CN112811826B - 一种SnS2二维有序纳米孔薄膜、制备方法及其应用 - Google Patents

一种SnS2二维有序纳米孔薄膜、制备方法及其应用 Download PDF

Info

Publication number
CN112811826B
CN112811826B CN202011629802.0A CN202011629802A CN112811826B CN 112811826 B CN112811826 B CN 112811826B CN 202011629802 A CN202011629802 A CN 202011629802A CN 112811826 B CN112811826 B CN 112811826B
Authority
CN
China
Prior art keywords
film
sns
dimensional ordered
preparation
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011629802.0A
Other languages
English (en)
Other versions
CN112811826A (zh
Inventor
戴正飞
赵颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202011629802.0A priority Critical patent/CN112811826B/zh
Publication of CN112811826A publication Critical patent/CN112811826A/zh
Application granted granted Critical
Publication of CN112811826B publication Critical patent/CN112811826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/287Chalcogenides
    • C03C2217/288Sulfides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种SnS2二维有序纳米孔薄膜、制备方法及其应用,属于纳米材料领域。本发明的SnS2二维有序纳米孔薄膜的制备方法,通过调节SnS2的形貌结构,由PS模板→SnO2大孔薄膜→SnS2大孔薄膜,制备得到二维蜂窝状结构,并分布着SnS2花瓣结构,使得气敏性能大大提高。本发明的SnS2二维有序纳米孔薄膜及其应用,以硫原子代替氧原子,会影响氧空位缺陷将不会受限与氧热力学非平衡态问题,能够获得更加稳定可靠的气敏性能;另一方面,传统SnS2最佳工作温度由传统的250℃最佳降至130℃,气敏性能更加优异,在硫化氢气体中气敏响应可以达到10000%。

Description

一种SnS2二维有序纳米孔薄膜、制备方法及其应用
技术领域
本发明属于纳米材料领域,尤其是一种SnS2二维有序纳米孔薄膜、制备方法及其应用。
背景技术
当今世界环境污染尤其是空气质量问题日益严重,人们对大气环境中有毒气体的监控和检测也日益重视,因此需要迫切制备出具有优异性能的气敏传感器。采用薄膜形式的敏感材料是因为气体响应过程主要发生在敏感材料的表面,对气体具有高的探测灵敏度、响应时间快。
此外由于纳米材料的比表面积更大,吸附能力较强,颗粒尺寸小,可提供更多的表面活性点,故传感性能更好。现阶段,半导体电阻式气体传感器的传感材料体系主要集中在金属氧化物半导体(MOS)薄膜。这类传感器一般需要在300℃以上工作,长时间探测易使设备老化,且增加了能耗,不利于应用在智能手机、可穿戴装备和工业安全等领域。而且,金属氧化物与易变外界环境的氧热力学平衡态较难达成,会影响氧空位缺陷在材料内部的流动与分布,导致传感器的长时间稳定性不易保持。因此,设计与研发性能稳定优异的新型传感材料可望解决上述问题。
发明内容
本发明的目的在于克服金属氧化物半导体(MOS)薄膜类传感器长时间稳定性不易保持的缺点,提供一种SnS2二维有序纳米孔薄膜、制备方法及其应用。
为达到上述目的,本发明采用以下技术方案予以实现:
一种SnS2二维有序纳米孔薄膜制备方法:
将带有衬底的PS球单层自组装薄膜浸泡在SnCl4·5H2O溶液中,取出干燥后在氩气氛中400-500℃保温1-4h,在衬底上形成SnO2有序大孔薄膜;
将带有衬底的SnO2有序大孔薄膜在混氢氩气氛下硫化退火,退火温度为 300-550℃,退火时间为60-180min,在衬底上形成SnS2二维有序纳米孔薄膜。
进一步的,包括以下步骤:
(1)将玻璃片进行亲水处理;
(2)将体积比为1:1的2.5wt%的PS球溶液与酒精混合均匀,得到PS球混合溶液;
在亲水性处理后的玻璃片上铺满水,之后将PS球混合溶液在玻璃基底上进行单层自组装,形成PS单层模板;
之后将PS单层模板放置90℃的鼓风干燥箱中干燥10-180min,得到带有衬底的PS球单层自组装薄膜;
(3)以0.05-5mol/L的SnCl4·5H2O溶液为前驱体溶液,将带有衬底的PS球单层自组装薄膜浸泡在SnCl4·5H2O中1-30min,之后进行干燥;
在氩气气氛中400-500℃退火1-4h,在玻璃衬底上形成SnO2有序大孔薄膜;
(4)将SnO2有序大孔薄膜在混氢氩气气氛下进行硫化退火,退火温度为 300-550℃,退火时间为60-180min,在玻璃衬底上形成SnS2二维有序纳米孔薄膜。
进一步的,步骤1)具体为:
将玻璃用丙酮超声处理20-80min,乙醇溶液超声处理20-80min,去离子水超声清洗20-80min,食人鱼溶液浸泡0.5-10h后,之后用去离子水清洗干净。
进一步的,步骤2)中PS球的粒径为1000nm。
进一步的,步骤(4)中进行硫化退火,每25mm×30mm的SnO2有序大孔薄膜,对应0.1-3g硫粉。
进一步的,步骤(3)中进行干燥的温度为60-100℃,时间为60-180min。
进一步的,步骤(4)中混氢氩气气氛为:95%氩气+5%氢气。
本发明的制备方法得到的SnS2二维有序纳米孔薄膜。
进一步的,呈周期性排列的蜂窝状孔洞结构,蜂窝状孔洞上分布有SnS2花瓣状纳米片。
本发明的SnS2二维有序纳米孔薄膜的应用,其特征在于,应用于H2S的气敏传感器时,最佳工作温度为130℃,此时100ppm时气敏响应可达到10000%。
与现有技术相比,本发明具有以下有益效果:
本发明的SnS2二维有序纳米孔薄膜制备方法,首先通过聚苯乙烯模板法浸渍在前驱体溶液中,使得前驱体溶液填充聚苯乙烯微球的间隙,通过薄膜干燥、热处理退火工艺,制得SnO2二维有序大孔薄膜,再进行硫化,在高纯氩气气氛下硫化方法制备出SnS2大孔结构,将S原子替代O原子从而制备出SnS2;制备的SnS2保持着SnO2的结构,呈排列均一、周期性规则的大孔薄膜。本发明的制备方法,思路新颖,操作简单,易于控制,未用到复杂的大型设备,材料也较为便宜,在简单的条件下实现SnS2的制备,重复性好。
进一步的,玻璃衬底经过丙酮、乙醇、去离子水、食人鱼溶液清洗后,可以显著提高表面的亲水性,从而使得整个自组装反应可以顺利完美进行,形成的薄膜也具有较好的基底结合强度。
进一步的,通过将单层PS模板在空气干燥箱中干燥90min,使得薄膜与玻璃基底不易剥离,同时PS之间也结合的更紧密。
进一步的,通过在混氢氩气气氛下硫化处理,使得整个反应过程稳定进行且不易再氧化。
本方明的SnS2二维有序纳米孔薄膜,该薄膜表面有规则的蜂窝状孔洞,蜂窝状孔洞上分布有SnS2花瓣状纳米片。这种复合结构中大孔的存在使得在吸附气体的时候容易形成快速通道,从而具有较高的表面活性位点,少量SnS2花瓣状纳米片形成复合结构增强薄膜的气敏性能。该薄膜对硫化氢气体表现出了良好的选择性,最佳工作温度为130℃,在浓度为100ppm时气敏响应可以达到10000%。
附图说明
图1为实施例1的经过自组装的PS球的扫描电镜图;
图2为实施例1的玻璃衬底上SnO2结构表面形貌的扫描电镜图;
图3为实施例1的SnS2结构表面形貌的扫描电镜图;
图4为实施例1的SnS2薄膜的X射线衍射谱;
图5为实施例1的SnS2薄膜的气敏性能测试结果;
图6为实施例2的SnS2结构表面形貌的扫描电镜图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以硫原子代替氧原子,金属硫化物与外界气氛之间的电子转移过程可不需要氧的参与,将不会受限与前述的氧热力学非平衡态问题,故有望获得更加稳定可靠的气敏性能。
下面结合附图对本发明做进一步详细描述:
实施例1
(1)将玻璃通过丙酮超声处理45min,乙醇溶液超声处理45min,去离子水超声清洗30min并反复换水,食人鱼溶液浸泡4h后用去离子水清洗干净,完成玻璃的亲水处理;
(2)将PS球溶液与酒精1:1混合均匀,超声分散10min后,在经过亲水处理的25mm*75mm的玻璃片上铺满水后将PS球在玻璃基底上进行单层自组装;
根据PS球单层膜的自转移特性,将其转移至25mm*30mm玻璃片上;
将自组装好的PS单层模板放置90℃的鼓风干燥箱中干燥90min,使得PS 模板与25mm*30mm玻璃基底结合更加紧密;
(3)以0.2mol/L的SnCl4·5H2O溶液为前驱体溶液,将步骤(2)制得的PS 单层薄膜模板浸泡在SnCl4·5H2O中4min,之后自然干燥0.5h;
在混氢氩气氛中400℃退火2h,在玻璃衬底上形成SnO2有序大孔薄膜。
(4)将SnO2有序大孔薄膜在混氢氩气氛下硫化退火,硫粉含量为0.3g,退火温度为400℃,退火时间为120min,得到SnS2二维有序纳米孔薄膜。
参见图1,图1为实施例1的玻璃上经过自组装的PS球的扫描电镜图,从图中可以看出经过自组装后的PS球球形度完好,在玻璃模板上分布均匀有序、呈二维周期性有序排列。
参见图2,图2为实施例1的玻璃衬底上制备的SnO2结构表面形貌的扫描电镜图,从图中可以看出,薄膜表面形貌具有较高的完整度,薄膜表面周期性规则分布有蜂窝状孔洞,且孔的大小与PS球大小一样,孔的大小为1000nm。
参见图3,图3为实施例1制备的SnS2二维有序纳米孔薄膜,薄膜表面规则分布有蜂窝状孔洞,蜂窝状孔洞上分布有SnS2花瓣状纳米片,表面结构完整、排列有序。
参见图4,图4为实施例1的X射线衍射图,从图中可以证实步骤(3)制得的是SnO2,再通过步骤(4)硫化制备出的是SnS2
参见图5,图5为实施例1的SnS2二维有序纳米孔薄膜的气敏性能测试,从图5中可以看出,该薄膜的气敏性能良好,最佳温度为130℃,最佳温度时100ppm 的气敏响应可以达到10000%。
实施例2
(1)将玻璃通过丙酮超声处理45min,乙醇溶液超声处理45min,去离子水超声清洗30min并反复换水,食人鱼溶液浸泡4h后用去离子水清洗干净,完成玻璃的亲水处理;
(2)将PS球溶液与酒精1:1混合均匀,超声分散10min后,在经过亲水处理的25mm*75mm的玻璃片上铺满水后将PS球在玻璃基底上进行单层自组装;
根据PS球单层膜的自转移特性,将其转移至25mm*30mm玻璃片上;
将自组装好的PS单层模板放置90℃的鼓风干燥箱中干燥90min,使得PS 模板与25mm*30mm玻璃基底结合更加紧密;
(3)以0.2mol/L的SnCl4·5H2O溶液为前驱体溶液,将步骤(2)制得的PS 单层薄膜模板浸泡在SnCl4·5H2O中4min,之后自然干燥0.5h;
在混氢氩气氛中400℃退火2h,在玻璃衬底上形成SnO2有序大孔薄膜。
(4)将SnO2有序大孔薄膜在高纯氩气氛下硫化退火,硫粉含量为0.6g,退火温度为400℃,退火时间为60min,得到SnS2二维有序纳米孔薄膜。
参见图6,图6为实施例2制备的SnS2结构,薄膜不仅表面规则分布有蜂窝,由于硫化过程硫粉含量过多,故蜂窝孔洞也全部硫化为SnS2花瓣状纳米片。
实施例3
(1)将玻璃通过丙酮超声处理45min,乙醇溶液超声处理45min,去离子水超声清洗30min并反复换水,食人鱼溶液浸泡4h后用去离子水清洗干净,完成玻璃的亲水处理;
(2)将PS球溶液与酒精1:1混合均匀,超声分散10min后,在经过亲水处理的25mm*75mm的玻璃片上铺满水后将PS球在玻璃基底上进行单层自组装;
根据PS球单层膜的自转移特性,将其转移至25mm*30mm玻璃片上
将自组装好的PS单层模板放置90℃的鼓风干燥箱中干燥90min,使得PS 模板与25mm*30mm玻璃基底结合更加紧密。
(3)以0.05mol/L的SnCl4·5H2O溶液为前驱体溶液,将步骤(2)制得的 PS单层薄膜模板浸泡在SnCl4·5H2O中15min,之后自然干燥0.5h;
在混氢氩气氛中400℃退火2h,在玻璃衬底上形成SnO2有序大孔薄膜。
(4)将SnO2有序大孔薄膜在高纯氩气氛下硫化退火,硫粉含量为0.3g,退火温度为400℃,退火时间为120min,得到SnS2二维有序纳米孔薄膜。
实施例4
(1)将玻璃通过丙酮超声处理45min,乙醇溶液超声处理45min,去离子水超声清洗30min并反复换水,食人鱼溶液浸泡4h后用去离子水清洗干净,完成玻璃的亲水处理;
(2)将PS球溶液与酒精1:1混合均匀,超声分散10min后,在经过亲水处理的25mm*75mm的玻璃片上铺满水后将PS球在玻璃基底上进行单层自组装;
根据PS球单层膜的自转移特性,将其转移至25mm*30mm玻璃片上;
将自组装好的PS单层模板放置90℃的鼓风干燥箱中干燥90min,使得PS 模板与25mm*30mm玻璃基底结合更加紧密;
(3)以2mol/L的SnCl4·5H2O溶液为前驱体溶液,将步骤(2)制得的PS 单层薄膜模板浸泡在SnCl4·5H2O中15min,之后自然干燥4h;
在混氢氩气氛中400℃退火1h,在玻璃衬底上形成SnO2有序大孔薄膜。
(4)将SnO2有序大孔薄膜在高纯氩气氛下硫化退火,硫粉含量为0.3g,退火温度为400℃,退火时间为120min,得到SnS2二维有序纳米孔薄膜。
实施例5
(1)将玻璃通过丙酮超声处理45min,乙醇溶液超声处理45min,去离子水超声清洗30min并反复换水,食人鱼溶液浸泡4h后用去离子水清洗干净,完成玻璃的亲水处理;
(2)将PS球溶液与酒精1:1混合均匀,超声分散10min后,在经过亲水处理的25mm*75mm的玻璃片上铺满水后将PS球在玻璃基底上进行单层自组装;
根据PS球单层膜的自转移特性,将其转移至25mm*30mm玻璃片上;
将自组装好的PS单层模板放置90℃的鼓风干燥箱中干燥90min,使得PS 模板与25mm*30mm玻璃基底结合更加紧密。
(3)以0.2mol/L的SnCl4·5H2O溶液为前驱体溶液,将步骤(2)制得的PS 单层薄膜模板浸泡在SnCl4·5H2O中4min,之后自然干燥0.5h;
在混氢氩气氛中400℃退火1h,在玻璃衬底上形成SnO2有序大孔薄膜;
(4)将SnO2有序大孔薄膜在混氢氩气下硫化退火,硫粉含量为0.3g,退火温度为500℃,退火时间为180min,得到SnS2二维有序纳米孔薄膜。
本发明的SnS2二维有序纳米孔薄膜的制备方法,通过调节SnS2的形貌结构,由PS模板→SnO2大孔薄膜→SnS2大孔薄膜,制备得到二维蜂窝状结构,并分布着SnS2花瓣结构,使得气敏性能大大提高。
本发明的SnS2二维有序纳米孔薄膜及其应用,以硫原子代替氧原子,会影响氧空位缺陷将不会受限与氧热力学非平衡态问题,能够获得更加稳定可靠的气敏性能;另一方面,传统SnS2最佳工作温度由传统的250℃最佳降至130℃,气敏性能更加优异,在硫化氢气体中气敏响应可以达到10000%。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (6)

1.一种SnS2二维有序纳米孔薄膜制备方法,其特征在于,包括以下步骤:
(1)将玻璃片进行亲水处理;
(2)将体积比为1:1的2.5wt%的PS球溶液与酒精混合均匀,得到PS球混合溶液;
在亲水性处理后的玻璃片上铺满水,之后将PS球混合溶液在玻璃基底上进行单层自组装,形成PS单层模板;
之后将PS单层模板放置90℃的鼓风干燥箱中干燥10-180 min,得到带有衬底的PS球单层自组装薄膜;
步骤2)中PS球的粒径为1000 nm;
(3)以0.05-5 mol/L的SnCl4∙5H2O溶液为前驱体溶液,将带有衬底的PS球单层自组装薄膜浸泡在SnCl4∙5H2O中1-30 min,之后进行干燥;
在氩气气氛中400-500℃退火1-4 h,在玻璃衬底上形成SnO2有序大孔薄膜;
(4)将SnO2有序大孔薄膜在混氢氩气气氛下进行硫化退火,退火温度为300-550℃,退火时间为60-180 min,在玻璃衬底上形成SnS2二维有序纳米孔薄膜;
步骤(4)中进行硫化退火,每25mm×30mm的SnO2有序大孔薄膜,对应0.1-3 g硫粉;
所述SnS2二维有序纳米孔薄膜,呈周期性排列的蜂窝状孔洞结构,蜂窝状孔洞上分布有SnS2花瓣状纳米片。
2.根据权利要求1所述的SnS2二维有序纳米孔薄膜制备方法,其特征在于,步骤1)具体为:
将玻璃用丙酮超声处理20-80 min,乙醇溶液超声处理20-80 min,去离子水超声清洗20-80 min,食人鱼溶液浸泡0.5-10 h后,之后用去离子水清洗干净。
3.根据权利要求1所述的SnS2二维有序纳米孔薄膜制备方法,其特征在于,步骤(3)中进行干燥的温度为60-100 ℃,时间为60-180 min。
4.根据权利要求1所述的SnS2二维有序纳米孔薄膜制备方法,其特征在于,步骤(4)中混氢氩气气氛为:95%氩气+5%氢气。
5.一种根据权利要求1-4任一项所述的制备方法得到的SnS2二维有序纳米孔薄膜。
6.根据权利要求5所述的SnS2二维有序纳米孔薄膜的应用,其特征在于,应用于H2S的气敏传感器时,最佳工作温度为130℃,此时100ppm时气敏响应可达到10000%。
CN202011629802.0A 2020-12-30 2020-12-30 一种SnS2二维有序纳米孔薄膜、制备方法及其应用 Active CN112811826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011629802.0A CN112811826B (zh) 2020-12-30 2020-12-30 一种SnS2二维有序纳米孔薄膜、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011629802.0A CN112811826B (zh) 2020-12-30 2020-12-30 一种SnS2二维有序纳米孔薄膜、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN112811826A CN112811826A (zh) 2021-05-18
CN112811826B true CN112811826B (zh) 2022-05-20

Family

ID=75855102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011629802.0A Active CN112811826B (zh) 2020-12-30 2020-12-30 一种SnS2二维有序纳米孔薄膜、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112811826B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354298B (zh) * 2021-06-02 2022-05-24 桂林电子科技大学 一种SnO2/MoS2二维大孔复合材料薄膜、制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706719A (zh) * 2017-01-16 2017-05-24 中国石油大学(华东) 一种低温下对氨气敏感的硫化锡纳米花薄膜
CN107008461A (zh) * 2017-03-31 2017-08-04 中山大学 蜂窝状大孔结构过渡金属基催化剂电极及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422730C (zh) * 2005-11-14 2008-10-01 中国科学院合肥物质科学研究院 纳米结构有序多孔薄膜型气敏元件及其制备方法
CN101074492A (zh) * 2007-04-12 2007-11-21 中山大学 半导体硫化物纳米管阵列及其制备方法
CN102153133B (zh) * 2011-03-17 2012-10-17 扬州大学 可控的有序多孔二氧化锡纳米结构的制备方法
US20180299395A1 (en) * 2015-06-12 2018-10-18 Royal Melbourne Institute Of Technology Nox gas sensor
KR102136929B1 (ko) * 2017-08-03 2020-07-23 한양대학교 산학협력단 가스 센서의 제조 방법 및 이를 이용한 가스 센서
CN110092591B (zh) * 2019-04-12 2020-03-17 西安交通大学 一种三维有序多孔网络状结构的vo2薄膜及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706719A (zh) * 2017-01-16 2017-05-24 中国石油大学(华东) 一种低温下对氨气敏感的硫化锡纳米花薄膜
CN107008461A (zh) * 2017-03-31 2017-08-04 中山大学 蜂窝状大孔结构过渡金属基催化剂电极及其制备方法和应用

Also Published As

Publication number Publication date
CN112811826A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
Cao et al. Electronic structure-dependent formaldehyde gas sensing performance of the In2O3/Co3O4 core/shell hierarchical heterostructure sensors
Bai et al. Construction of NiO@ ZnSnO3 hierarchical microspheres decorated with NiO nanosheets for formaldehyde sensing
Zhang et al. Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor
Li et al. A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: Synthesis, sensing performance and mechanism
Xu et al. In situ growth of Co3O4@ NiMoO4 composite arrays on alumina substrate with improved triethylamine sensing performance
Chen et al. Low-temperature and highly selective NO-sensing performance of WO3 nanoplates decorated with silver nanoparticles
Wang et al. Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure
Tan et al. Synthesis of hollow and hollowed-out Co3O4 microspheres assembled by porous ultrathin nanosheets for ethanol gas sensors: responding and recovering in one second
Wu et al. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures
Qin et al. Vanadium pentoxide hierarchical structure networks for high performance ethanol gas sensor with dual working temperature characteristic
Wei et al. Facile synthesis of La-doped In2O3 hollow microspheres and enhanced hydrogen sulfide sensing characteristics
Xu et al. Single-crystalline porous nanosheets assembled hierarchical Co3O4 microspheres for enhanced gas-sensing properties to trace xylene
Guo et al. Hollow, porous, and yttrium functionalized ZnO nanospheres with enhanced gas-sensing performances
Xiao et al. Promoting effects of Ag on In2O3 nanospheres of sub-ppb NO2 detection
Tan et al. Ultra-thin nanosheets-assembled hollowed-out hierarchical α-Fe2O3 nanorods: Synthesis via an interface reaction route and its superior gas sensing properties
Cao et al. Constructing one dimensional Co3O4 hierarchical nanofibers as efficient sensing materials for rapid acetone gas detection
Li et al. Metal-organic framework-derived ZnO decorated with CuO for ultra-high response and selectivity H2S gas sensor
Wang et al. Synthesis of 3D flower-like ZnSnO3 and improvement of ethanol-sensing properties at room temperature based on nano-TiO2 decoration and UV radiation
Zhou et al. Constructing p–n heterostructures for efficient structure–driven ethanol sensing performance
US20180215628A1 (en) Porous oxide semiconductor including three-dimensionally interconnected nanopores, mesopores, and macropores, method for preparing the porous oxide semiconductor and gas sensor including the porous oxide semiconductor as gas sensing material
Korotcenkov et al. Material design for metal oxide chemiresistive gas sensors
Ullah et al. Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature
Zhang et al. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor
Jia et al. Synthesis and characterization of Ag/α-Fe2O3 microspheres and their application to highly sensitive and selective detection of ethanol
CN112811826B (zh) 一种SnS2二维有序纳米孔薄膜、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant