CN112816363A - Novel density meter for switchgear and calculation method of gas density - Google Patents

Novel density meter for switchgear and calculation method of gas density Download PDF

Info

Publication number
CN112816363A
CN112816363A CN202110196450.2A CN202110196450A CN112816363A CN 112816363 A CN112816363 A CN 112816363A CN 202110196450 A CN202110196450 A CN 202110196450A CN 112816363 A CN112816363 A CN 112816363A
Authority
CN
China
Prior art keywords
data
gas
density
temperature
central controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110196450.2A
Other languages
Chinese (zh)
Inventor
王正
郭腾
张好勇
张东亮
白晶晶
毕颖娇
陈仰超
冀辉
赵雨
李凯
王彤
陈金钰
王玮
郭筱恬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Langfang Power Supply Co of State Grid Jibei Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Langfang Power Supply Co of State Grid Jibei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Langfang Power Supply Co of State Grid Jibei Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202110196450.2A priority Critical patent/CN112816363A/en
Publication of CN112816363A publication Critical patent/CN112816363A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

The application provides a novel density meter for switch equipment and a calculation method of gas density, comprising a central controller, a touch and display screen, a wireless transmission module, a temperature sensor, an air pressure sensor and a power supply module; the central controller receives data of the temperature sensor and the air pressure sensor through the wireless transmission module, performs filtering operation on the received data, and then compensates the data through a Bridgman algorithm to obtain the actual density of the detected gas; the temperature sensor is used for measuring the actual working temperature of the switch equipment and sending the detected temperature data to the central controller; the gas pressure sensor is used for measuring the pressure of SF6 gas in the switchgear gas chamber and sending the detected pressure data to the central controller. The beneficial effect of this application is: meanwhile, temperature data and air pressure data are collected, the air pressure data are compensated by the aid of the Bridgman algorithm, and errors caused by inconsistency of the environment temperature where the density meter is located and actual gas temperature are avoided.

Description

Novel density meter for switchgear and calculation method of gas density
Technical Field
The disclosure relates to the field of pressure monitoring of SF6 gas in switchgear, and in particular relates to a novel density meter for switchgear and a calculation method for gas density.
Background
SF6 gas is used as an ultrahigh voltage insulating medium material, can effectively play an arc extinguishing role, and is widely applied to equipment such as circuit breakers of transformer substations, GIS and the like. However, the pressure of the SF6 gas seriously affects its arc extinguishing performance:
1. when the gas pressure is too low, the arc extinguishing capability of the circuit breaker is greatly reduced, and SF6 gas is more easily decomposed into toxic gases such as thionyl fluoride (SOF2) and Hydrogen Fluoride (HF), and meanwhile, the material is corroded;
2. when the gas pressure is too high, the mechanical life of the circuit breaker is shortened, and SF6 gas may be liquefied and lose the arc extinguishing capability.
Therefore, the pressure of the SF6 gas within the switchgear needs to be monitored. The traditional monitoring mode is mainly to monitor through a density meter installed on equipment.
The traditional monitoring mode has the following problems:
1. traditional densitometers monitor "the pressure (Mpa) of the gas in the switch when converted to 20 c" rather than the actual pressure in the gas chamber. When the circuit breaker and the GIS normally work, under the influence of load and loop resistance, the temperature of SF6 gas is inconsistent with the ambient temperature of a density meter, so that the density meter cannot correctly compensate the pressure change of SF6 gas caused by temperature, and the density of the SF6 gas in a gas chamber cannot be correctly monitored. This probably causes the circuit breaker not to block when should block, and the mistake is blocked when not should block, has the potential safety hazard.
2. The monitoring of the density meter on the pressure value is a mechanical conduction indication, the regulation of the standard fine rule of the national power grid company transformation detection general management regulation 39 th registration SF6 density meter (relay) calibration in 3.4.3 specifies that the indication value data of the SF6 density meter (relay) is estimated and read according to 1/5 of the division value, and simultaneously, the device error, the method error and the accidental error exist, the measurement error is larger, and the maximum error can reach 4%.
3. When gas leakage occurs, due to the action of temperature rise, more SF6 gas is leaked from the gas chamber than when the circuit breaker is out of operation, so that the electric shock of the density relay can be closed, and an alarm/locking signal is sent out. This may cause the pressure in the gas chamber not meeting the arc extinguishing condition when leakage is found, and at this time, fault tripping occurs, and the circuit breaker may have arc extinguishing failure and other phenomena, resulting in more serious accidents.
4. The manual work is needed to regularly tour, and a large amount of manpower and material resources are consumed.
Disclosure of Invention
The object of the present application is to solve the above problems by providing a new type of density meter for switchgear and a method for calculating the gas density.
In a first aspect, the present application provides a novel densitometer for a switchgear, including a central controller, a touch and display screen, a wireless transmission module, a temperature sensor, an air pressure sensor, a power module.
The central controller receives data of the temperature sensor and the air pressure sensor through the wireless transmission module, performs filtering operation on the received data, and then compensates the data through a Bridgman algorithm to obtain the actual density of the detected gas;
the temperature sensor is arranged on the air chamber shell closest to the contact of the switch device and used for measuring the actual working temperature of the switch device and sending the detected temperature data to the central controller;
the air pressure sensor is arranged on a three-way valve of the switch device and used for measuring the pressure of SF6 gas in the air chamber of the switch device and sending detected pressure data to the central controller.
According to the technical scheme provided by the embodiment of the application, the touch and display screen is used for displaying gas temperature data, pressure data and density data and providing a man-machine interaction interface.
According to the technical scheme provided by the embodiment of the application, the power supply module is used for providing direct current supply for the central controller, the touch and display screen and the wireless transmission module.
According to the technical scheme provided by the embodiment of the application, the power supply module is a three-port power supply structure formed by the storage battery and the external power supply.
In a second aspect, the present application provides a novel density meter for a switchgear comprising the steps of:
receiving temperature data of a temperature sensor and pressure data of an air pressure sensor;
filtering the temperature data and the pressure data;
and substituting the temperature data and the pressure data into a Bridgman algorithm to calculate the actual density of the gas.
According to the technical scheme provided by the embodiment of the application, the step of substituting the temperature data and the pressure data into the Bridgman algorithm to calculate the actual density of the gas specifically comprises the following steps:
the Bridgman algorithm formula:
P=(R×T×B-A)×C2+R×T×C (1)
in the above formula, A is 73.882 × 10-5+5.132105×10-7×C,B=2.50695×10-3-2.12238×10-6×C,R=56.9502×10-5(bar×m3K), P in bar, T in K, C in gas density in kg/m3
Converting the temperature data into absolute temperature T1, substituting T in formula (1), substituting pressure data P1 in P in formula (1), and obtaining the value C1 of the theoretical density of the gas;
substituting the numerical value of C1 into C in formula (1), substituting the numerical value of T2 being 20+273 into T in formula (1), and obtaining the actual gas pressure P2;
the value of P2 is substituted into P in equation (1), and the value of T1 is substituted into T in equation (1), to obtain the value of C2 of the actual gas density.
The invention has the beneficial effects that: the application provides a novel density meter for switch equipment and a calculation method of gas density, the novel density meter can accurately measure the actual state of gas, and the potential safety hazard of circuit breaker damage caused by inconsistency between the meter reading and the actual gas pressure is avoided; through monitoring and analyzing data by the background, the state of each substation switching device can be predicted in advance, so that the suspected fault device is supervised mainly and overhauled and replaced in advance, and accidents such as equipment damage, cabinet ignition, large-scale power failure and the like caused by overheating of a breaker or leakage of an air chamber and the like are avoided; the gas state data are transmitted to the terminal in real time in a wireless transmission mode, online monitoring is facilitated, and potential safety hazards and inconvenience caused by live inspection are avoided; meanwhile, temperature data and gas pressure data are collected, and pressure data are compensated by using the temperature data through a Bridgman algorithm, so that errors caused by inconsistency of the environment temperature of a density meter and the actual temperature of gas are avoided; the digital display avoids errors caused by estimation and reading, and further improves the measurement accuracy.
Drawings
FIG. 1 is a schematic block diagram of a first embodiment of the present application;
FIG. 2 is a schematic diagram of the electrical connections between the central controller and other components in the first embodiment of the present application;
fig. 3 is a flowchart of a second embodiment of the present application.
Detailed Description
In order that those skilled in the art will better understand the technical solutions of the present invention, the following detailed description of the present invention is provided in conjunction with the accompanying drawings, and the description of the present section is only exemplary and explanatory, and should not be construed as limiting the scope of the present invention in any way.
Fig. 1 is a schematic diagram of a first embodiment of the present application, which includes a central controller, a touch and display screen, a wireless transmission module, a temperature sensor, an air pressure sensor, and a power supply module.
The central controller is used as the core of the density meter, receives data of the temperature sensor and the air pressure sensor through the wireless transmission module, performs filtering operation on the received data, and then compensates the data through a Bridgman algorithm to obtain the actual density of the detected gas.
The temperature sensor is arranged on the housing of the gas chamber closest to the contacts of the switchgear for measuring the actual operating temperature of the switchgear, and therefore it is necessary to respond quickly to temperature changes and convert the temperature into digital signals for transmission to the central controller.
The air pressure sensor is arranged on a three-way valve of the switch device and used for measuring the pressure of SF6 gas in the air chamber of the switch device and sending detected pressure data to the central controller.
The wireless transmission module is used for realizing the communication among the temperature sensor, the air pressure sensor and the central controller, and simultaneously, the electromagnetic spectrum characteristics in the transformer substation are considered, so that the wireless communication of the density meter is ensured not to interfere with other devices in the substation.
The power module is used for providing continuous and stable direct current power supply for the density meter, the reliability of the power module directly influences the service life of an internal chip and other elements, and therefore a three-port power supply mode formed by a storage battery and an external power supply is adopted, high-quality stable voltage is guaranteed to be output, and meanwhile the storage battery can replace the continuous power supply when the commercial power is interrupted.
In a preferred embodiment, the touch and display screen is used for displaying gas temperature data, pressure data and density data and providing a man-machine interaction interface.
Fig. 2 is a schematic diagram showing the signal connection between the central controller and other parts in the first embodiment of the present application.
Fig. 3 is a flow chart of a second embodiment of the present application, which is a method for calculating gas density by using the density table of the first embodiment, and includes the following steps:
and S1, receiving temperature data of the temperature sensor and pressure data of the air pressure sensor.
And S2, filtering the temperature data and the pressure data.
And S3, substituting the temperature data and the pressure data into a Bridgman algorithm, and calculating to obtain the actual density of the gas.
In this embodiment, the step S3 specifically includes:
the Bridgman algorithm formula:
P=(R×T×B-A)×C2+R×T×C (1)
in the above formula, A is 73.882 × 10-5+5.132105×10-7×C,B=2.50695×10-3-2.12238×10-6×C,R=56.9502×10-5(bar×m3K), P in bar, T in K, C in gas density in kg/m3
Converting the temperature data into absolute temperature T1, substituting T in formula (1), substituting pressure data P1 in P in formula (1), and obtaining the value C1 of the theoretical density of the gas;
substituting the numerical value of C1 into C in formula (1), substituting the numerical value of T2 being 20+273 into T in formula (1), and obtaining the actual gas pressure P2;
the value of P2 is substituted into P in equation (1), and the value of T1 is substituted into T in equation (1), to obtain the value of C2 of the actual gas density.
The principles and embodiments of the present application are explained herein using specific examples, which are presented only to assist in understanding the method and its core concepts of the present application. The foregoing is only a preferred embodiment of the present application, and it should be noted that there are objectively infinite specific structures due to the limited character expressions, and it will be apparent to those skilled in the art that a plurality of modifications, decorations or changes may be made without departing from the principle of the present application, and the technical features described above may be combined in a suitable manner; such modifications, variations, combinations, or adaptations of the invention using its spirit and scope, as defined by the claims, may be directed to other uses and embodiments, or may be learned by practice of the invention.

Claims (6)

1. A novel density meter for switch equipment is characterized by comprising a central controller, a touch and display screen, a wireless transmission module, a temperature sensor, an air pressure sensor and a power supply module;
the central controller receives data of the temperature sensor and the air pressure sensor through the wireless transmission module, performs filtering operation on the received data, and then compensates the data through a Bridgman algorithm to obtain the actual density of the detected gas;
the temperature sensor is arranged on the air chamber shell closest to the contact of the switch device and used for measuring the actual working temperature of the switch device and sending the detected temperature data to the central controller;
the air pressure sensor is arranged on a three-way valve of the switch device and used for measuring the pressure of SF6 gas in the air chamber of the switch device and sending detected pressure data to the central controller.
2. The novel density meter for switchgear as claimed in claim 1, wherein said touch and display screen is used to display gas temperature data, pressure data and density data, providing a man-machine interface.
3. The novel density meter for switchgear as claimed in claim 1, wherein said power supply module is adapted to provide dc supply to the central controller, the touch and display screen and the wireless transmission module.
4. The novel density meter for switchgear as claimed in claim 3, wherein said power module is configured as a three-port power supply configuration consisting of a battery plus an external power source.
5. A method for calculating a gas density using the density meter according to any one of claims 1 to 4, comprising the steps of:
receiving temperature data of a temperature sensor and pressure data of an air pressure sensor;
filtering the temperature data and the pressure data;
and substituting the temperature data and the pressure data into a Bridgman algorithm to calculate the actual density of the gas.
6. The method for calculating gas density according to claim 5, wherein the step of calculating the actual density of the gas by substituting the temperature data and the pressure data into the Bridgman algorithm comprises:
the Bridgman algorithm formula:
P=(R×T×B-A)×C2+R×T×C (1)
in the above formula, A is 73.882 × 10-5+5.132105×10-7×C,B=2.50695×10-3-2.12238×10-6×C,R=56.9502×10-5(bar×m3K), P in bar, T in K, C in gas density in kg/m3
Converting the temperature data into absolute temperature T1, substituting T in formula (1), substituting pressure data P1 in P in formula (1), and obtaining the value C1 of the theoretical density of the gas;
substituting the numerical value of C1 into C in formula (1), substituting the numerical value of T2 being 20+273 into T in formula (1), and obtaining the actual gas pressure P2;
the value of P2 is substituted into P in equation (1), and the value of T1 is substituted into T in equation (1), to obtain the value of C2 of the actual gas density.
CN202110196450.2A 2021-02-22 2021-02-22 Novel density meter for switchgear and calculation method of gas density Pending CN112816363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110196450.2A CN112816363A (en) 2021-02-22 2021-02-22 Novel density meter for switchgear and calculation method of gas density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110196450.2A CN112816363A (en) 2021-02-22 2021-02-22 Novel density meter for switchgear and calculation method of gas density

Publications (1)

Publication Number Publication Date
CN112816363A true CN112816363A (en) 2021-05-18

Family

ID=75864604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110196450.2A Pending CN112816363A (en) 2021-02-22 2021-02-22 Novel density meter for switchgear and calculation method of gas density

Country Status (1)

Country Link
CN (1) CN112816363A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508074A (en) * 2011-11-03 2012-06-20 四川电力科学研究院 Internal overheat fault monitoring method of metal sealed gas-insulated switchgear
JP2018006022A (en) * 2016-06-28 2018-01-11 株式会社鷺宮製作所 Sf6 gas density switch
CN107664521A (en) * 2017-09-21 2018-02-06 南京航伽电子科技有限公司 Temperature and pressure integral type transmitter and mutually compensate output intent
CN108007818A (en) * 2017-12-20 2018-05-08 国网河北省电力有限公司电力科学研究院 A kind of SF6And SF6Mixed gas device for detecting density and method
CN108107355A (en) * 2017-12-20 2018-06-01 国网河北省电力有限公司电力科学研究院 A kind of SF6And SF6Mixed gas density monitor calibration equipment and method
CN108594916A (en) * 2018-06-29 2018-09-28 上海乐研电气有限公司 A kind of making-up air device and supplementing method for air of SF6 electrical equipments
CN108871490A (en) * 2018-07-20 2018-11-23 国网江西省电力有限公司电力科学研究院 Sulfur hexafluoride gas Calculational Methods on Leakage and monitoring device in a kind of substation
CN110411890A (en) * 2019-09-04 2019-11-05 上海乐研电气有限公司 Realize the non-maintaining on-site detecting device of gas density relay, system and method
CN110426312A (en) * 2019-09-04 2019-11-08 上海乐研电气有限公司 On-line sampling check-up gas density electrical relay with defencive function
CN110441195A (en) * 2019-09-04 2019-11-12 上海乐研电气有限公司 A kind of gas density relay and its method of calibration with online self checking function
CN111879465A (en) * 2020-07-01 2020-11-03 广东电网有限责任公司 Gas leakage detection system and method for GIS equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508074A (en) * 2011-11-03 2012-06-20 四川电力科学研究院 Internal overheat fault monitoring method of metal sealed gas-insulated switchgear
JP2018006022A (en) * 2016-06-28 2018-01-11 株式会社鷺宮製作所 Sf6 gas density switch
CN107664521A (en) * 2017-09-21 2018-02-06 南京航伽电子科技有限公司 Temperature and pressure integral type transmitter and mutually compensate output intent
CN108007818A (en) * 2017-12-20 2018-05-08 国网河北省电力有限公司电力科学研究院 A kind of SF6And SF6Mixed gas device for detecting density and method
CN108107355A (en) * 2017-12-20 2018-06-01 国网河北省电力有限公司电力科学研究院 A kind of SF6And SF6Mixed gas density monitor calibration equipment and method
CN108594916A (en) * 2018-06-29 2018-09-28 上海乐研电气有限公司 A kind of making-up air device and supplementing method for air of SF6 electrical equipments
CN108871490A (en) * 2018-07-20 2018-11-23 国网江西省电力有限公司电力科学研究院 Sulfur hexafluoride gas Calculational Methods on Leakage and monitoring device in a kind of substation
CN110411890A (en) * 2019-09-04 2019-11-05 上海乐研电气有限公司 Realize the non-maintaining on-site detecting device of gas density relay, system and method
CN110426312A (en) * 2019-09-04 2019-11-08 上海乐研电气有限公司 On-line sampling check-up gas density electrical relay with defencive function
CN110441195A (en) * 2019-09-04 2019-11-12 上海乐研电气有限公司 A kind of gas density relay and its method of calibration with online self checking function
CN111879465A (en) * 2020-07-01 2020-11-03 广东电网有限责任公司 Gas leakage detection system and method for GIS equipment

Similar Documents

Publication Publication Date Title
CN105932590B (en) A kind of SF based on pressure and temperature6Gas presence appraisal procedure
CN103744018A (en) On-line monitoring system aiming at high-voltage circuit breaker
KR101604110B1 (en) Busbar of switchgear integrated management system by using non contackt type integrated temperature and humidity sensor
CN101858958A (en) Intelligent device and method for monitoring vacuum circuit breaker on line
CN104833885A (en) Fault prediction method of power transformation primary equipment
CN201653851U (en) SF6 gas density transmitter and on-line monitoring system applying same
CN112290675A (en) High-low voltage switch cabinet operation and maintenance terminal information acquisition system with high stability performance
CN202661229U (en) Device for monitoring SF6 gas in ring main unit
CN211718032U (en) Gas density relay with online self-checking function and monitoring device
KR101412498B1 (en) Deterioration Diagnosis Device for Switchboard using Overload and Leakage current
CN204421964U (en) Based on the GIS switch cubicle on-line detecting system of surface acoustic wave
CN110568351A (en) High-precision gas density monitor and monitoring system based on edge calculation
CN104319172A (en) Teletransmission sulfur hexafluoride gas density and trace moisture relay
CN204422095U (en) Switch cabinet contact and busbar tie point temperature rise on-Line Monitor Device and system
CN204270972U (en) The micro-water relay of a kind of telemetering type sulfur hexafluoride gas density
CN110441681B (en) High-medium-voltage precise remote gas density relay and gas density monitoring system
KR100692586B1 (en) Trouble diagnosis method and system for circuit breaker
CN112816363A (en) Novel density meter for switchgear and calculation method of gas density
US9322762B2 (en) Method and device for monitoring ageing of electric equipment
CN113758653A (en) Method for monitoring SF6 density relay in real time and pre-judging air leakage
CN111952105B (en) Full-range high-precision remote transmission type sulfur hexafluoride gas density relay
KR20210053846A (en) Facility health monitoring method by measuring the electric circuit constant inside the power facility in operation
CN203191496U (en) RS485 bus based distributed power grid operating equipment insulation online monitoring device
Huang et al. Key Properties Test and Analysis of Gas Density Monitor Used for Gas-Insulated Switchgear after Long-term Operation
CN110567840A (en) Overvoltage-resistant gas density transmitter and monitoring system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518

RJ01 Rejection of invention patent application after publication