做相关,得到时间慢度相关图,再搜索相关系数极大值得到目标波信号的时差。
在实际应用中,该方法采用人工定性认识、人工分层、人工确定分层参数、STC方法定量计算的流程,存在着工作量大、技术难度高、时效性较差等问题。
发明内容
为了解决上述任一技术问题,本申请实施例提供了一种声波时差的计算方法。
为了达到本申请实施例目的,本申请实施例提供了一种声波时差的计算方法,包括:
确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界;
按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号;
计算所述目标波信号的频域信息和时域信息;
利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差。
一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上文所述的方法。
一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上文所述的方法。
上述技术方案中的一个技术方案具有如下优点或有益效果:
通过确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界,按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号,计算所述目标波信号的频域信息和时域信息,再利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差,与相关技术中的计算方式相比,降低了因人为原因导致的时差计算不准确的概率,减少了工作量并提升了时效性。
本申请实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请实施例技术方案的进一步理解,并且构成说明书的一部分,与本申请实施例的实施例一起用于解释本申请实施例的技术方案,并不构成对本申请实施例技术方案的限制。
图1为本申请实施例提供的声波时差的计算方法的流程图;
图2为本申请实施例提供的阵列声波测井仪单个接收器的信号图像的示意图;
图3为对图2所示信号图像进行声波分割的结果示意图;
图4为本申请实施例提供的全卷积神经网络的结构图;
图5为本申请实施例根据时域边界分割不同波信号的示意图;
图6为对图5中P波执行频谱计算后得到的时间-频率谱的示意图;
图7为对图6中的时间-频谱图执行提取操作的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请实施例的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请实施例中的实施例及实施例中的特征可以相互任意组合。
在实现本申请过程中,对相关技术进行了技术分析,发现相关技术至少存在如下问题,包括:
1)基于工程师的理论基础与工作经验完成计算,技术门槛较高;
2)需根据地层特性进行精细分层并确定各层的解释参数,工作量大;
3)解释参数不易直观获取,尤其是频域参数;
4)在井况复杂时,计算操作的时效性较差。
基于上述分析,本申请实施例提供一种声波时差的计算方法,利用阵列声波测井数据准确计算多种波信号的时差。
图1为本申请实施例提供的声波时差的计算方法的流程图。如图1所示,所示方法包括:
步骤101、确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界;
在一个示例性实施例中,不同类型的波信号可以为单极声源下可为纵波、横波或斯通利波;或者,可以为偶极声源下可以是泄漏纵波或者横波。
在一个示例性实施例中,时域边界为时间信息,该时间信息是对一种类型的波的接收的终止时间与对另一种类型的波的接收的开始时间的分界点,即该到达该时域边界之前的时间内该原始信号中的波信号为一种类型的波信号,在该时域边界之后的时间内该原始信号中的波信号为另一种类型的波信号。
步骤102、按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号;
步骤103、计算所述目标波信号的频域信息和时域信息;
步骤104、利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差。
本申请实施例提供的方法,通过确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界,按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号,计算所述目标波信号的频域信息和时域信息,再利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差,与相关技术中的计算方式相比,工作量小且计算时效性好的优势。
下面对本申请实施例提供的方法进行说明:
在一个示例性实施例中,所述确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界,包括:
将阵列声波测井仪单个接收器接收到的二维矩阵数据作为样本数据,对所述样本数据中不同类型的波信号进行分割,确定所述样本数据中不同类型的波信号的分割线;
利用所述分割线在所述样本数据中的位置,获取各深度点上不同类型的波信号的时域边界;
从所述各深度点上不同类型的波信号的时域边界中确定所述目标深度点的时域边界。
图2为本申请实施例提供的阵列声波信号的信号图像的示意图。如图2所示,以偶极声源在软地层中测井数据为例说明,图中不同类型的波为可见明显的泄漏纵波(P)和横波(S)。
图2中以偶极声源在软地层中测井数据为例说明,实际情况按照声源类型和地层类型不同可有以下组合:
1、偶极声源+软地层,可见明显的泄漏纵波(P)和横波(S),具体参见图3;
2、偶极声源+硬地层,可见微弱或不可见泄漏纵波(P)和明显横波(S);
3、单极声源+软地层,可见明显纵波(P)、微弱或不可见横波(S)及斯通利波;
4、单极声源+硬地层,可见明显纵波(P)、横波(S)及斯通利波。
可以将单个接收器的波形信号进行重采样及裁剪,转换成若干个512*256的数据样本,构建预测样本库。利用全卷积神经网络,对样本库进行预测,得到各样本中不同波信号的时域边界,再将各样本的时域边界转换为时间并进行拼接,得到完整的波信号边界曲线。
在一个示例性实施例中,所述样本数据中不同类型的波信号的分割线是通过如下方式得到的,包括:
确定所述样本数据中每个元素属于目标类型的波信号的概率;
根据确定的概率,将所述样本数据中概率大于预设概率阈值的元素确定为目标元素;
根据所述目标元素的位置,确定所述样本数据中目标类型的波信号的位置,并将所述目标类型的波信号的边界作为所述样本数据中目标类型的波信号的分割线。
图3为对图2所示信号图像进行声波分割的结果示意图。如图3所示,首先将声波测井数据重采样并拆解成若干个256*512的片段,形成预测样本库;然后将每个样本输入全卷积神经网络进行预测,从输出矩阵中提取波信号边缘,得到每个样本的目标波信号到达时间,最后将各样本的目标波信号到达时间拼接起来得到图3中的P波和S波的分割线,具体参见图3中黑框区域中灰色线条为分割线,即,时域边界。从图3可以看出,分割线左侧为P波,分割线右侧为S波,且每个深度点均对应有各自的时域边界。
在一个示例性实施例中,所述样本数据中不同类型的波信号的分割线是通过如下方式得到的,包括:
将所述样本数据切割成至少两个片段;
对每个片段中的二维矩阵数据进行波类型的识别,确定每个片段中波信号的边界;
将不同片段中波信号的边界分别转换为时间数据;
将各个片段的时间数据拼接起来,得到所述样本数据中不同类型的波信号的分割线。
如果样本数据过大,即满足数据量大的判断条件,则对样本数据进行切割;如果样本数据较小,即不满足数量大的判断条件,则直接对该样本数据进行整体处理,执行波类型的识别,确定样本数据中波信号的边界,无需切换成片段以及对片段进行拼接的操作。
图4为本申请实施例提供的全卷积神经网络的结构图。如图4所示,模型输入为512*256大小的矩阵,矩阵包含有256个采样点的波信号,中间经过五次下采样(左侧半支)、五次上采样(右侧半支),中间采用跳跃连接的方式确保空间信息不丢失,输出矩阵大小与输入矩阵一致,同为512*256输出矩阵中每个数值表示输入矩阵中每个点属于目标波信号的概率,通过二值化(阈值取0.5),可得到分割后的波信号。
上述全卷积神经网络的处理过程如下:
(1)将声波测井数据重采样并拆解成若干个256*512的片段,形成预测样本库;
(2)将每个样本输入全卷积神经网络进行预测,得到输出矩阵,输出矩阵中值为1为目标波信号所在位置;
(3)从输出矩阵中提取波信号边缘,此时边缘表示的方式为所在矩阵中列号,根据测量的起始时间、终止时间及总列数,可将信号边缘从列号转换为时间,进而得到每个样本的目标波信号到达时间;
(4)最后将各样本的目标波信号到达时间拼接起来得到图3中的P波和S波的分割线。
在一个示例性实施例中,所述按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号,包括:
如果所述目标波信号为所述原始信号中先接收的信号,表示所述目标深度点的时域边界的左侧为目标波信号,则提取所述原始信号在起始时间至时域边界内的信号作为目标波信号;
如果所述目标波信号为所述原始信号中后接收的信号,表示所述目标深度点的时域边界的右侧为目标波,则提取所述原始信号在所述时域边界至结束时间内的信号作为目标波信号。
以图3为例进行说明,从图3可以看出,分割线左侧为P波的到达时间,分割线右侧为S波的到达时间,且每个深度点均对应有各自的时域边界。可以从图3中确定目标深度点的时域边界。
图5为本申请实施例根据时域边界分割不同波信号的示意图。如图5所示,原始信号的坐标图中横坐标为时间,单位是微秒,纵坐标表示信号强度,为信号的振幅。图5所示的原始信号的时域边界为5000微秒,因此,提取后的结果是以该时域边界为分割点,将原始信号拆分成两部分。
图5中在偶极声源和软地层情况下单个深度点下提取操作的为例进行说明,在图5中以偶极声源中的泄漏纵波(P波)为例,对于偶极声源的横波、单级声源中的纵波、横波或者斯通利波将采用一样的操作方式。
在一个示例性实施例中,所述计算所述目标波信号的频域信息和时域信息,包括:
确定所述目标波信号基于时间的频谱图,其中所述频谱图所在的坐标系横坐标为时间,纵坐标为频率;
获取所述频谱图左右边界位置的横坐标以及所述频谱图上下边界位置的纵坐标;
将所述左右边界位置的横坐标确定为目标波信号的起始时间time_start和结束时间time_stop,将上下边界位置的纵坐标确定为目标波信号的最小频率freq_min和最大频率freq_max。
图6为对图5中P波执行频谱计算后得到的时间-频率谱的示意图。如图6所示,利用小波变换对目标波信号进行时频分析,得到时间-频率谱。
图7为对图6中的时间-频谱图执行提取操作的示意图。如图7所示,从时间频率谱中分割出波信号区域,参见图7所示的白色区域。通过识别该波信号区域的上下左右的边界点的位置,可以计算出目标波信号的起始时间time_start、结束时间time_stop、最小频率freq_min及最大频率freq_max。
需要说明的是,与相关技术提取频域信息的方式不同,本申请实施例提供的方法可以借助时间-频谱图自动完成频域信息的提取,提高提取效率。
基于上述方式可以快速准确地得到所需的数值信息。
在一个示例性实施例中,所述利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差,包括:
确定所述目标波信号的中心频率freq_middle;
如果所述目标波信号为所述原始信号中先接收的信号,表示所述目标深度点的时域边界的左侧为目标波,则利用所述中心频率freq_middle对所述目标波信号的起始时间time_start进行修正,得到修正后的起始时间time_start,利用修正后的起始时间time_start、结束时间time_stop、最小频率freq_min和最大频率freq_max,计算所述目标波信号在所述目标深度点的声波时差;
如果所述目标波信号为所述原始信号中后接收的信号,表示所述目标深度点的时域边界的右侧为目标波,则利用所述中心频率freq_middle对所述目标波信号的结束时间time_stop进行修正,得到修正后的起始时间time_start,利用修正后的起始时间time_start、结束时间time_stop、最小频率freq_min和最大频率freq_max,计算所述目标波信号在所述目标深度点的声波时差。
对于边界左侧的波信号,其结束时间较为准确,需要修正其起始时间;对于边界右边的波信号,其起始时间较为准确,需要修正其结束时间。
在一个示例性实施例中,如果所述目标深度点的时域边界的左侧为目标波,所述修正后的起始时间time_start是通过如下方式得到的,包括:
根据目标波信号的类型,确定len_coef,根据目标波信号类型不同,len_coef取值范围在2-8之间;
time_start=time_stop-106/freq_middle*len_coef;
如果所述目标深度点的时域边界的右侧为目标波,所述修正后的结束时间time_stop是通过如下方式得到的,包括:
time_stop=time_start+106/freq_middle*len_coef。
窗长计算:window_length=106/freq_middle*a;
其中a的取值在1至2之间,具体数值按照经验确定,优选的设置为1.5。
将得到的如下参数作为参数带入STC方法,实现时差的计算,包括:
如果所述目标波信号为所述原始信号中先接收的信号,表示所述目标深度点的时域边界的左侧为目标波,则利用修正后起始时间time_start、修正后的结束时间time_stop,最小频率freq_min,最大频率freq_max,以及窗长计算window_length进行计算;
如果所述目标波信号为所述原始信号中后接收的信号,表示所述目标深度点的时域边界的右侧为目标波,则利用起始时间time_start、修正后的结束时间time_stop,最小频率freq_min,最大频率freq_max,以及窗长计算window_length进行计算。
本申请实施例提供的方法,结合深度学习技术与信号时频分析方法,实现了STC方法中全部解释参数的智能计算,最后利用STC方法实现时差计算,数据解析的工作量低、时效性好且操作难度低。本申请实施例提供的方法基于波信号分割技术实现不同测量模式、不同地层类型得到的波信号的精确分割,并基于波信号分割操作的结果,执行目标波信号提取、目标波信号时频分析、目标波信号时域、频域信息提取的操作,用以自动完成声波时差的解析参数的,最终使用时间-慢度相关法实现时差计算。
本申请实施例提供一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上文任一项中所述的方法。
本申请实施例提供一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上文任一项中所述的方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (10)

1.一种声波时差的计算方法,包括:
确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界;
按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号;
计算所述目标波信号的频域信息和时域信息;
利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差。
2.根据权利要求1所述的方法,其特征在于,所述确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界,包括:
将阵列声波测井仪的单个接收器接收到的二维矩阵数据作为样本数据,对所述样本数据中不同类型的波信号进行分割,确定所述样本数据中不同类型的波信号的分割线;
利用所述分割线在所述样本数据中的位置,获取各深度点上不同类型的波信号的时域边界;
从所述各深度点上不同类型的波信号的时域边界中确定所述目标深度点的时域边界。
3.根据权利要求2所述的方法,其特征在于,所述样本数据中不同类型的波信号的分割线是通过如下方式得到的,包括:
确定所述样本数据中每个元素属于目标类型的波信号的概率;
根据确定的概率,将所述样本数据中概率大于预设概率阈值的元素确定为目标元素;
根据所述目标元素的位置,确定所述样本数据中目标类型的波信号的位置,并将所述目标类型的波信号的边界作为所述样本数据中目标类型的波信号的分割线。
4.根据权利要求2所述的方法,其特征在于,所述样本数据中不同类型的波信号的分割线是通过如下方式得到的,包括:
将所述样本数据切割成至少两个片段;
对每个片段中的二维矩阵数据进行波类型的识别,确定每个片段中波信号的边界;
将不同片段中波信号的边界分别转换为时间数据;
将各个片段的时间数据拼接起来,得到所述样本数据中不同类型的波信号的分割线。
5.根据权利要求1所述的方法,其特征在于,所述按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号,包括:
如果所述目标波信号为所述原始信号中先接收的信号,表示所述目标深度点的时域边界的左侧为目标波信号,则提取所述原始信号在起始时间至时域边界内的信号作为目标波信号;
如果所述目标波信号为所述原始信号中后接收的信号,表示所述目标深度点的时域边界的右侧为目标波,则提取所述原始信号在所述时域边界至结束时间内的信号作为目标波信号。
6.根据权利要求1所述的方法,其特征在于,所述计算所述目标波信号的频域信息和时域信息,包括:
确定所述目标波信号基于时间的频谱图,其中所述频谱图所在的坐标系横坐标为时间,纵坐标为频率;
获取所述频谱图左右边界位置的横坐标以及所述频谱图上下边界位置的纵坐标;
将所述左右边界位置的横坐标确定为目标波信号的起始时间time_start和结束时间time_stop,将上下边界位置的纵坐标确定为目标波信号的最小频率freq_min和最大频率freq_max。
7.根据权利要求1所述的方法,其特征在于,所述利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差,包括:
确定所述目标波信号的中心频率freq_middle;
如果所述目标波信号为所述原始信号中先接收的信号,表示所述目标深度点的时域边界的左侧为目标波,则利用所述中心频率freq_middle对所述目标波信号的起始时间time_start进行修正,得到修正后的起始时间time_start,利用修正后的起始时间time_start、结束时间time_stop、最小频率freq_min和最大频率freq_max,计算所述目标波信号在所述目标深度点的声波时差;
如果所述目标波信号为所述原始信号中后接收的信号,表示所述目标深度点的时域边界的右侧为目标波,则利用所述中心频率freq_middle对所述目标波信号的结束时间time_stop进行修正,得到修正后的起始时间time_start,利用修正后的起始时间time_start、结束时间time_stop、最小频率freq_min和最大频率freq_max,计算所述目标波信号在所述目标深度点的声波时差。
8.根据权利要求7所述的方法,其特征在于:
根据目标波类型,确定不同目标波类型的系数len_coef,其中,len_coef的取值范围为2至8之间;
如果所述目标波信号为所述原始信号中先接收的信号,表示所述目标深度点的时域边界的左侧为目标波,所述修正后的起始时间time_start是通过如下方式得到的,包括:
time_start=time_stop-106/freq_middle*len_coef;
如果所述目标波信号为所述原始信号中后接收的信号,表示所述目标深度点的时域边界的右侧为目标波,所述修正后的结束时间time_stop是通过如下方式得到的,包括:
time_stop=time_start+106/freq_middle*len_coef。
9.一种存储介质,其特征在于,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至8任一项中所述的方法。
10.一种电子装置,包括存储器和处理器,其特征在于,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至8任一项中所述的方法。
CN202011584687.XA 2020-12-28 2020-12-28 一种声波时差的计算方法 Active CN112817049B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202011584687.XA CN112817049B (zh) 2020-12-28 2020-12-28 一种声波时差的计算方法
MX2023007286A MX2023007286A (es) 2020-12-28 2021-11-10 Metodo y dispositivo de calculo de tiempo de transito de intervalo, y medio de almacenamiento.
CA3203426A CA3203426A1 (en) 2020-12-28 2021-11-10 Calculation method and device for interval transit time, and storage medium
PCT/CN2021/129860 WO2022142755A1 (zh) 2020-12-28 2021-11-10 声波时差的计算方法、装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011584687.XA CN112817049B (zh) 2020-12-28 2020-12-28 一种声波时差的计算方法

Publications (2)

Publication Number Publication Date
CN112817049A true CN112817049A (zh) 2021-05-18
CN112817049B CN112817049B (zh) 2022-08-02

Family

ID=75855231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011584687.XA Active CN112817049B (zh) 2020-12-28 2020-12-28 一种声波时差的计算方法

Country Status (4)

Country Link
CN (1) CN112817049B (zh)
CA (1) CA3203426A1 (zh)
MX (1) MX2023007286A (zh)
WO (1) WO2022142755A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022142755A1 (zh) * 2020-12-28 2022-07-07 中海油田服务股份有限公司 声波时差的计算方法、装置和存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278805A (en) * 1992-10-26 1994-01-11 Schlumberger Technology Corporation Sonic well logging methods and apparatus utilizing dispersive wave processing
CN1582403A (zh) * 2001-11-08 2005-02-16 施蓝姆伯格海外股份有限公司 声波测井曲线的全局分类
US20060120217A1 (en) * 2004-12-08 2006-06-08 Wu Peter T Methods and systems for acoustic waveform processing
CN103726836A (zh) * 2012-10-12 2014-04-16 中国石油集团长城钻探工程有限公司 基于声波测井资料提取模式波慢度的方法
CN107678064A (zh) * 2016-08-02 2018-02-09 中石化石油工程技术服务有限公司 一种声波时差实时提取方法
US20180196156A1 (en) * 2017-01-10 2018-07-12 Reeves Wireline Technologies Limited Method of and Apparatus for Carrying Out Acoustic Well Logging
CN110320285A (zh) * 2019-07-08 2019-10-11 创新奇智(青岛)科技有限公司 一种基于超声波信号的钢轨缺陷识别方法、系统及电子设备
CN110782915A (zh) * 2019-10-31 2020-02-11 广州艾颂智能科技有限公司 一种基于深度学习的波形音乐成分分离方法
CN110916645A (zh) * 2019-12-10 2020-03-27 电子科技大学 一种结合小波变换和图像分割网络的qrs波识别方法
US20210325558A1 (en) * 2018-10-09 2021-10-21 Halliburton Energy Services, Inc. Methods and systems for processing slowness values from borehole sonic data

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453240B1 (en) * 1999-04-12 2002-09-17 Joakim O. Blanch Processing for sonic waveforms
CN104295293B (zh) * 2014-10-23 2017-04-12 中国石油天然气股份有限公司 一种获取测井密度曲线的方法
CN104833952B (zh) * 2015-04-24 2017-10-17 电子科技大学 一种测定多个时频混叠信号到达时差的方法
CN110456418A (zh) * 2019-09-12 2019-11-15 西南石油大学 阵列声波成像测井资料的处理和解释方法
CN112817049B (zh) * 2020-12-28 2022-08-02 中海油田服务股份有限公司 一种声波时差的计算方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278805A (en) * 1992-10-26 1994-01-11 Schlumberger Technology Corporation Sonic well logging methods and apparatus utilizing dispersive wave processing
CN1582403A (zh) * 2001-11-08 2005-02-16 施蓝姆伯格海外股份有限公司 声波测井曲线的全局分类
US20060120217A1 (en) * 2004-12-08 2006-06-08 Wu Peter T Methods and systems for acoustic waveform processing
CN103726836A (zh) * 2012-10-12 2014-04-16 中国石油集团长城钻探工程有限公司 基于声波测井资料提取模式波慢度的方法
CN107678064A (zh) * 2016-08-02 2018-02-09 中石化石油工程技术服务有限公司 一种声波时差实时提取方法
US20180196156A1 (en) * 2017-01-10 2018-07-12 Reeves Wireline Technologies Limited Method of and Apparatus for Carrying Out Acoustic Well Logging
US20210325558A1 (en) * 2018-10-09 2021-10-21 Halliburton Energy Services, Inc. Methods and systems for processing slowness values from borehole sonic data
CN110320285A (zh) * 2019-07-08 2019-10-11 创新奇智(青岛)科技有限公司 一种基于超声波信号的钢轨缺陷识别方法、系统及电子设备
CN110782915A (zh) * 2019-10-31 2020-02-11 广州艾颂智能科技有限公司 一种基于深度学习的波形音乐成分分离方法
CN110916645A (zh) * 2019-12-10 2020-03-27 电子科技大学 一种结合小波变换和图像分割网络的qrs波识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHUCHIN AERON等: "Robust Detection and Estimation for Logging While", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 *
张诚鎏等: "综合地震信号整体特征的震相识别和关联技术研究", 《国家安全地球物理丛书(七)——地球物理与核探测中国地球物理学会专题资料汇编》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022142755A1 (zh) * 2020-12-28 2022-07-07 中海油田服务股份有限公司 声波时差的计算方法、装置和存储介质

Also Published As

Publication number Publication date
CN112817049B (zh) 2022-08-02
MX2023007286A (es) 2023-07-03
WO2022142755A1 (zh) 2022-07-07
CA3203426A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US11009617B2 (en) Method for fast calculation of seismic attributes using artificial intelligence
CN111582114B (zh) 一种地震断层识别方法、装置、设备和存储介质
CN112817049B (zh) 一种声波时差的计算方法
CN112379439A (zh) 地震数据中纵波与横波匹配的方法及装置
CN109298448B (zh) 一种致密气压裂工程甜点的预测方法和装置
CN109785312B (zh) 一种图像模糊检测方法、系统及电子设备
CN114830686A (zh) 声源的改进定位
CN112130209B (zh) 岩溶储层预测方法及装置
CN112147687B (zh) 一种储层含气性预测方法及预测系统
CN115656952A (zh) 一种基于u型多维多尺度融合神经网络的地下目标多分类检测方法
CN116027454A (zh) 一种砂岩厚度等值线图的成图方法及智能绘制装置
CN112817042B (zh) 沉积储层中油气识别方法及装置
Gong et al. Automatic time picking of microseismic data based on shearlet-AIC algorithm
CN115220098A (zh) 碳酸盐岩断控缝洞体自动识别方法及装置
CN109387873A (zh) 一种缝洞储集体反演方法及系统
CN112305597A (zh) 储层预测方法及装置
CN114415230B (zh) 一种线性断裂提取方法及装置
CN111781661A (zh) 少井地区沉积微相平面展布预测方法及装置
CN114135264B (zh) 确定致密砂岩微裂缝发育程度的方法、装置和存储介质
CN117216565B (zh) 多通道特性编码的多余物定位特征数据集构建方法
CN117348081A (zh) 一种地震信号高频扩展方法及装置
CN113376690A (zh) 储层参数预测方法及系统
Goudarzi et al. A sparse solution for accurate seismic refraction arrival time selection
CN113960657A (zh) 地震数据特征获取方法及系统
CN105139863A (zh) 一种音频频域连续性图谱计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant