CN112809687B - Simulation method, device and equipment of robot controller - Google Patents
Simulation method, device and equipment of robot controller Download PDFInfo
- Publication number
- CN112809687B CN112809687B CN202110183569.6A CN202110183569A CN112809687B CN 112809687 B CN112809687 B CN 112809687B CN 202110183569 A CN202110183569 A CN 202110183569A CN 112809687 B CN112809687 B CN 112809687B
- Authority
- CN
- China
- Prior art keywords
- simulator
- user
- parameters
- robot
- stability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000004088 simulation Methods 0.000 title claims abstract description 48
- 230000008569 process Effects 0.000 claims abstract description 21
- 230000004044 response Effects 0.000 claims description 125
- 238000004458 analytical method Methods 0.000 claims description 61
- 238000004590 computer program Methods 0.000 claims description 10
- 238000004422 calculation algorithm Methods 0.000 description 34
- 238000010586 diagram Methods 0.000 description 21
- 230000006870 function Effects 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000013016 damping Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Prevention of errors by analysis, debugging or testing of software
- G06F11/3668—Testing of software
- G06F11/3696—Methods or tools to render software testable
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Prevention of errors by analysis, debugging or testing of software
- G06F11/3698—Environments for analysis, debugging or testing of software
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及机器人系统仿真技术领域,特别涉及一种机器人控制器的仿真方法、装置及设备。The invention relates to the technical field of robot system simulation, in particular to a simulation method, device and equipment for a robot controller.
背景技术Background technique
康复机器人通过辅助患者进行科学地、有效地康复训练,来恢复患者的运动功能。而康复机器人的设计中,运动控制算法至关重要,是整个机器人康复训练的核心。因此快速地测试运动控制算法,选择运动控制算法的控制参数,判断整个康复机器人系统的稳定性以及评价整机性能,需要更加便捷和快速的工具,有助于整体康复机器人系统的算法开发和快速验证。The rehabilitation robot restores the patient's motor function by assisting the patient to carry out scientific and effective rehabilitation training. In the design of the rehabilitation robot, the motion control algorithm is very important and is the core of the whole robot rehabilitation training. Therefore, to quickly test the motion control algorithm, select the control parameters of the motion control algorithm, judge the stability of the entire rehabilitation robot system and evaluate the performance of the whole machine, more convenient and fast tools are needed, which are helpful for the algorithm development and rapid development of the overall rehabilitation robot system. verify.
而由于目前仿真工具还没有针对康复机器人的仿真分析方法,因此如何通过仿真方法来模拟康复机器人在控制参数下的运动轨迹是目前亟需解决的技术问题。However, since there is no simulation analysis method for the rehabilitation robot in the current simulation tools, how to simulate the motion trajectory of the rehabilitation robot under the control parameters through the simulation method is a technical problem that needs to be solved urgently.
发明内容SUMMARY OF THE INVENTION
本发明提供一种机器人控制器的仿真方法、装置及设备,用于提供一种机器人控制器的仿真方法,根据用户选择的模拟器和输入的模拟器参数来仿真机器人在所述模拟器参数下的运动轨迹,根据运动轨迹能够有效地分析所述模拟器参数对所述机器人的影响。The present invention provides a simulation method, device and equipment for a robot controller, which are used to provide a simulation method for a robot controller, which simulates a robot under the simulator parameters according to the simulator selected by the user and the input simulator parameters. According to the motion trajectory, the influence of the simulator parameters on the robot can be effectively analyzed.
第一方面,本发明实施例提供的一种机器人控制器的仿真方法,包括:In a first aspect, a method for simulating a robot controller provided by an embodiment of the present invention includes:
确定用户选择的第一模拟器以及用户输入的模拟器参数,其中所述第一模拟器用于根据仿真过程中接收的用户输入的作用力参数确定待仿真机器人的位置信息,所述模拟器参数包括表征所述待仿真机器人的属性参数以及所述待仿真机器人运动所需的运行参数;Determine the first simulator selected by the user and the simulator parameters input by the user, wherein the first simulator is used to determine the position information of the robot to be simulated according to the force parameters input by the user received during the simulation process, and the simulator parameters include Characterizing the attribute parameters of the robot to be simulated and the running parameters required for the motion of the robot to be simulated;
响应数据加载指令,根据所述模拟器参数运行所述第一模拟器,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息,其中所述轨迹信息用于表征所述待仿真机器人在所述模拟器参数下的运动轨迹。In response to the data loading instruction, the first simulator is run according to the simulator parameters, and the set of force parameters input by the user is converted into trajectory information through the first simulator, wherein the trajectory information is used to represent the to-be-to-be The motion trajectory of the simulated robot under the simulator parameters is simulated.
本发明实施例提供的仿真方法可以根据用户选择的模拟器和输入的模拟器参数来仿真机器人在所述模拟器参数下的运动轨迹,并响应数据加载指令,将用户输入的作用力参数集合转换为轨迹信息,通过所述轨迹信息来表示选择的模拟器以及输入的模拟器参数是否符合设计要求,从而使得用户能够快速地选择康复机器人的运动控制算法的控制参数。The simulation method provided by the embodiment of the present invention can simulate the motion trajectory of the robot under the simulator parameters according to the simulator selected by the user and the input simulator parameters, and in response to the data loading instruction, convert the set of force parameters input by the user into conversion For trajectory information, the trajectory information indicates whether the selected simulator and the input simulator parameters meet the design requirements, so that the user can quickly select the control parameters of the motion control algorithm of the rehabilitation robot.
作为一种可选的实施方式,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息之后,还包括:As an optional implementation manner, after converting the force parameter set input by the user into trajectory information through the first simulator, the method further includes:
响应用户指令,根据所述轨迹信息确定与所述用户指令对应的显示内容,并通过显示界面进行显示,其中所述显示内容用于表征所述待仿真机器人在所述模拟器参数下的轨迹信息与所述模拟器性能之间的关系。In response to the user instruction, determine the display content corresponding to the user instruction according to the trajectory information, and display it through the display interface, wherein the display content is used to represent the trajectory information of the robot to be simulated under the simulator parameters relationship with the simulator performance.
本发明实施例提供一种直观的,可视化的显示界面来观测机器人的运动状态,通过输入的不同的模拟器参数,根据与所述不同的模拟器参数对应的轨迹信息来观测不同的控制器参数对机器人系统的影响。The embodiment of the present invention provides an intuitive and visual display interface to observe the motion state of the robot, and observes different controller parameters according to the trajectory information corresponding to the different simulator parameters by inputting different simulator parameters Impact on robotic systems.
作为一种可选的实施方式,响应用户指令,根据所述轨迹信息确定与所述用户指令对应的显示内容,包括:As an optional implementation manner, in response to a user instruction, determining the display content corresponding to the user instruction according to the trajectory information, including:
响应用户的绘图指令,根据所述轨迹信息确定与所述绘图指令对应的响应曲线,其中所述响应曲线用于表征所述轨迹信息中的位置信息与预设变量之间的关系;和/或,In response to a user's drawing instruction, determine a response curve corresponding to the drawing instruction according to the trajectory information, wherein the response curve is used to represent the relationship between the position information in the trajectory information and a preset variable; and/or ,
响应用户的指标分析指令,根据所述轨迹信息确定与所述指标分析指令对应的性能指标值,其中所述性能指标值用于表征所述轨迹信息满足预设性能条件时确定的指标值。In response to a user's indicator analysis instruction, determine a performance indicator value corresponding to the indicator analysis instruction according to the trajectory information, wherein the performance indicator value is used to represent the indicator value determined when the trajectory information satisfies a preset performance condition.
本发明实施例提供了不同的显示内容,根据响应曲线能够直观地显示出轨迹信息中的位置信息与预设变量之间的关系,从而确定出满足预设要求的模拟器参数的有效范围;根据性能指标值能够定量表示所述模拟器参数是否满足预设要求。The embodiment of the present invention provides different display contents, and the relationship between the position information in the trajectory information and the preset variables can be visually displayed according to the response curve, so as to determine the effective range of the simulator parameters that meet the preset requirements; The performance index value can quantitatively represent whether the parameters of the simulator meet the preset requirements.
作为一种可选的实施方式,该方法还包括:As an optional embodiment, the method also includes:
响应用户的稳定性分析指令,确定用户选择的变量个数以及输入的非变量参数和变量范围,其中所述稳定性分析指令用于指示对第二模拟器的稳定性进行分析;Determine the number of variables selected by the user and the input non-variable parameters and variable ranges in response to the stability analysis instruction of the user, wherein the stability analysis instruction is used to instruct to analyze the stability of the second simulator;
响应变量数据加载指令,根据所述变量范围以及所述非变量参数运行所述第二模拟器,通过所述第二模拟器将用户输入的作用力参数集合转换为轨迹信息;In response to the variable data loading instruction, run the second simulator according to the variable range and the non-variable parameters, and convert the set of force parameters input by the user into trajectory information through the second simulator;
根据所述轨迹信息确定所述第二模拟器在所述变量范围内的稳定性。The stability of the second simulator within the variable range is determined based on the trajectory information.
本发明实施例还提供一种对机器人控制器的稳定性分析,将轨迹信息转换为在变量处于变化状态下的稳定性,从而快速地测试机器人系统的稳定性。The embodiment of the present invention also provides a stability analysis of the robot controller, which converts the trajectory information into the stability when the variables are in a state of change, so as to quickly test the stability of the robot system.
作为一种可选的实施方式,根据所述轨迹信息确定所述预设模拟器在所述变量范围内的稳定性,包括:As an optional implementation manner, determining the stability of the preset simulator within the variable range according to the trajectory information includes:
响应用户的稳定性绘图指令,根据所述变量与所述稳定性之间的关系生成稳定性图像并通过图像显示界面进行显示,其中所述稳定性图像用于表征所述变量在所述变量范围内变化时所述第二模拟器的稳定性。In response to a user's stability drawing instruction, a stability image is generated according to the relationship between the variable and the stability and displayed through the image display interface, wherein the stability image is used to represent that the variable is within the variable range The stability of the second simulator when internal changes are made.
本发明实施例还提供一种可视化的稳定性分析方法,通过稳定性图像来直观地表示机器人系统的稳定性对应的变量以及非变量参数是否满足预设要求,从而为该机器人选择合适的控制器以及控制器参数。The embodiment of the present invention also provides a visual stability analysis method, which intuitively indicates whether the variables corresponding to the stability of the robot system and the non-variable parameters meet the preset requirements through the stability image, so as to select a suitable controller for the robot and controller parameters.
作为一种可选的实施方式,所述响应曲线包括如下任一或任多种:As an optional embodiment, the response curve includes any one or more of the following:
伯德图曲线;Bode plot curve;
阶跃响应曲线;Step response curve;
脉冲响应曲线。Impulse response curve.
第二方面,本发明实施例提供的一种机器人控制器的仿真装置,包括:In a second aspect, a simulation device for a robot controller provided by an embodiment of the present invention includes:
选择输入单元,用于确定用户选择的第一模拟器以及用户输入的模拟器参数,其中所述第一模拟器用于根据仿真过程中接收的用户输入的作用力参数确定待仿真机器人的位置信息,所述模拟器参数包括表征所述待仿真机器人的属性参数以及所述待仿真机器人运动所需的运行参数;The selection input unit is used to determine the first simulator selected by the user and the simulator parameters input by the user, wherein the first simulator is used for determining the position information of the robot to be simulated according to the force parameters input by the user received in the simulation process, The simulator parameters include attribute parameters characterizing the robot to be simulated and operating parameters required for the motion of the robot to be simulated;
确定轨迹单元,用于响应数据加载指令,根据所述模拟器参数运行所述第一模拟器,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息,其中所述轨迹信息用于表征所述待仿真机器人在所述模拟器参数下的运动轨迹。determining a trajectory unit, configured to respond to a data loading instruction, run the first simulator according to the simulator parameters, and convert the set of force parameters input by the user into trajectory information through the first simulator, wherein the trajectory information It is used to characterize the motion trajectory of the robot to be simulated under the simulator parameters.
作为一种可选的实施方式,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息之后,所述确定轨迹单元还用于:As an optional implementation manner, after the set of force parameters input by the user is converted into trajectory information by the first simulator, the trajectory determining unit is further configured to:
响应用户指令,根据所述轨迹信息确定与所述用户指令对应的显示内容,并通过显示界面进行显示,其中所述显示内容用于表征所述待仿真机器人在所述模拟器参数下的轨迹信息与所述模拟器性能之间的关系。In response to the user instruction, determine the display content corresponding to the user instruction according to the trajectory information, and display it through the display interface, wherein the display content is used to represent the trajectory information of the robot to be simulated under the simulator parameters relationship with the simulator performance.
作为一种可选的实施方式于,所述确定轨迹单元具体还用于:As an optional implementation manner, the determining track unit is further used for:
响应用户的绘图指令,根据所述轨迹信息确定与所述绘图指令对应的响应曲线,其中所述响应曲线用于表征所述轨迹信息中的位置信息与预设变量之间的关系;和/或,In response to a user's drawing instruction, determine a response curve corresponding to the drawing instruction according to the trajectory information, wherein the response curve is used to represent the relationship between the position information in the trajectory information and a preset variable; and/or ,
响应用户的指标分析指令,根据所述轨迹信息确定与所述指标分析指令对应的性能指标值,其中所述性能指标值用于表征所述轨迹信息满足预设性能条件时确定的指标值。In response to a user's indicator analysis instruction, determine a performance indicator value corresponding to the indicator analysis instruction according to the trajectory information, wherein the performance indicator value is used to represent the indicator value determined when the trajectory information satisfies a preset performance condition.
作为一种可选的实施方式,所述装置还包括稳定分析单元具体用于:As an optional implementation manner, the device further includes a stability analysis unit, which is specifically used for:
响应用户的稳定性分析指令,确定用户选择的变量个数以及输入的非变量参数和变量范围,其中所述稳定性分析指令用于指示对第二模拟器的稳定性进行分析;Determine the number of variables selected by the user and the input non-variable parameters and variable ranges in response to the stability analysis instruction of the user, wherein the stability analysis instruction is used to instruct to analyze the stability of the second simulator;
响应变量数据加载指令,根据所述变量范围以及所述非变量参数运行所述第二模拟器,通过所述第二模拟器将用户输入的作用力参数集合转换为轨迹信息;In response to the variable data loading instruction, run the second simulator according to the variable range and the non-variable parameters, and convert the set of force parameters input by the user into trajectory information through the second simulator;
根据所述轨迹信息确定所述第二模拟器在所述变量范围内的稳定性。The stability of the second simulator within the variable range is determined based on the trajectory information.
作为一种可选的实施方式,所述稳定分析单元具体用于:As an optional implementation manner, the stability analysis unit is specifically used for:
响应用户的稳定性绘图指令,根据所述变量与所述稳定性之间的关系生成稳定性图像并通过图像显示界面进行显示,其中所述稳定性图像用于表征所述变量在所述变量范围内变化时所述第二模拟器的稳定性。In response to a user's stability drawing instruction, a stability image is generated according to the relationship between the variable and the stability and displayed through the image display interface, wherein the stability image is used to represent that the variable is within the variable range The stability of the second simulator when internal changes are made.
作为一种可选的实施方式,所述响应曲线包括如下任一或任多种:As an optional embodiment, the response curve includes any one or more of the following:
伯德图曲线;Bode plot curve;
阶跃响应曲线;Step response curve;
脉冲响应曲线。Impulse response curve.
第三方面,本发明实施例还提供一种机器人控制器的仿真设备,该设备包括处理器和存储器,所述存储器用于存储所述处理器可执行的程序,所述处理器用于读取所述存储器中的程序并执行如下步骤:In a third aspect, an embodiment of the present invention further provides a simulation device for a robot controller, the device includes a processor and a memory, where the memory is used to store a program executable by the processor, and the processor is used to read all the program in the memory and perform the following steps:
确定用户选择的第一模拟器以及用户输入的模拟器参数,其中所述第一模拟器用于根据仿真过程中接收的用户输入的作用力参数确定待仿真机器人的位置信息,所述模拟器参数包括表征所述待仿真机器人的属性参数以及所述待仿真机器人运动所需的运行参数;Determine the first simulator selected by the user and the simulator parameters input by the user, wherein the first simulator is used to determine the position information of the robot to be simulated according to the force parameters input by the user received during the simulation process, and the simulator parameters include Characterizing the attribute parameters of the robot to be simulated and the running parameters required for the motion of the robot to be simulated;
响应数据加载指令,根据所述模拟器参数运行所述第一模拟器,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息,其中所述轨迹信息用于表征所述待仿真机器人在所述模拟器参数下的运动轨迹。In response to the data loading instruction, the first simulator is run according to the simulator parameters, and the set of force parameters input by the user is converted into trajectory information through the first simulator, wherein the trajectory information is used to represent the to-be-to-be The motion trajectory of the simulated robot under the simulator parameters is simulated.
作为一种可选的实施方式,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息之后,所述处理器具体还被配置为执行:As an optional implementation manner, after converting the force parameter set input by the user into trajectory information through the first simulator, the processor is specifically further configured to execute:
响应用户指令,根据所述轨迹信息确定与所述用户指令对应的显示内容,并通过显示界面进行显示,其中所述显示内容用于表征所述待仿真机器人在所述模拟器参数下的轨迹信息与所述模拟器性能之间的关系。In response to the user instruction, determine the display content corresponding to the user instruction according to the trajectory information, and display it through the display interface, wherein the display content is used to represent the trajectory information of the robot to be simulated under the simulator parameters relationship with the simulator performance.
作为一种可选的实施方式,所述处理器具体还被配置为执行:As an optional implementation manner, the processor is further configured to execute:
响应用户的绘图指令,根据所述轨迹信息确定与所述绘图指令对应的响应曲线,其中所述响应曲线用于表征所述轨迹信息中的位置信息与预设变量之间的关系;和/或,In response to a user's drawing instruction, determine a response curve corresponding to the drawing instruction according to the trajectory information, wherein the response curve is used to represent the relationship between the position information in the trajectory information and a preset variable; and/or ,
响应用户的指标分析指令,根据所述轨迹信息确定与所述指标分析指令对应的性能指标值,其中所述性能指标值用于表征所述轨迹信息满足预设性能条件时确定的指标值。In response to a user's indicator analysis instruction, determine a performance indicator value corresponding to the indicator analysis instruction according to the trajectory information, wherein the performance indicator value is used to represent the indicator value determined when the trajectory information satisfies a preset performance condition.
作为一种可选的实施方式,所述处理器具体还被配置为执行:As an optional implementation manner, the processor is further configured to execute:
响应用户的稳定性分析指令,确定用户选择的变量个数以及输入的非变量参数和变量范围,其中所述稳定性分析指令用于指示对第二模拟器的稳定性进行分析;Determine the number of variables selected by the user and the input non-variable parameters and variable ranges in response to the stability analysis instruction of the user, wherein the stability analysis instruction is used to instruct to analyze the stability of the second simulator;
响应变量数据加载指令,根据所述变量范围以及所述非变量参数运行所述第二模拟器,通过所述第二模拟器将用户输入的作用力参数集合转换为轨迹信息;In response to the variable data loading instruction, run the second simulator according to the variable range and the non-variable parameters, and convert the set of force parameters input by the user into trajectory information through the second simulator;
根据所述轨迹信息确定所述第二模拟器在所述变量范围内的稳定性。The stability of the second simulator within the variable range is determined based on the trajectory information.
作为一种可选的实施方式,所述处理器具体还被配置为执行:As an optional implementation manner, the processor is further configured to execute:
响应用户的稳定性绘图指令,根据所述变量与所述稳定性之间的关系生成稳定性图像并通过图像显示界面进行显示,其中所述稳定性图像用于表征所述变量在所述变量范围内变化时所述第二模拟器的稳定性。In response to a user's stability drawing instruction, a stability image is generated according to the relationship between the variable and the stability and displayed through the image display interface, wherein the stability image is used to represent that the variable is within the variable range The stability of the second simulator when internal changes are made.
作为一种可选的实施方式,所述响应曲线包括如下任一或任多种:As an optional embodiment, the response curve includes any one or more of the following:
伯德图曲线;Bode plot curve;
阶跃响应曲线;Step response curve;
脉冲响应曲线。Impulse response curve.
第四方面,本发明实施例还提供计算机存储介质,其上存储有计算机程序,该程序被处理器执行时用于实现上述第一方面所述方法的步骤。In a fourth aspect, an embodiment of the present invention further provides a computer storage medium on which a computer program is stored, and when the program is executed by a processor, is used to implement the steps of the method described in the first aspect above.
本申请的这些方面或其他方面在以下的实施例的描述中会更加简明易懂。These and other aspects of the present application will be more clearly understood in the description of the following embodiments.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明实施例提供的一种机器人控制器的仿真方法流程图;1 is a flowchart of a simulation method of a robot controller provided by an embodiment of the present invention;
图2为本发明实施例提供的一种选择输入界面示意图;2 is a schematic diagram of a selection input interface provided by an embodiment of the present invention;
图3为本发明实施例提供的一种确定选择的模拟器以及输入的模拟器参数界面示意图;3 is a schematic diagram of an interface for determining a selected simulator and an input simulator parameter provided by an embodiment of the present invention;
图4为本发明实施例提供的一种响应数据加载指令的显示界面示意图;4 is a schematic diagram of a display interface for responding to a data loading instruction provided by an embodiment of the present invention;
图5为本发明实施例提供的第一种响应曲线示意图;5 is a schematic diagram of a first response curve provided by an embodiment of the present invention;
图6为本发明实施例提供的第二种响应曲线示意图;6 is a schematic diagram of a second response curve provided by an embodiment of the present invention;
图7为本发明实施例提供的第三种响应曲线示意图;7 is a schematic diagram of a third response curve provided by an embodiment of the present invention;
图8为本发明实施例提供的一种显示性能指标值的显示界面示意图;8 is a schematic diagram of a display interface for displaying performance index values according to an embodiment of the present invention;
图9为本发明实施例提供的一种响应用户的稳定性分析指令的显示界面示意图;9 is a schematic diagram of a display interface for responding to a user's stability analysis instruction provided by an embodiment of the present invention;
图10为本发明实施例提供的一种稳定性分析显示界面变量输入示意图;10 is a schematic diagram of inputting variables in a stability analysis display interface provided by an embodiment of the present invention;
图11为本发明实施例提供的响应变量数据加载指令的显示界面示意图;11 is a schematic diagram of a display interface of a response variable data loading instruction provided by an embodiment of the present invention;
图12为本发明实施例提供的第一种稳定性绘图显示界面示意图;12 is a schematic diagram of a first stability drawing display interface provided by an embodiment of the present invention;
图13为本发明实施例提供的第二种稳定性绘图显示界面示意图;13 is a schematic diagram of a second stability drawing display interface provided by an embodiment of the present invention;
图14为本发明实施例提供的第三种稳定性绘图显示界面示意图;14 is a schematic diagram of a third stability drawing display interface provided by an embodiment of the present invention;
图15为本发明实施例提供的一种机器人控制器的具体仿真方法流程图;15 is a flowchart of a specific simulation method of a robot controller provided by an embodiment of the present invention;
图16为本发明实施例提供的一种机器人控制器的仿真装置示意图;16 is a schematic diagram of a simulation device of a robot controller according to an embodiment of the present invention;
图17为本发明实施例提供的一种机器人控制器的仿真设备示意图。FIG. 17 is a schematic diagram of a simulation device of a robot controller according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。In this embodiment of the present invention, the term "and/or" describes the association relationship between associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists alone, A and B exist simultaneously, and B exists alone these three situations. The character "/" generally indicates that the associated objects are an "or" relationship.
本发明实施例描述的应用场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着新应用场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。其中,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。The application scenarios described in the embodiments of the present invention are for the purpose of illustrating the technical solutions of the embodiments of the present invention more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present invention. It appears that the technical solutions provided by the embodiments of the present invention are also applicable to similar technical problems. Wherein, in the description of the present invention, unless otherwise specified, "plurality" means two or more.
实施例1Example 1
本发明实施例提供一种机器人控制器的仿真方法,可以应用于但不局限于医疗器械领域,例如针对下肢康复机器人所使用的控制器进行仿真;也可以应用于多轴机器人、交互式机器人等使用的控制器进行仿真,本发明实施例对此不作过多限定。Embodiments of the present invention provide a method for simulating a robot controller, which can be applied to but not limited to the field of medical devices, such as simulating a controller used by a lower limb rehabilitation robot; it can also be applied to a multi-axis robot, an interactive robot, etc. The used controller is used for simulation, which is not limited too much in this embodiment of the present invention.
运动控制算法是整个康复机器人运动的核心关键技术,如何能够针对康复机器人设备快速度地设计合适的控制器,来选择最优的控制算法以及相关参数是目前亟需解决的技术问题,目前主要存在以下几个问题:The motion control algorithm is the core key technology of the entire rehabilitation robot motion. How to design a suitable controller for the rehabilitation robot equipment quickly and select the optimal control algorithm and related parameters is a technical problem that needs to be solved urgently at present. The following questions:
问题1、无法直观和定量地观察机器人的控制算法的性能指标。
主要原因是在控制算法设计过程中,无法准确地获取系统惯性参数中的部分参数,同时缺乏控制指标的设定和计算分析,无法更加直观的进行可视化的操作。The main reason is that in the process of designing the control algorithm, some parameters in the inertial parameters of the system cannot be accurately obtained, and at the same time, the setting and calculation analysis of the control index are lacking, and the visual operation cannot be performed more intuitively.
问题2、无法快速查看机器人系统的稳定性。
针对不同的控制算法,机器人系统的稳定性是一切控制算法运行的前提,而目前在控制算法的稳定性分析过程中缺乏相关参数,无法对机器人系统的稳定性进行有效分析。For different control algorithms, the stability of the robot system is the premise of the operation of all control algorithms, but at present, there is a lack of relevant parameters in the stability analysis process of the control algorithm, and the stability of the robot system cannot be effectively analyzed.
问题3、无法设计有效的量化指标从而进行控制器参数的选择。
无法从多个角度来评价控制器优劣,同时无法直观地观察控制器参数对机器人系统性能的影响。It is impossible to evaluate the advantages and disadvantages of the controller from multiple perspectives, and it is impossible to intuitively observe the influence of the controller parameters on the performance of the robot system.
为了解决上述技术问题,本发明实施例提供了一种机器人控制器的仿真方法,能够快速地选择合适的控制器参数。如图1所示,该方法的实施流程如下所示:In order to solve the above technical problem, an embodiment of the present invention provides a simulation method for a robot controller, which can quickly select appropriate controller parameters. As shown in Figure 1, the implementation process of the method is as follows:
步骤100、确定用户选择的第一模拟器以及用户输入的模拟器参数,其中所述第一模拟器用于根据仿真过程中接收的用户输入的作用力参数确定待仿真机器人的位置信息,所述模拟器参数包括表征所述待仿真机器人的属性参数以及所述待仿真机器人运动所需的运行参数;Step 100: Determine the first simulator selected by the user and the simulator parameters input by the user, wherein the first simulator is used to determine the position information of the robot to be simulated according to the force parameters input by the user received during the simulation process, and the simulation The device parameters include attribute parameters characterizing the robot to be simulated and operating parameters required for the motion of the robot to be simulated;
本发明实施例中的第一模拟器,用于表征待仿真机器人的控制器,即所述第一模拟器使用的算法与所述控制器的控制器算法是一样的,所述第一模拟器用于根据所述待仿真机器人的控制器算法模拟所述待仿真机器人的控制器的运行。本发明实施例中的仿真方法是一套独立的仿真方法,能够对机器人使用的不同的控制器算法进行仿真测试,并可以输入与不同第一模拟器对应的模拟器参数来仿真不同控制器参数下的运动轨迹。The first simulator in the embodiment of the present invention is used to characterize the controller of the robot to be simulated, that is, the algorithm used by the first simulator is the same as the controller algorithm of the controller, and the first simulator uses the same algorithm as the controller algorithm of the controller. The operation of the controller of the robot to be simulated is simulated according to the controller algorithm of the robot to be simulated. The simulation method in the embodiment of the present invention is a set of independent simulation methods, which can simulate and test different controller algorithms used by the robot, and can input simulator parameters corresponding to different first simulators to simulate different controller parameters trajectory below.
可选的,本发明实施例中机器人控制器的控制器算法包括但不限于:位置控制算法,速度控制算法,力矩控制算法,力位混合控制算法,阻抗控制算法,导纳控制算法。不同的机器人可以使用不同的控制器算法,同一机器人在不同场景下也可以使用不同的控制器算法,对此本发明实施例不作过多限定。Optionally, the controller algorithm of the robot controller in the embodiment of the present invention includes but is not limited to: a position control algorithm, a speed control algorithm, a torque control algorithm, a force-position hybrid control algorithm, an impedance control algorithm, and an admittance control algorithm. Different robots may use different controller algorithms, and the same robot may also use different controller algorithms in different scenarios, which is not limited in this embodiment of the present invention.
需要说明的是,本发明实施例的仿真方法中,用户可以对第一模拟器进行选择,其中所述第一模拟器包括但不限于:使用PID(比例-积分-微分)控制器算法的模拟器、使用比例相位滞后控制器算法的模拟器、使用阻抗控制器算法的模拟器。容易理解的是,本发明实施例可以对如下任一或任多种控制器进行仿真:PID控制器、比例相位滞后控制器、阻抗控制器。It should be noted that, in the simulation method of the embodiment of the present invention, a user can select a first simulator, where the first simulator includes but is not limited to: a simulation using a PID (proportional-integral-derivative) controller algorithm controller, simulator using proportional phase lag controller algorithm, simulator using impedance controller algorithm. It is easy to understand that the embodiments of the present invention can simulate any one or any of the following controllers: a PID controller, a proportional phase lag controller, and an impedance controller.
本实施例用户选择的第一模拟器以及输入的模拟器参数之间是对应的,即用户选择一种第一模拟器之后,只能输入与选择的第一模拟器对应的模拟器参数,其他模拟器的模拟器参数无法输入。In this embodiment, there is a correspondence between the first simulator selected by the user and the input simulator parameters, that is, after the user selects one type of first simulator, only the simulator parameters corresponding to the selected first simulator can be input, and other The simulator parameters for the simulator cannot be entered.
仿真过程中会模拟机器人进行运动,根据接收用户输入的作用力参数来模拟用户利用机器人进行康复训练时用户与机器人之间产生的作用力,从而根据当前仿真的第一模拟器以及输入的模拟器参数,确定在该第一模拟器以及模拟器参数下的机器人的位置信息,以模拟机器人的运动情况。During the simulation process, the robot will be simulated to move, and the force generated between the user and the robot when the user uses the robot for rehabilitation training is simulated according to the force parameters input by the user. parameters, and determine the position information of the robot under the first simulator and the simulator parameters, so as to simulate the motion situation of the robot.
本发明实施例中的模拟器参数包括表征所述待仿真机器人的属性参数以及所述待仿真机器人运动所需的运行参数。其中所述属性参数用于表征所述待仿真机器人的材质、重量等特性,所述运行参数用于表征机器人控制器的控制器参数。The simulator parameters in the embodiment of the present invention include attribute parameters characterizing the robot to be simulated and operating parameters required for the motion of the robot to be simulated. The attribute parameter is used to characterize the material, weight and other characteristics of the robot to be simulated, and the operation parameter is used to characterize the controller parameter of the robot controller.
可选的,所述属性参数包括但不限于:系统惯性、系统阻尼、系统刚度;所述运行参数包括但不限于:与所述阻抗控制器对应的控制器参数质量、阻尼和刚度;与所述比例相位滞后控制器对应的比例增益、零点参数和极点参数;与所述PID控制器对应的比例参数,积分参数和微分参数。Optionally, the attribute parameters include but are not limited to: system inertia, system damping, and system stiffness; the operating parameters include but are not limited to: controller parameters mass, damping and stiffness corresponding to the impedance controller; proportional gain, zero point parameter and pole point parameter corresponding to the proportional phase lag controller; proportional parameter, integral parameter and differential parameter corresponding to the PID controller.
步骤101、响应数据加载指令,根据所述模拟器参数运行所述第一模拟器,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息,其中所述轨迹信息用于表征所述待仿真机器人在所述模拟器参数下的运动轨迹。Step 101: In response to a data loading instruction, run the first simulator according to the simulator parameters, and convert the set of force parameters input by the user into trajectory information through the first simulator, where the trajectory information is used to represent The motion trajectory of the robot to be simulated under the simulator parameters.
可选的,本发明实施例在仿真过程中接收用户输入的作用力参数集合可以是根据接收的预设时段内用户输入的作用力参数确定的作用力参数集合,也可以是直接接收的用户输入的作用力参数集合。Optionally, the set of force parameters received by the user during the simulation process in this embodiment of the present invention may be the set of force parameters determined according to the force parameters input by the user within the received preset time period, or may be directly received from the user. set of force parameters.
实施中,通过传递函数将用户输入的作用力参数集合转换为轨迹信息,其中所述传递函数用于表征作用力参数与机器人位置信息之间的关系。容易理解的是,所述传递函数是基于不同的控制器确定的,即不同的控制器算法对应的传递函数是不同的,但不论哪种传递函数都用于表征作用力和位置之间的关系,本发明实施例对本实施例中使用的传递函数不作过多限定。In implementation, the set of force parameters input by the user is converted into trajectory information through a transfer function, wherein the transfer function is used to characterize the relationship between the force parameters and the position information of the robot. It is easy to understand that the transfer function is determined based on different controllers, that is, the transfer functions corresponding to different controller algorithms are different, but no matter which transfer function is used to characterize the relationship between the force and the position , the embodiment of the present invention does not limit the transfer function used in this embodiment too much.
作为一种可选的实施方式,本发明实施例通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息之后,还可以响应用户指令进行显示,具体步骤如下所示:As an optional implementation manner, in this embodiment of the present invention, after the set of force parameters input by the user is converted into trajectory information through the first simulator, it can also be displayed in response to a user instruction, and the specific steps are as follows:
响应用户指令,根据所述轨迹信息确定与所述用户指令对应的显示内容,并通过显示界面进行显示,其中所述显示内容用于表征所述待仿真机器人在所述模拟器参数下的轨迹信息与所述模拟器性能之间的关系。In response to the user instruction, determine the display content corresponding to the user instruction according to the trajectory information, and display it through the display interface, wherein the display content is used to represent the trajectory information of the robot to be simulated under the simulator parameters relationship with the simulator performance.
需要说明的是,本发明实施例可以提供一种可视化分析方法,对机器人控制器的性能进行仿真并通过显示界面的显示内容来表征待仿真机器人的轨迹信息与模拟器性能之间的关系,从而使得用户可以通过该显示内容来确定合适的轨迹信息对应的模拟器参数,从而快速地对机器人控制器参数进行选择,其中合适的轨迹信息包括满足性能要求的模拟器性能对应的轨迹信息。It should be noted that the embodiment of the present invention can provide a visual analysis method, which simulates the performance of the robot controller and represents the relationship between the trajectory information of the robot to be simulated and the performance of the simulator through the display content of the display interface, thereby The user can determine the simulator parameters corresponding to the appropriate trajectory information through the displayed content, so as to quickly select the robot controller parameters, wherein the appropriate trajectory information includes the trajectory information corresponding to the simulator performance that meets the performance requirements.
作为一种可选的实施方式,本发明实施例可通过如下任一或任多种方式确定与所述用户指令对应的显示内容,具体的确定方式如下所示:As an optional implementation manner, in this embodiment of the present invention, the display content corresponding to the user instruction may be determined in any one or more of the following manners, and the specific determination manner is as follows:
方式1、响应用户的绘图指令,根据所述轨迹信息确定与所述绘图指令对应的响应曲线;Mode 1: In response to a user's drawing instruction, determine a response curve corresponding to the drawing instruction according to the trajectory information;
其中所述响应曲线用于表征所述轨迹信息中的位置信息与预设变量之间的关系;可选的,所述响应曲线包括如下任一或任多种:伯德图曲线;阶跃响应曲线;脉冲响应曲线。The response curve is used to represent the relationship between the position information in the trajectory information and a preset variable; optionally, the response curve includes any one or more of the following: a Bode plot curve; a step response curve; impulse response curve.
可选的,本发明实施例中的预设变量可以是时间,也可以是频率,本发明实施例对此不作过多限定。Optionally, the preset variable in this embodiment of the present invention may be time or frequency, which is not limited in this embodiment of the present invention.
若所述预设变量为时间,则所述响应曲线为阶跃响应曲线或脉冲响应曲线,其中所述阶跃响应曲线用于通过发送阶跃信号来对模拟器运行得到的位置信息进行时域上的跟踪,从而根据确定出所述阶跃响应曲线对应的模拟器参数的范围;同样的,所述脉冲响应曲线用于通过发送脉冲信号来对模拟器运行得到的位置信息进行时域上的跟踪,从而根据确定出所述脉冲响应曲线对应的模拟器参数的范围;If the preset variable is time, the response curve is a step response curve or an impulse response curve, wherein the step response curve is used to perform time domain analysis on the position information obtained by the simulator operation by sending a step signal so as to determine the range of simulator parameters corresponding to the step response curve; similarly, the impulse response curve is used to perform time domain analysis on the position information obtained by the simulator operation by sending pulse signals tracking, so as to determine the range of simulator parameters corresponding to the impulse response curve;
若所述预设变量为频率,则所述响应曲线为伯德图曲线,其中所述伯德图曲线用于估计幅值裕度和相位裕度,从而根据幅值裕度和相位裕度来确定所述伯德图曲线对应的模拟器参数是否满足预设要求。If the preset variable is frequency, the response curve is a Bode plot curve, wherein the Bode plot curve is used to estimate the amplitude margin and the phase margin, so as to determine the amplitude margin and the phase margin according to the It is determined whether the simulator parameters corresponding to the Bode plot curve meet the preset requirements.
方式2、响应用户的指标分析指令,根据所述轨迹信息确定与所述指标分析指令对应的性能指标值;Mode 2: In response to a user's indicator analysis instruction, determine a performance indicator value corresponding to the indicator analysis instruction according to the trajectory information;
其中所述性能指标值用于表征所述轨迹信息满足预设性能条件时确定的指标值。The performance index value is used to represent the index value determined when the trajectory information satisfies a preset performance condition.
实施中,所述性能指标值用于表征根据所述轨迹信息中的位置信息与预设变量之间的关系确定的响应曲线在满足预设性能条件时确定的指标值,可选的,所述指标值为幅值裕度和相位裕度,从而根据幅值裕度和相位裕度来确定对应的模拟器参数是否满足预设要求。In implementation, the performance index value is used to represent the index value determined when the response curve determined according to the relationship between the position information in the trajectory information and the preset variable satisfies the preset performance condition. The index values are the amplitude margin and the phase margin, so that it is determined whether the corresponding simulator parameters meet the preset requirements according to the amplitude margin and the phase margin.
方式3、响应用户的绘图指令和指标分析指令,根据所述轨迹信息确定与所述绘图指令对应的响应曲线,以及根据所述轨迹信息确定与所述指标分析指令对应的性能指标值;Mode 3: In response to a user's drawing instruction and an index analysis instruction, determine a response curve corresponding to the drawing instruction according to the trajectory information, and determine a performance index value corresponding to the index analysis instruction according to the trajectory information;
其中所述响应曲线用于表征所述轨迹信息中的位置信息与预设变量之间的关系,所述性能指标值用于表征所述轨迹信息满足预设性能条件时确定的指标值。The response curve is used to represent the relationship between the position information in the trajectory information and a preset variable, and the performance index value is used to represent the index value determined when the trajectory information satisfies a preset performance condition.
实施中,可以先确定响应曲线,用于根据响应曲线确定出模拟器参数的范围,然后确定性能指标值,用于根据性能指标值确定出在所述范围内的模拟器参数是否满足预设要求。In the implementation, the response curve can be determined first, which is used to determine the range of the simulator parameters according to the response curve, and then the performance index value is determined, which is used to determine whether the simulator parameters within the range meet the preset requirements according to the performance index value. .
作为一种可选的实施方式,本发明实施例还提供一种稳定性分析方法,用于对特定的控制器进行稳定性分析,该方法具体实施步骤如下所示:As an optional implementation manner, the embodiment of the present invention also provides a stability analysis method for performing stability analysis on a specific controller. The specific implementation steps of the method are as follows:
步骤1、响应用户的稳定性分析指令,确定用户选择的变量个数以及输入的非变量参数和变量范围,其中所述稳定性分析指令用于指示对第二模拟器的稳定性进行分析;
需要说明的是,稳定性分析可以针对某个特定的控制器进行仿真分析,本发明实施例中的第一模拟器和第二模拟器可以是相同的模拟器,也可以是不同的模拟器,对此本发明实施例不作过多限定。It should be noted that the stability analysis may be performed on a specific controller, and the first simulator and the second simulator in the embodiment of the present invention may be the same simulator or different simulators. This embodiment of the present invention does not limit too much.
可选的,本发明实施例可以对比例相位滞后控制器进行稳定性分析,即所述第二模拟器为使用比例相位滞后控制器算法的模拟器,所述变量包括但不限于如下任一或任多个:Optionally, in this embodiment of the present invention, stability analysis may be performed on a proportional phase lag controller, that is, the second simulator is a simulator using a proportional phase lag controller algorithm, and the variables include but are not limited to any of the following or Any number of:
比例增益Kdc、零点参数z、极点参数p。例如,所述变量为比例增益Kdc,则所述非变量为零点参数z、极点参数p;若所述变量为零点参数z,则所述非变量为比例增益Kdc和极点参数p;若所述变量为极点参数p,则所述非变量为比例增益Kdc、零点参数z。Proportional gain Kdc, zero parameter z, pole parameter p. For example, if the variable is the proportional gain Kdc, the non-variable is the zero-point parameter z and the pole parameter p; if the variable is the zero-point parameter z, the non-variable is the proportional gain Kdc and the pole parameter p; if the The variable is the pole parameter p, and the non-variable is the proportional gain Kdc and the zero parameter z.
步骤2、响应变量数据加载指令,根据所述变量范围以及所述非变量参数运行所述第二模拟器,通过所述第二模拟器将用户输入的作用力参数集合转换为轨迹信息;
容易理解的是,所述轨迹信息的确定是在变量进行变化的过程中确定的,可以根据该轨迹信息来判断在所述变量的变化过程中所述模拟器的稳定性。It is easy to understand that the determination of the trajectory information is determined in the process of changing the variables, and the stability of the simulator in the process of changing the variables can be judged according to the trajectory information.
步骤3、根据所述轨迹信息确定所述第二模拟器在所述变量范围内的稳定性。Step 3: Determine the stability of the second simulator within the variable range according to the trajectory information.
可以理解的是,本发明实施例仿真方法中测试稳定性是基于变量与稳定性之间的关系,而变量在一定范围内变化的过程中,可以根据轨迹信息来判断稳定性。It can be understood that the stability test in the simulation method of the embodiment of the present invention is based on the relationship between the variable and the stability, and in the process of the variable changing within a certain range, the stability can be judged according to the trajectory information.
作为一种可选的实施方式,本发明实施例根据所述轨迹信息确定所述预设模拟器在所述变量范围内的稳定性,具体实施方式如下所示:As an optional implementation manner, in this embodiment of the present invention, the stability of the preset simulator within the variable range is determined according to the trajectory information. The specific implementation manner is as follows:
响应用户的稳定性绘图指令,根据变量与所述稳定性之间的关系生成稳定性图像并通过图像显示界面进行显示,其中所述稳定性图像用于表征所述变量在所述变量范围内变化时所述第二模拟器的稳定性。In response to a user's stability drawing instruction, a stability image is generated according to the relationship between the variable and the stability and displayed through the image display interface, wherein the stability image is used to represent the change of the variable within the variable range the stability of the second simulator.
可选的,本发明实施例中的稳定性图像包括如下任一或任多种:Optionally, the stabilization image in this embodiment of the present invention includes any one or more of the following:
若变量个数为一个,则所述稳定性图像为一维曲线图像;或,If the number of variables is one, the stability image is a one-dimensional curve image; or,
若变量个数为两个,则所述稳定性图像为二维图像;或,If the number of variables is two, the stability image is a two-dimensional image; or,
若变量个数为三个,则所述稳定性图像为三维图像。If the number of variables is three, the stability image is a three-dimensional image.
本发明实施例还提供一种选择输入界面来确定用户选择的第一模拟器以及用户输入的模拟器参数,并通过该选择输入界面给出用户可以对数据进行加载的操作按键,以响应数据加载指令。The embodiment of the present invention also provides a selection input interface to determine the first simulator selected by the user and the parameters of the simulator input by the user, and provides operation keys for the user to load data through the selection input interface, so as to respond to the data loading instruction.
如图2所示,所述选择输入界面包括六部分,分别如下所示:As shown in Figure 2, the selection input interface includes six parts, as follows:
第一部分是模拟器选择部分,包含有MIT控制器(比例相位滞后控制器)、NG1控制器(比例-积分-微分控制器)和阻抗控制器(可理解为基础控制器与MIT控制器或NG1控制器配合使用,也可为默认必选项)。The first part is the simulator selection part, including MIT controller (proportional phase lag controller), NG1 controller (proportional-integral-derivative controller) and impedance controller (which can be understood as basic controller and MIT controller or NG1 It can also be used in conjunction with the controller, and it can also be a default option).
第二部分是系统参数System Parmeters,包含有系统惯性Inertia、系统阻尼Damping和系统刚度Stiffness。The second part is the system parameters System Parmeters, including system inertia Inertia, system damping Damping and system stiffness Stiffness.
第三部分是阻抗控制器Impedance Controller,包含有控制器参数质量Mass、阻尼Damper和刚度Stiff。The third part is the Impedance Controller, which contains the controller parameters Mass, Damper and Stiff.
第四部分是MIT控制器,包含有比例增益Kdc、零点参数z和极点参数p。The fourth part is the MIT controller, which includes proportional gain Kdc, zero parameter z and pole parameter p.
第五部分是NG1控制器,包含有比例参数Kp,积分参数Ki和微分参数Kd。The fifth part is the NG1 controller, which includes proportional parameter Kp, integral parameter Ki and differential parameter Kd.
第六部分是操作部分,包含有数据加载Data Loading,系统伯德图曲线绘制BodePlot,系统阶跃响应Step Response和脉冲响应Impulse Response。The sixth part is the operation part, including data loading Data Loading, system Bode plot curve drawing BodePlot, system step response Step Response and impulse response Impulse Response.
下面通过绘图对本发明实施例提供的一种机器人控制器的仿真方法的具体实施步骤进行说明:The specific implementation steps of a simulation method for a robot controller provided by an embodiment of the present invention are described below by drawing:
如图3所示,确定选择的模拟器以及输入的模拟器参数。可以通过在模拟器名称前面进行勾选的方式确定用户选择的模拟器,如图3勾选MIT Controller和Imp Controller,并输入与所述MIT Controller对应的模拟器参数。As shown in Figure 3, the selected simulator and the input simulator parameters are determined. The simulator selected by the user can be determined by checking in front of the simulator name, as shown in Figure 3, check MIT Controller and Imp Controller, and input simulator parameters corresponding to the MIT Controller.
如图4所示,响应数据加载指令,即用户可以通过点击Data Loading按钮发送数据加载指令,若数据加载完毕后,Status指示灯会变色(如从加载前的红色变成绿色),表示数据加载正确。As shown in Figure 4, in response to the data loading command, the user can send the data loading command by clicking the Data Loading button. If the data loading is completed, the Status indicator will change color (for example, from red before loading to green), indicating that the data is loaded correctly. .
实施中,响应用户的绘图指令,根据所述轨迹信息确定与所述绘图指令对应的响应曲线,若所述绘图指令为伯德图曲线绘制指令,则所述响应曲线如图5所示,若所述绘图指令为阶跃响应曲线绘制指令,则所述响应曲线如图6所示,若所述绘图指令为脉冲响应曲线绘制指令,则所述响应曲线如图7所示。In the implementation, in response to the user's drawing instruction, the response curve corresponding to the drawing instruction is determined according to the trajectory information. If the drawing instruction is a Bode plot curve drawing instruction, the response curve is as shown in FIG. 5 . If the drawing instruction is a step response curve drawing instruction, the response curve is as shown in FIG. 6 , and if the drawing instruction is an impulse response curve drawing instruction, the response curve is as shown in FIG. 7 .
实施中,响应用户的指标分析指令,根据所述轨迹信息确定与所述指标分析指令对应的性能指标值,通过选择的模拟器以及输入的模拟器参数,来分析在该模拟器参数下所述模拟器的性能指标,通过量化的性能指标可以更加直观地观察模拟器算法(即控制器算法)的好坏。In the implementation, in response to the user's index analysis instruction, determine the performance index value corresponding to the index analysis instruction according to the trajectory information, and analyze the description under the simulator parameters through the selected simulator and the input simulator parameters. The performance indicators of the simulator, through the quantitative performance indicators, the quality of the simulator algorithm (ie the controller algorithm) can be observed more intuitively.
如图8所示,通过显示界面显示性能指标值,其中性能指标值包括两部分,频域性能指标和时域性能指标,另外还可以通过Stable指示灯来直观判断稳定性能。其中,频域性能指标包括但不限于:幅值截止频率、幅值裕度、相位截止频率和相位裕度。时域性能指标包括但不限于:上升时间、调节时间、超调量和峰值时间。As shown in Figure 8, the performance index value is displayed through the display interface, wherein the performance index value includes two parts, the frequency domain performance index and the time domain performance index. In addition, the stable performance can be visually judged through the Stable indicator. The frequency domain performance indicators include but are not limited to: amplitude cutoff frequency, amplitude margin, phase cutoff frequency and phase margin. Time domain performance indicators include but are not limited to: rise time, settling time, overshoot and peak time.
可选的,通过性能指标计算Calculate按钮,响应用户的指标分析指令,确定各个性能指标值。Optionally, through the Calculate button of the performance indicator calculation, the value of each performance indicator is determined in response to the indicator analysis instruction of the user.
实施中,如图9所示,响应用户的稳定性分析指令,确定用户选择的变量个数以及输入的非变量参数。可选的,变量个数可以为1个、2个、3个,变量范围是可以设置的,用户可以根据设置的变量范围对应的稳定性图像来观测变量的变化对稳定性的影响。通过变量数目的变化,绘制不同状态下的系统稳定性曲线,以用于观察不稳定和稳定的范围,从而选择合适的参数。In implementation, as shown in FIG. 9 , in response to the stability analysis instruction of the user, the number of variables selected by the user and the input non-variable parameters are determined. Optionally, the number of variables can be 1, 2, or 3, and the variable range can be set. Users can observe the impact of variable changes on stability according to the stability image corresponding to the set variable range. Through the change of the number of variables, the system stability curve under different states is drawn to observe the range of instability and stability, so as to select appropriate parameters.
容易理解的是,当存在三个变量时,无法确定具体是哪个变量对系统稳定性的影响较大,因此本实施例通过固定不同数量的变量,来确定某一个或某几个变量对系统稳定性的影响,能够更加快速地确定各个变量对系统稳定性的影响程度。It is easy to understand that when there are three variables, it is impossible to determine which variable has a greater impact on the system stability. Therefore, in this embodiment, by fixing different numbers of variables, it is determined that one or several variables affect the system stability. The influence of each variable on the stability of the system can be determined more quickly.
需要说明的是,本发明实施例中的变量和非变量参数都大于零。It should be noted that both the variable and non-variable parameters in the embodiments of the present invention are greater than zero.
如图10所示,选择的变量个数为1Varibale,即选择一个变量,其他两个变量是固定参数。如图11所示,响应变量数据加载指令,加载数据成功后,Status指示灯会变色(例如从红色变成绿色)。响应用户的稳定性绘图指令,可选的,用户可根据点击Stability Plot绘图按钮,进行稳定性绘图,如图12所示,若所述变量为单一变量,则稳定性图像为一维图像,其中横轴表示变量,纵轴表示稳定性,o表示稳定stable,×表示不稳定unstable;如图13所示,若所述变量为2个,则所述稳定性图像为二维图像,其中横轴表示第一个变量,纵轴表示第二个变量,o表示稳定,×表示不稳定;如图14所示,若所述变量为3个,则所述稳定性图像为三维图像,其中,X轴、Y轴和Z轴分别表示三个变量,o表示稳定,×表示不稳定。As shown in Figure 10, the number of variables selected is 1Varibale, that is, one variable is selected, and the other two variables are fixed parameters. As shown in Figure 11, in response to the variable data load instruction, after the data is loaded successfully, the Status indicator will change color (for example, from red to green). In response to the user's stability drawing instruction, optionally, the user can click the Stability Plot drawing button to perform stability drawing, as shown in Figure 12, if the variable is a single variable, the stability image is a one-dimensional image, where The horizontal axis represents variables, the vertical axis represents stability, o represents stable, and × represents unstable; as shown in Figure 13, if there are two variables, the stability image is a two-dimensional image, where the horizontal axis is a two-dimensional image. represents the first variable, the vertical axis represents the second variable, o represents stability, and × represents instability; as shown in Figure 14, if the number of variables is 3, the stability image is a three-dimensional image, where X Axis, Y-axis and Z-axis respectively represent three variables, o means stable and × means unstable.
如图15所示,本发明实施例还提供一种机器人控制器的具体仿真方法,该方法的具体实施流程如下所示:As shown in FIG. 15 , an embodiment of the present invention also provides a specific simulation method for a robot controller. The specific implementation process of the method is as follows:
步骤1500、确定用户选择的第一模拟器以及用户输入的模拟器参数;
其中所述第一模拟器用于根据仿真过程中接收的用户输入的作用力参数确定待仿真机器人的位置信息,所述模拟器参数包括表征所述待仿真机器人的属性参数以及所述待仿真机器人运动所需的运行参数;The first simulator is used to determine the position information of the robot to be simulated according to the force parameters input by the user received during the simulation process, and the simulator parameters include attribute parameters characterizing the robot to be simulated and the motion of the robot to be simulated required operating parameters;
步骤1501、响应数据加载指令,根据所述模拟器参数运行所述第一模拟器,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息;
其中所述轨迹信息用于表征所述待仿真机器人在所述模拟器参数下的运动轨迹。The trajectory information is used to represent the motion trajectory of the robot to be simulated under the simulator parameters.
步骤1502、响应用户的绘图指令,根据所述轨迹信息确定与所述绘图指令对应的响应曲线;
其中所述响应曲线用于表征所述轨迹信息中的位置信息与预设变量之间的关系;wherein the response curve is used to represent the relationship between the position information in the trajectory information and a preset variable;
其中,通过步骤1500-步骤1502,用户能够根据所述响应曲线确定出模拟器参数的较大范围,即确定出控制器参数的较大范围;Wherein, through steps 1500-1502, the user can determine a larger range of simulator parameters according to the response curve, that is, determine a larger range of controller parameters;
步骤1503、响应用户的指标分析指令,根据所述轨迹信息确定与所述指标分析指令对应的性能指标值;Step 1503: In response to the indicator analysis instruction of the user, determine the performance indicator value corresponding to the indicator analysis instruction according to the trajectory information;
其中所述性能指标值用于表征所述轨迹信息满足预设性能条件时确定的指标值。The performance index value is used to represent the index value determined when the trajectory information satisfies a preset performance condition.
通过步骤1503,用户能够从所述范围内的模拟器参数中确定出符合设计需求的模拟器参数,即确定出符合设计需求的控制器参数;Through
步骤1504、响应用户的稳定性分析指令,确定用户选择的变量个数以及输入的非变量参数和变量范围;
其中所述稳定性分析指令用于指示对第二模拟器的稳定性进行分析;The stability analysis instruction is used to instruct to analyze the stability of the second simulator;
步骤1505、响应变量数据加载指令,根据所述变量范围以及所述非变量参数运行所述第二模拟器,通过所述第二模拟器将用户输入的作用力参数集合转换为轨迹信息;Step 1505: In response to the variable data loading instruction, run the second simulator according to the variable range and the non-variable parameters, and convert the set of force parameters input by the user into trajectory information through the second simulator;
步骤1506、响应用户的稳定性绘图指令,根据所述变量与所述稳定性之间的关系生成稳定性图像并通过图像显示界面进行显示;
其中所述稳定性图像用于表征所述变量在所述变量范围内变化时所述第二模拟器的稳定性。wherein the stability image is used to characterize the stability of the second simulator when the variable varies within the variable range.
通过步骤1504-步骤1506,用户能够根据所述稳定性图像确定出模拟器参数的较小范围,即确定出控制器参数的较小范围。Through
需要说明的是,本发明实施例中步骤1500~步骤1502可以与步骤1504~步骤1506并行执行,也可以先后执行,本发明实施例对此不作过多限定。若步骤1504-步骤1506是在步骤1500~步骤1502之后执行的,那么用户可以从较大范围的控制器参数集合中进一步确定出较小范围的控制器参数集合。然后执行步骤1503,用户可以从较小范围的控制器参数集合中确定符合设计需求的控制器参数。能够有效提高仿真效率,快速确定出符合设计需求的控制器参数。It should be noted that, in this embodiment of the present invention, steps 1500 to 1502 may be performed in parallel with
实施例2Example 2
基于相同的发明构思,本发明实施例还提供了一种机器人控制器的仿真装置,由于该装置即是本发明实施例中的方法中的装置,并且该装置解决问题的原理与该方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。Based on the same inventive concept, the embodiment of the present invention also provides a simulation device for a robot controller. Since the device is the device in the method in the embodiment of the present invention, and the principle of solving the problem of the device is similar to that of the method, Therefore, the implementation of the device may refer to the implementation of the method, and the repeated parts will not be repeated.
如图16所示,该装置包括:As shown in Figure 16, the device includes:
选择输入单元1600,用于确定用户选择的第一模拟器以及用户输入的模拟器参数,其中所述第一模拟器用于根据仿真过程中接收的用户输入的作用力参数确定待仿真机器人的位置信息,所述模拟器参数包括表征所述待仿真机器人的属性参数以及所述待仿真机器人运动所需的运行参数;The
确定轨迹单元1601,用于响应数据加载指令,根据所述模拟器参数运行所述第一模拟器,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息,其中所述轨迹信息用于表征所述待仿真机器人在所述模拟器参数下的运动轨迹。A
作为一种可选的实施方式,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息之后,所述确定轨迹单元还用于:As an optional implementation manner, after the set of force parameters input by the user is converted into trajectory information by the first simulator, the trajectory determining unit is further configured to:
响应用户指令,根据所述轨迹信息确定与所述用户指令对应的显示内容,并通过显示界面进行显示,其中所述显示内容用于表征所述待仿真机器人在所述模拟器参数下的轨迹信息与所述模拟器性能之间的关系。In response to the user instruction, determine the display content corresponding to the user instruction according to the trajectory information, and display it through the display interface, wherein the display content is used to represent the trajectory information of the robot to be simulated under the simulator parameters relationship with the simulator performance.
作为一种可选的实施方式于,所述确定轨迹单元具体还用于:As an optional implementation manner, the determining track unit is further used for:
响应用户的绘图指令,根据所述轨迹信息确定与所述绘图指令对应的响应曲线,其中所述响应曲线用于表征所述轨迹信息中的位置信息与预设变量之间的关系;和/或,In response to a user's drawing instruction, determine a response curve corresponding to the drawing instruction according to the trajectory information, wherein the response curve is used to represent the relationship between the position information in the trajectory information and a preset variable; and/or ,
响应用户的指标分析指令,根据所述轨迹信息确定与所述指标分析指令对应的性能指标值,其中所述性能指标值用于表征所述轨迹信息满足预设性能条件时确定的指标值。In response to a user's indicator analysis instruction, determine a performance indicator value corresponding to the indicator analysis instruction according to the trajectory information, wherein the performance indicator value is used to represent the indicator value determined when the trajectory information satisfies a preset performance condition.
作为一种可选的实施方式,所述装置还包括稳定分析单元具体用于:As an optional implementation manner, the device further includes a stability analysis unit, which is specifically used for:
响应用户的稳定性分析指令,确定用户选择的变量个数以及输入的非变量参数和变量范围,其中所述稳定性分析指令用于指示对第二模拟器的稳定性进行分析;Determine the number of variables selected by the user and the input non-variable parameters and variable ranges in response to the stability analysis instruction of the user, wherein the stability analysis instruction is used to instruct to analyze the stability of the second simulator;
响应变量数据加载指令,根据所述变量范围以及所述非变量参数运行所述第二模拟器,通过所述第二模拟器将用户输入的作用力参数集合转换为轨迹信息;In response to the variable data loading instruction, run the second simulator according to the variable range and the non-variable parameters, and convert the set of force parameters input by the user into trajectory information through the second simulator;
根据所述轨迹信息确定所述第二模拟器在所述变量范围内的稳定性。The stability of the second simulator within the variable range is determined based on the trajectory information.
作为一种可选的实施方式,所述稳定分析单元具体用于:As an optional implementation manner, the stability analysis unit is specifically used for:
响应用户的稳定性绘图指令,根据所述变量与所述稳定性之间的关系生成稳定性图像并通过图像显示界面进行显示,其中所述稳定性图像用于表征所述变量在所述变量范围内变化时所述第二模拟器的稳定性。In response to a user's stability drawing instruction, a stability image is generated according to the relationship between the variable and the stability and displayed through the image display interface, wherein the stability image is used to represent that the variable is within the variable range The stability of the second simulator when internal changes are made.
作为一种可选的实施方式,所述响应曲线包括如下任一或任多种:As an optional embodiment, the response curve includes any one or more of the following:
伯德图曲线;Bode plot curve;
阶跃响应曲线;Step response curve;
脉冲响应曲线。Impulse response curve.
实施例3Example 3
基于相同的发明构思,本发明实施例还提供了一种机器人控制器的仿真设备,由于该设备即是本发明实施例中的方法中的设备,并且该设备解决问题的原理与该方法相似,因此该设备的实施可以参见方法的实施,重复之处不再赘述。Based on the same inventive concept, the embodiment of the present invention also provides a simulation device of a robot controller, because the device is the device in the method in the embodiment of the present invention, and the principle of solving the problem of the device is similar to that of the method, Therefore, the implementation of the device may refer to the implementation of the method, and the repeated parts will not be repeated.
如图17所示,该设备包括处理器1700和存储器1701,所述存储器用于存储所述处理器可执行的程序,所述处理器用于读取所述存储器中的程序并执行如下步骤:As shown in FIG. 17 , the device includes a
确定用户选择的第一模拟器以及用户输入的模拟器参数,其中所述第一模拟器用于根据仿真过程中接收的用户输入的作用力参数确定待仿真机器人的位置信息,所述模拟器参数包括表征所述待仿真机器人的属性参数以及所述待仿真机器人运动所需的运行参数;Determine the first simulator selected by the user and the simulator parameters input by the user, wherein the first simulator is used to determine the position information of the robot to be simulated according to the force parameters input by the user received during the simulation process, and the simulator parameters include Characterizing the attribute parameters of the robot to be simulated and the running parameters required for the motion of the robot to be simulated;
响应数据加载指令,根据所述模拟器参数运行所述第一模拟器,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息,其中所述轨迹信息用于表征所述待仿真机器人在所述模拟器参数下的运动轨迹。In response to the data loading instruction, the first simulator is run according to the simulator parameters, and the set of force parameters input by the user is converted into trajectory information through the first simulator, wherein the trajectory information is used to represent the to-be-to-be The motion trajectory of the simulated robot under the simulator parameters is simulated.
作为一种可选的实施方式,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息之后,所述处理器具体还被配置为执行:As an optional implementation manner, after converting the force parameter set input by the user into trajectory information through the first simulator, the processor is specifically further configured to execute:
响应用户指令,根据所述轨迹信息确定与所述用户指令对应的显示内容,并通过显示界面进行显示,其中所述显示内容用于表征所述待仿真机器人在所述模拟器参数下的轨迹信息与所述模拟器性能之间的关系。In response to the user instruction, determine the display content corresponding to the user instruction according to the trajectory information, and display it through the display interface, wherein the display content is used to represent the trajectory information of the robot to be simulated under the simulator parameters relationship with the simulator performance.
作为一种可选的实施方式,所述处理器具体还被配置为执行:As an optional implementation manner, the processor is further configured to execute:
响应用户的绘图指令,根据所述轨迹信息确定与所述绘图指令对应的响应曲线,其中所述响应曲线用于表征所述轨迹信息中的位置信息与预设变量之间的关系;和/或,In response to a user's drawing instruction, determine a response curve corresponding to the drawing instruction according to the trajectory information, wherein the response curve is used to represent the relationship between the position information in the trajectory information and a preset variable; and/or ,
响应用户的指标分析指令,根据所述轨迹信息确定与所述指标分析指令对应的性能指标值,其中所述性能指标值用于表征所述轨迹信息满足预设性能条件时确定的指标值。In response to a user's indicator analysis instruction, determine a performance indicator value corresponding to the indicator analysis instruction according to the trajectory information, wherein the performance indicator value is used to represent the indicator value determined when the trajectory information satisfies a preset performance condition.
作为一种可选的实施方式,所述处理器具体还被配置为执行:As an optional implementation manner, the processor is further configured to execute:
响应用户的稳定性分析指令,确定用户选择的变量个数以及输入的非变量参数和变量范围,其中所述稳定性分析指令用于指示对第二模拟器的稳定性进行分析;Determine the number of variables selected by the user and the input non-variable parameters and variable ranges in response to the stability analysis instruction of the user, wherein the stability analysis instruction is used to instruct to analyze the stability of the second simulator;
响应变量数据加载指令,根据所述变量范围以及所述非变量参数运行所述第二模拟器,通过所述第二模拟器将用户输入的作用力参数集合转换为轨迹信息;In response to the variable data loading instruction, run the second simulator according to the variable range and the non-variable parameters, and convert the set of force parameters input by the user into trajectory information through the second simulator;
根据所述轨迹信息确定所述第二模拟器在所述变量范围内的稳定性。The stability of the second simulator within the variable range is determined based on the trajectory information.
作为一种可选的实施方式,所述处理器具体还被配置为执行:As an optional implementation manner, the processor is further configured to execute:
响应用户的稳定性绘图指令,根据所述变量与所述稳定性之间的关系生成稳定性图像并通过图像显示界面进行显示,其中所述稳定性图像用于表征所述变量在所述变量范围内变化时所述第二模拟器的稳定性。In response to a user's stability drawing instruction, a stability image is generated according to the relationship between the variable and the stability and displayed through the image display interface, wherein the stability image is used to represent that the variable is within the variable range The stability of the second simulator when internal changes are made.
作为一种可选的实施方式,所述响应曲线包括如下任一或任多种:As an optional embodiment, the response curve includes any one or more of the following:
伯德图曲线;Bode plot curve;
阶跃响应曲线;Step response curve;
脉冲响应曲线。Impulse response curve.
基于相同的发明构思,本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现如下步骤:Based on the same inventive concept, an embodiment of the present invention also provides a computer storage medium on which a computer program is stored, and when the program is executed by a processor, the following steps are implemented:
确定用户选择的第一模拟器以及用户输入的模拟器参数,其中所述第一模拟器用于根据仿真过程中接收的用户输入的作用力参数确定待仿真机器人的位置信息,所述模拟器参数包括表征所述待仿真机器人的属性参数以及所述待仿真机器人运动所需的运行参数;Determine the first simulator selected by the user and the simulator parameters input by the user, wherein the first simulator is used to determine the position information of the robot to be simulated according to the force parameters input by the user received during the simulation process, and the simulator parameters include Characterizing the attribute parameters of the robot to be simulated and the running parameters required for the motion of the robot to be simulated;
响应数据加载指令,根据所述模拟器参数运行所述第一模拟器,通过所述第一模拟器将用户输入的作用力参数集合转换为轨迹信息,其中所述轨迹信息用于表征所述待仿真机器人在所述模拟器参数下的运动轨迹。In response to the data loading instruction, the first simulator is run according to the simulator parameters, and the set of force parameters input by the user is converted into trajectory information through the first simulator, wherein the trajectory information is used to represent the to-be-to-be The motion trajectory of the simulated robot under the simulator parameters is simulated.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的设备。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce A device that implements the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令设备的制造品,该指令设备实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising the instruction apparatus, the instructions The device implements the functions specified in the flow or flows of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110183569.6A CN112809687B (en) | 2021-02-08 | 2021-02-08 | Simulation method, device and equipment of robot controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110183569.6A CN112809687B (en) | 2021-02-08 | 2021-02-08 | Simulation method, device and equipment of robot controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112809687A CN112809687A (en) | 2021-05-18 |
CN112809687B true CN112809687B (en) | 2022-04-12 |
Family
ID=75865141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110183569.6A Active CN112809687B (en) | 2021-02-08 | 2021-02-08 | Simulation method, device and equipment of robot controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112809687B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102058464A (en) * | 2010-11-27 | 2011-05-18 | 上海大学 | Motion control method of lower limb rehabilitative robot |
CN106914904A (en) * | 2017-03-17 | 2017-07-04 | 华中科技大学 | A kind of complex-curved blade force-location mix control system of processing based on ROS |
CN106997175A (en) * | 2016-10-21 | 2017-08-01 | 遨博(北京)智能科技有限公司 | A kind of robot simulation control method and device |
CN108058758A (en) * | 2017-12-07 | 2018-05-22 | 东莞深圳清华大学研究院创新中心 | Robot biped Simulation of walking assessment system and appraisal procedure based on six degree of freedom leg |
CN109223444A (en) * | 2018-10-23 | 2019-01-18 | 上海电气集团股份有限公司 | Healing robot and its man-machine coordination interaction force control method |
CN110169891A (en) * | 2019-02-20 | 2019-08-27 | 上海电气集团股份有限公司 | A kind of emulation mode of the elbow structure of upper limb rehabilitation robot |
CN110303471A (en) * | 2018-03-27 | 2019-10-08 | 清华大学 | Power-assisted exoskeleton control system and control method |
JP2020011340A (en) * | 2018-07-19 | 2020-01-23 | オムロン株式会社 | Simulation device, simulation program and simulation method |
EP3733355A1 (en) * | 2019-05-01 | 2020-11-04 | Arrival Limited | Robot motion optimization system and method |
CN112069072A (en) * | 2020-09-07 | 2020-12-11 | 上海高仙自动化科技发展有限公司 | Robot simulation control system, method, server and storage medium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10831936B2 (en) * | 2012-03-30 | 2020-11-10 | Regents Of The University Of Minnesota | Virtual design |
JP6934173B2 (en) * | 2017-07-12 | 2021-09-15 | 国立大学法人九州大学 | Force control device, force control method and force control program |
-
2021
- 2021-02-08 CN CN202110183569.6A patent/CN112809687B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102058464A (en) * | 2010-11-27 | 2011-05-18 | 上海大学 | Motion control method of lower limb rehabilitative robot |
CN106997175A (en) * | 2016-10-21 | 2017-08-01 | 遨博(北京)智能科技有限公司 | A kind of robot simulation control method and device |
CN106914904A (en) * | 2017-03-17 | 2017-07-04 | 华中科技大学 | A kind of complex-curved blade force-location mix control system of processing based on ROS |
CN108058758A (en) * | 2017-12-07 | 2018-05-22 | 东莞深圳清华大学研究院创新中心 | Robot biped Simulation of walking assessment system and appraisal procedure based on six degree of freedom leg |
CN110303471A (en) * | 2018-03-27 | 2019-10-08 | 清华大学 | Power-assisted exoskeleton control system and control method |
JP2020011340A (en) * | 2018-07-19 | 2020-01-23 | オムロン株式会社 | Simulation device, simulation program and simulation method |
CN109223444A (en) * | 2018-10-23 | 2019-01-18 | 上海电气集团股份有限公司 | Healing robot and its man-machine coordination interaction force control method |
CN110169891A (en) * | 2019-02-20 | 2019-08-27 | 上海电气集团股份有限公司 | A kind of emulation mode of the elbow structure of upper limb rehabilitation robot |
EP3733355A1 (en) * | 2019-05-01 | 2020-11-04 | Arrival Limited | Robot motion optimization system and method |
CN112069072A (en) * | 2020-09-07 | 2020-12-11 | 上海高仙自动化科技发展有限公司 | Robot simulation control system, method, server and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN112809687A (en) | 2021-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
O’Malley et al. | Shared control in haptic systems for performance enhancement and training | |
Kucukyilmaz et al. | Intention recognition for dynamic role exchange in haptic collaboration | |
Arnay et al. | Teaching kinematics with interactive schematics and 3D models | |
Chasins et al. | PL and HCI: Better together | |
Kolbari et al. | Adaptive control of a robot-assisted tele-surgery in interaction with hybrid tissues | |
Seth et al. | Development of a dual-handed haptic assembly system: SHARP | |
CN112809687B (en) | Simulation method, device and equipment of robot controller | |
WO2024139393A1 (en) | Mobile device escape method and apparatus, computer device, and storage medium | |
Wang et al. | Haptic rendering for simulation of fine manipulation | |
CN107730134A (en) | Interactive Auto-Evaluation System based on VR technologies | |
CN114386278B (en) | Virtual simulation platform based on buffer packaging design | |
Concha et al. | Control and Identification Toolbox (CIT): An Android application for teaching automatic control and system identification | |
Hamada | Turing machine and automata simulators | |
JP2013068794A (en) | Training study support device | |
CN113204222A (en) | Industrial robot performance parameter acquisition method and device | |
JPH08292974A (en) | Method and device for compound generatl analysis of control system, electric circuit, and duct network | |
Chen et al. | Differentiable Discrete Elastic Rods for Real-Time Modeling of Deformable Linear Objects | |
Bohlin | Grey-box model calibrator and validator | |
JP2000200026A (en) | Simulator for plant operation training | |
CN105892406B (en) | Intelligence test and appraisal Open motion control experimental teaching unit | |
Bannikov et al. | Quantum computing: Non-deterministic controllers for artificial intelligent agents | |
CN118583173B (en) | Verification method, system, electronic device and storage medium based on scene graph navigation | |
Universityof | Teaching Robotic Assembly Tasks Using a 3D Simulation Environment | |
Rizzotti-Kaddouri et al. | Learning from Demonstration and Safe Cobotics Using Digital Twins | |
TWI263917B (en) | Backward simulation method for use in a digital circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210518 Assignee: SHANGHAI ELECTRIC INTELLIGENT REHABILITATION MEDICAL TECHNOLOGY Co.,Ltd. Assignor: Shanghai Electric Group Co.,Ltd. Contract record no.: X2023310000146 Denomination of invention: A Simulation Method, Device, and Equipment for a Robot Controller Granted publication date: 20220412 License type: Exclusive License Record date: 20230919 |