CN112807295A - 对羟基苯甲酸钠在制备治疗骨质疏松药物中的应用 - Google Patents

对羟基苯甲酸钠在制备治疗骨质疏松药物中的应用 Download PDF

Info

Publication number
CN112807295A
CN112807295A CN202110325649.0A CN202110325649A CN112807295A CN 112807295 A CN112807295 A CN 112807295A CN 202110325649 A CN202110325649 A CN 202110325649A CN 112807295 A CN112807295 A CN 112807295A
Authority
CN
China
Prior art keywords
sodium
hydroxybenzoate
osteoporosis
bone
rats
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110325649.0A
Other languages
English (en)
Inventor
段小群
王宇晖
徐笑天
郑董璇
张溪杨
魏承琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin Medical University
Original Assignee
Guilin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin Medical University filed Critical Guilin Medical University
Priority to CN202110325649.0A priority Critical patent/CN112807295A/zh
Publication of CN112807295A publication Critical patent/CN112807295A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Nutrition Science (AREA)
  • Epidemiology (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明公开了对羟基苯甲酸钠在制备治疗或预防骨质疏松药物或保健品中的应用。本发明还公开了一种治疗或预防骨质疏松的药物或保健品。在剂量与依替膦酸二钠相同的情况下,对羟基苯甲酸钠增加骨质疏松模型大鼠的骨量、骨密度和骨微结构的效果优于依替膦酸二钠,并且对羟基苯甲酸钠可抑制大鼠血钙、血磷、尿钙、尿磷和碱性磷酸酶的升高,降低大鼠体内的氧化水平。体外实验也证实对羟基苯甲酸钠可抑制破骨细胞的分化。

Description

对羟基苯甲酸钠在制备治疗骨质疏松药物中的应用
技术领域
本发明涉及对羟基苯甲酸钠的应用,具体涉及对羟基苯甲酸钠在制备治疗骨质疏松药物中的应用。
背景技术
骨质疏松症(osteoporosis,OP)是一种以全身骨密度(bone mineral density,BMD)降低、骨量减少和骨微结构退化为主要特征的疾病。在世界范围内,骨质疏松症已成为严重的公共健康问题之一,据统计,每30s就会发生一起因骨质疏松症造成的骨折,每年医疗费支出超过300万美元,超过2亿人在其一生中会受其压痛和裂痕的影响。然而,它是一种“隐性疾病”,即悄无声息地进行,发生骨折时才被发现。
骨质疏松症主要分为两大类:原发性和继发性骨质疏松症。原发性骨质疏松症主要包括绝经后骨质疏松症(postmenopausal osteoporosis,PMOP)和老年骨质疏松症(senile osteoporosis,SOP)。继发性骨质疏松症主要包括废用性骨质疏松症和药物诱导的骨质疏松症等,例如,使用剂量大于70mg/kg的维甲酸持续2周以上会造成骨质疏松;雌激素(estrogen)缺乏会引起骨质疏松症。由此表明,性别、年龄、激素和药物等因素都参与了骨质疏松疾病的发生发展。
骨质疏松症的主要发病机制在于骨代谢失衡,导致破骨细胞介导的骨吸收作用大于成骨细胞介导的骨形成作用。骨质疏松症的治疗目的主要是通过减少骨质流失,或者更好地通过增强骨密度和强度来控制症状以预防骨折。至今,还尚不存在完全治愈骨质疏松症的有效方法。骨质疏松症的早期治疗可以充分降低人们患骨疾病的风险。目前,临床上用于治疗骨质疏松症的药物主要有骨吸收抑制剂,如二磷酸盐和雌激素受体调节剂等,骨形成促进剂,如钙剂和维生素等。然而,这些药物存在许多缺点,如副作用大、价格高、治疗面窄、致瘤风险大、不能完全恢复骨代谢平衡等。因此,寻找疗效确切、不良反应少,且质量可控的抗骨质疏松的药物具有重要的价值。
发明内容
雌激素在人体骨骼发育和骨平衡中发挥着重要作用,当前已证实雌激素缺乏将导致成骨细胞功能降低,破骨细胞功能活跃,从而导致骨形成速度低于骨吸收速度,进而导致骨质疏松。在前期研究中,发明人发现,对羟基苯甲酸钠可影响雌激素受体(estrogenreceptor,ER)的表达水平。故猜想对羟基苯甲酸钠可能具有雌激素样活性或发挥类似雌激素受体调节剂的作用,推测其可能会抑制骨质疏松。发明人进行深入研究,发现对羟基苯甲酸钠可抑制维甲酸诱导的SD大鼠骨质疏松,并可通过上调ERα和下调MMP9保护维甲酸造成的的生殖系统损伤;对羟基苯甲酸钠可通过抑制破骨细胞分化实现对骨质疏松的保护。在剂量与依替膦酸二钠相同的情况下,对羟基苯甲酸钠增加骨质疏松模型大鼠的骨量、骨密度和骨微结构的效果优于依替膦酸二钠,并且对羟基苯甲酸钠可抑制大鼠血钙、血磷、尿钙、尿磷和碱性磷酸酶的升高,降低大鼠体内的氧化水平。体外实验也证实对羟基苯甲酸钠可抑制破骨细胞的分化。可知,对羟基苯甲酸钠可以改善维甲酸诱导的骨质疏松,可用于制备治疗骨质疏松的药物或改善骨质疏松的保健品。
本发明的一个目的是提供对羟基苯甲酸钠在制备治疗或预防骨质疏松药物或保健品中的应用。
本发明的另一个目的是提供一种治疗或预防骨质疏松的药物或保健品,以对羟基苯甲酸钠为有效成分,含有治疗上有效剂量的对羟基苯甲酸钠。
所述的药物或保健品的剂型可以是药学上可接受的剂型,所述的剂型为胶囊剂、片剂、颗粒剂、栓剂等剂型或所述的剂型为缓释剂。
所述的骨质疏松为维甲酸诱导的骨质疏松。
本发明的另一个目的是提供对羟基苯甲酸钠在制备治疗生殖系统损伤药物中的应用。
所述的生殖系统损伤是骨质疏松导致的生殖系统损伤。
附图说明
图1为对羟基苯甲酸钠不同剂量对骨质疏松大鼠的体重的影响。
图2为对羟基苯甲酸钠对骨质疏松大鼠的股骨形态的影响;1代表正常组,2代表模型组,3代表依替膦酸二钠组,4代表对羟基苯甲酸钠(25mg/kg)组,5代表对羟基苯甲酸钠(50mg/kg)组。
图3为对羟基苯甲酸钠对骨质疏松大鼠的股骨和胫骨的器官指数的影响;数据以means±S.E.M.表示,n≥3.#P<0.05,##P<0.01vs.正常组;*P<0.05,**P<0.01vs.模型组。
图4为对羟基苯甲酸钠对骨质疏松大鼠的股骨直径和长度、椎骨(L1)长度和高度的影响;数据以means±S.E.M.表示,n≥3.#P<0.05,##P<0.01vs.正常组;*P<0.05,**P<0.01vs.模型组。
图5为对羟基苯甲酸钠给药后的Micro CT检测图像。
图6为对羟基苯甲酸钠对骨质疏松大鼠股骨的骨密度和骨微结构(骨体积/组织体积(BV/TV)、骨小梁厚度(Tb.Th)、小梁分离度(Tb.Sp))的影响;数据以means±S.E.M.表示,n≥3.#P<0.05,##P<0.01vs.正常组。*P<0.05,**P<0.01vs.模型组。
图7为大鼠股骨HE染色图像。
图8为对羟基苯甲酸钠对骨质疏松大鼠股骨破骨细胞数量的影响;数据以means±S.E.M.表示,n≥3.##P<0.01与正常组比较,*P<0.05与模型组比较,**P<0.01与模型组比较。
图9为对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠体内代谢状态的影响;其中,图a为对血钙的影响,图b为对血磷的影响,图c为对尿钙的影响,图d为对尿磷的影响,图e为对碱性磷酸酶的影响。数据以means±S.E.M.表示,n≥3.#P<0.05与正常组比较,##P<0.01与正常组比较,*P<0.05,**P<0.01vs.模型组。
图10为对羟基苯甲酸钠对骨质疏松大鼠血清SOD、MDA和GSH-PX的影响。数据以means±S.E.M.表示,n≥3.#P<0.05,##P<0.01vs.正常组;*P<0.05,**P<0.01vs.模型组。
图11为对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠卵巢和子宫的影响;其中,图a为对大鼠卵巢的脏器指数的影响,图b为对大鼠子宫的脏器指数的影响,图c为子宫的HE染色图像;数据以means±S.E.M.表示,n≥3.#P<0.05vs,正常组,*P<0.05vs.模型组。
图12为对羟基苯甲酸钠对卵巢中ERα和MMP9表达的影响;其中,图a为ERαmRNA的表达,图b为MMP9mRNA的表达。数据以means±S.E.M.表示,n≥3。#P<0.05,##P<0.01vs.正常组,*P<0.05vs.模型组。
图13为对羟基苯甲酸钠对破骨细胞分化的抑制效果;其中,图a为RAW264.7细胞TRACP染色图像,图b为TRACP染色的破骨细胞的数量定量结果;数据以means±S.E.M.表示,n≥3。##P<0.01vs.正常组,**P<0.01vs.模型组。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步说明。
采用维甲酸(retinoic acid,RA)溶液诱导SD鼠构建骨质疏松模型,灌胃给予模型大鼠对羟基苯甲酸钠、依替膦酸二钠,分析对羟基苯甲酸钠对骨质疏松的改善作用。
1.材料
1.1实验动物
SPF级SD大鼠,雌性,6~8周龄,体重200±20g,购于湖南斯莱克景达实验动物有限公司,许可证号:SCXK(湘)2016-0002,合格证号:SYXK(桂)2013-0001。于温度25±2℃、相对湿度55±10%环境中饲养,自由摄食和饮水,适应饲养一周后使用。
1.2实验试剂
依替膦酸二钠(纯度≥98%),上海源叶生物科技有限公司,货号:S27085;钙检测试剂盒(96T),序号(C004-2-1);磷检测试剂盒(96T),序号(C006-1-1);SOD检测试剂盒(48T),序号(A001-3-2);MDA检测试剂盒(96T),序号(A003-1-2);ALP检测试剂盒(96T),(A059-2-2);GSH-PX检测试剂盒(96T),序号(A005-1-2);南京建成生物工程研究所;RANKL,美国Peprotech公司,货号:315-11C;胎牛血清,美国Gemini公司,货号,900-108。
1.3实验仪器
小动物麻醉机(型号:VME2)美国MATRX
酶标仪(型号:Epoch)美国Bio-tek
倒置荧光显微镜(型号:Nikon)日本尼康
水平摇床(型号:WD-9405F)北京六一
小型台式冷冻离心机(型号:5418)德国Eppendorf
掌上离心机(型号:D1008E)美国SCILOGEX
低速自动平衡离心机(型号:TD4B)上海卢湘
分析天平(型号:TB214)北京塞托利斯
磁力搅拌器(型号:ZNCL-BS)河南爱博特科技
超纯水机(型号:1810B)中国Molecular
电热恒温水槽(型号:DK-8D)上海精宏科技
电热鼓风干燥箱(型号:101-1)北京中兴伟业
全自动雪花制冰机(型号:IMS-50)常熟雪科
全温振荡器(型号:THZ-C-1)太仓市实验设备厂
旋涡混合器(型号:VORTEX-5)江苏海门其林贝尔
超净工作台(型号:WOL-SY020)广州沃霖实验设备
显微CT(型号:ZKKS)广州中科凯盛医疗科技
液氮罐(型号:YDZ-15)北京君方科仪
二氧化碳恒温培养箱(型号:15AIC)日本SANYO
2.实验方法
2.1第一部分:体内实验
2.1.1大鼠骨质疏松模型的建立
为考察对羟基苯甲酸钠对维甲酸诱导大鼠骨质疏松的抑制作用,将SD大鼠随机分为正常组(Normal)、模型组(Model),依替膦酸二钠组(50mg/kg)、对羟基苯甲酸钠(25mg/kg)和对羟基苯甲酸钠(50mg/kg)组。每组各8只,分笼饲养,各组大鼠自由进食和饮水,每天换一次垫料,每日换水,每周消毒。
除正常组外,其余各组大鼠使用维甲酸灌胃,维甲酸灌胃操作均于上午9:30-10:30执行,每日1次,连续14天,维甲酸剂量为80mg/kg,1%的CMC-Na溶液溶解,配制时注意避免日光直射,配制完成后,维甲酸混悬液需迅速用锡箔纸将溶液瓶包裹待用。维甲酸混悬液需使用蒸馏水现配现用。在制备模型的同时,各治疗组按照相应剂量均于下午3:00-4:00灌胃给药,每日1次,连续42天。正常组大鼠每天使用等体积的蒸馏水灌胃。灌胃针每天高压蒸汽灭菌后使用。
2.1.2尿液收集
取材前一天,将大鼠禁食不禁水8h后,置于代谢笼中收集尿液。收集完成后,将尿液置于-80℃冰箱中储存待用。
2.1.3标本收集
末次给药后禁食24h,各组大鼠称重后,每只使用小动物麻醉机调节气体流量(异氟烷500~700mL/min)进行麻醉后腹主动脉取血5mL。大鼠血液于4℃冰箱静置2h后,3000rpm离心10min,分离血清并分装,于-80℃冰箱保存备用。采血后取大鼠左胫骨和右胫骨并称其重量;取腰椎L1,测其重量、长度和高度;取左股骨、右股骨,测其重量、长度和直径,并置于4%多聚甲醛中固定。取子宫和卵巢,并称其重量,左侧卵巢和子宫分别置于4%多聚甲醛中固定。卵巢和剩余股骨打包,置于-80℃冰箱中保存待用。
2.1.4骨密度(BMD)和骨显微结构检测
室温下,将小鼠股骨样品置于4%多聚甲醛中固定。Micro-CT(ZKKS–MCT-Sharp)用于样品的BMD、二维(2D)和三维(3D)以及骨的微结构参数,例如骨体积/总体积(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁分离度(Tb.Sp)测定。扫描参数设置:source voltage:70kVp;source current:100μA;exposure time:70ms。
2.1.5实验相关生化指标测定
(1)血、尿中钙和磷含量检测
血清钙和磷含量检测试剂盒的原理为:样品中的钙和磷与试剂盒中的试剂反应生成蓝色的物质,然后测定吸光度(OD)值进行计算。
钙/磷含量(mmol/L)=[(测定OD值-空白OD值)/(标准OD值-空白OD值)]×标准品浓度(mmol/L)×样品测试前稀释倍数。
(2)血清碱性磷酸酶活力检测
测定原理:碱性磷酸酶分解膦酸苯二钠,产生游离酚和膦酸,酚在碱性溶液中与4-氨基安替吡啉作用经铁氰化钾氧化生成红色醌衍生物,根据红色深浅可以测定酶活力的高低。定义100mL血清或液体在37℃与基质作用15min产生1mg酚为1个金氏单位。
碱性磷酸酶活力(金氏单位/100mL)=[(测定OD值-空白OD值)/(标准OD值-空白OD值)]×标准品浓度(0.1mg/mL)×100mL×样品测试前稀释倍数。
(3)血清丙二醛(MDA)含量检测
测试原理:过氧化脂质降解产物中的丙二醛可与硫代巴比妥酸缩合,形成红色产物,在532nm处有最大吸收峰。按照说明书操作步骤,依次加入试剂后混匀。混匀后95℃水浴40min,3500~4000rpm/min,离心10min后,取上清,532nm处测定吸光度值(OD)。
血清中丙二醛含量(nmol/L)=[(测定OD值-对照OD值)/(标准OD值-空白OD值)]×标准品浓度(10nmol/L)×样品测试前稀释倍数。
(4)血清谷胱甘肽过氧化物酶(GSH-PX)活力检测
测试原理:血清谷胱甘肽过氧化物酶可以促进过氧化氢与还原性谷胱甘肽反应生成H2O及氧化型谷胱甘肽,谷胱甘肽过氧化物酶的活力可用其酶促反应速度来表示,测定此酶促反应中还原型谷胱甘肽的消耗,则可求出酶活力。按照说明书的步骤检测吸光度(OD)值。
血清谷胱甘肽过氧化物酶活力=[(非酶管OD值-酶管OD值)/(标准管OD值-空白管OD值)]×标准品浓度(20μmol/L)×稀释倍数×样品测试前稀释倍数。
(5)血清超氧化物歧化酶(SOD)活力检测
测试原理:通过黄嘌呤及黄嘌呤氧化酶反应系统产生超氧阴离子(O2.-),O2.-可还原氮蓝四唑生成蓝色甲臜,后者在450nm处有吸收;超氧化物歧化酶可清除O2.-,从而抑制了甲臜的形成;反应液蓝色越深,说明SOD活性愈低,反之活性越高。在此反应体系中超氧化物歧化酶抑制率达50%时所对应的酶量定义为一个超氧化物歧化酶活力单位(U)。酶标仪检测吸光度(OD)值。
超氧化物歧化酶活力(U/mL)=[(对照OD值-对照空白OD值)-(测定OD值-测定空白OD值)]/(对照OD值-对照空白OD值)×24×样品测试前稀释倍数。
2.1.6 qPCR检测卵巢组织ERα和MMP9的mRNA相对表达水平
使用Trizol试剂提取卵巢组织总RNA,然后取20μL DEPC水溶解RNA。按表1的逆转录反应体系进行配制,即:取16μL 5×qRT Supermix与32μL DEPC水加入1.5mL无酶无热原的EP管中,吹打混匀后吸取12μL,分别加至3个新的200μL无酶无热原的EP管中,每管加入8μL相应的模板RNA。反应体系混合均匀后将EP管放入PCR逆转录仪中进行逆转录(50℃,15min;80℃,5s),获得cDNA。逆转录得到的cDNA保存于-80℃条件下,备用。
表1.逆转录反应体系表
Figure BDA0002994558400000071
按表2和表3配制qPCR反应体系,即:取45μL 2×SYBR、9μL上游引物、9μL下游引物和27μL ddH2O加入1.5mL EP管中,吹打混匀后分别取9μL加入八联管中,并分别加入1μL对应的cDNA,盖紧八联管,离心,按表4条件进行基因扩增。数据处理:使用GAPDH作为参照标准,2-△△Ct法对目的基因进行的表达进行相对定量。目的基因相对mRNA表达为2-{[Ct(目的基因)-Ct(内参基因)]-[Ct(对照组目的基因)-Ct(对照组内参基因)]。重复三次实验。
表2.引物序列
Figure BDA0002994558400000072
表3.qPCR反应体系
Figure BDA0002994558400000073
表4.qPCR反应条件表
Figure BDA0002994558400000081
2.1.7抗酒石酸酸性磷酸酶染色与苏木精和伊红染色
抗酒石酸酸性磷酸酶(TRACP)染色委托成都里来生物科技有限公司制作。TRACP染色于400×视野下捕获图像,其中破骨细胞被染成红色。
苏木精和伊红(HE)染色委托桂林医学院第一附属医院制作。HE染色于40×视野下捕获图像。
2.2第二部分:体外实验
2.2.1实验细胞
小鼠单核巨噬细胞白血病细胞(RAW264.7)株购自中国科学院上海细胞生物研究所细胞库,由本实验室自行培养和传代。
2.2.2细胞培养
(1)细胞复苏
将装有RAW264.7细胞的冻存管从液氮中迅速移出,置于37℃水浴锅中加热约60s,瓶盖接口处不能接触任何东西,完全溶解后将含细胞的冻存液转移至15mL离心管中,加入9mLDMEM完全培养基,1000rpm/min离心5min后弃去上清液,加入1mLDMEM完全培养基,反复吹打混匀,待细胞完全悬浮后,转移到细胞培养瓶中,再向培养瓶中加入3mLDMEM完全培养基,加盖后十字水平摇匀10次以上,然后置于培养箱中培养。
(2)细胞传代
待RAW264.7细胞贴壁面积80%-90%时,开始进行细胞传代培养。首先,轻轻吹打细胞,收集贴壁不紧的细胞和散落的细胞于15mL离心管中。向培养瓶中加入1mL含有EDTA的胰酶,置于培养箱中消化5min后加入1mLDMEM完全培养液,以中和胰酶的消化作用。然后,吹打细胞至细胞完全脱落,收集含有细胞的培养基于15mL离心管中,1000rpm/min离心5min。最后,弃去15mL离心管中的培养基,加入1mLDMEM完全培养基,反复吹打混匀,待细胞完全悬浮后,转移到细胞培养瓶中,再向培养瓶中加入3mL完全培养基,加盖后十字水平摇匀10次以上,然后置于培养箱中培养
(3)细胞冻存
选择处于对数生长期的RAW264.7细胞,开始进行细胞冻存实验。首先,收集细胞于离心管中,加入1mL细胞冻存液(DMSO:FBS=1:9V/V)吹打混匀,使细胞密度维持在5×106/mL左右。然后,将含有细胞的冻存液转移至冻存管中。标记后,先置于程序降温盒中,再转移至-80℃冻存,最后置于液氮中保存。
2.2.3实验分组及处理方法
使用DMEM完全培养基将RAW264.7细胞稀释成密度为1×104~1×105/mL的悬液,以每孔100μL接种于96孔板,将细胞分为正常组、模型组(RA1μM)组和对羟基苯甲酸钠(18,60,180μM)+RA(1μM)组,待细胞贴壁后,弃去上清液,正常组加入含有50ng/mL RANKL的DMEM溶液,模型组加入含50ng/mL RANKL和1μM RA的DMEM溶液,对羟基苯甲酸钠+RA组加入含相应浓度药物、RANKL(50ng/mL)和RA(1μM)的DMEM溶液,每孔100μL,孵育24h后,换液1次,直至诱导出破骨细胞为止。
2.2.4 TRACP染色
RAW264.7细胞在48孔板中以5×103个/孔的密度培养过夜。每组样品设置五次。正常组培养基换成含50ng/mL RANKL的DMEM完全培养基,模型组培养基换成含50ng/mL RANKL和1μM RA的DMEM完全培养基,给药组培养基换成含50ng/mL RANKL、1μMRA和不同浓度的对羟基苯甲酸钠(18、60和180μM)的DMEM完全培养基。每天更换一次培养基和细胞因子。培养大概5天后,根据制造商的说明,使用TRACP染色试剂盒测定细胞的TRACP表达。在倒置显微镜下(400×)观察到TRACP阳性细胞为紫红色。
2.3数据分析
所有数据均以means±S.E.M.表示,组间统计学差异采用SPSS软件中one-wayANONA和Dunnett’s检验。p值小于0.05被认为有显著性差异。
3.实验结果
3.1对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠骨量的影响
图1-图4为对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠骨量的影响。建模期间,大鼠的体重会降低,然后在建模停止后又逐渐增加(图1)。通过观察各组大鼠的胫骨重量,股骨形态、重量、长度和直径,腰椎(L1)的长度和高度(见图2-图4),发现维甲酸可造成骨质疏松模型大鼠胫骨重量变轻,股骨变细、重量变轻、颜色变白、长度和直径缩小,并且椎骨的高度和直径减少(P<0.05)。而对羟基苯甲酸钠可逆转这一变化,说明对羟基苯甲酸钠可减少维甲酸所致的骨质流失,骨量减少,改善骨质疏松。
3.2对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠骨密度和骨显微结构的影响
图5-图7为对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠骨密度和骨显微结构的影响。维甲酸造模后,大鼠的骨小梁数量减少,Micro CT 2D和3D图像重建显示依替膦酸二钠和对羟基苯甲酸钠增加了骨小梁的数量(图5)。骨密度和骨显微结构相关指标被呈现在图6中。HE染色结果(图7)显示,与正常组相比,OP模型大鼠股骨的骨小梁变稀疏,复杂性分支减少,提供支持性的三维结构减少,骨量减少。而对羟基苯甲酸钠给药后,逆转了骨质疏松大鼠骨密度降低和骨小梁数量减少的趋势。
3.3对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠股骨中破骨细胞的影响
图8为对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠破骨细胞的影响。发明人通过光镜下观察大鼠股骨组织,确定抗酒石酸酸性磷酸酶(TRACP)染色后破骨细胞的数量。发现模型组大鼠的破骨细胞数量较正常组显著增多(p<0.01),而给予依替膦酸二钠、对羟基苯甲酸钠后逆转了这一趋势,在剂量与依替膦酸二钠相同或更低的情况下,对羟基苯甲酸钠降低破骨细胞数量的效果优于依替膦酸二钠。
3.4对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠体内代谢状态的影响
图9为对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠体内代谢状态的影响。与正常组比较,模型组的血钙(P<0.05)、血磷(P<0.05)、尿钙(P<0.01)、尿磷(P<0.01)和血清ALP(碱性磷酸酶,P<0.05)含量升高。钙、磷升高可能和维甲酸造成松质骨和皮质骨骨质流失,骨微结构破坏,骨钙和骨磷减少变成血钙和血磷,血钙和血磷经代谢变成尿钙和尿磷所致,从而引起尿钙、尿磷、血钙和血磷升高。模型组ALP升高提示维甲酸给药后使大鼠呈高水平代谢状态,骨组织呈高转换状态。分别给予依替膦酸二钠、对羟基苯甲酸钠治疗后,与模型组相比,大鼠尿液中的钙、磷与血浆中的钙、磷和ALP水平降低(P<0.05),说明依替膦酸二钠、对羟基苯甲酸钠均可明显改善大鼠代谢状态,且对羟基苯甲酸钠对大鼠代谢状态的改善效果接近或优于依替膦酸二钠,同时,对羟基苯甲酸钠对大鼠代谢状态的改善效果呈剂量依赖关系。
3.5对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠体内氧化水平的影响
图10为对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠体内氧化水平的影响。与正常组相比,模型组大鼠的SOD(P<0.01)和GSH-PX(P<0.05)含量降低,MDA(P<0.01)含量升高,然而,对羟基苯甲酸钠治疗组逆转了这一趋势(P<0.05)。说明对羟基苯甲酸钠可以抑制骨质疏松大鼠体内的高氧化水平,起到抗氧化应激的作用。
3.6对羟基苯甲酸钠对维甲酸诱导的骨质疏松大鼠卵巢和子宫的影响
如图11a-图11b所示,与正常组相比,模型组的卵巢和子宫的脏器指数下降(P<0.05);与模型组相比,对羟基苯甲酸钠给药后卵巢和子宫的脏器指数有所增加(P<0.05)。如图11c所示,与正常组相比,模型组大鼠子宫腔径增加,经对羟基苯甲酸钠治疗的大鼠子宫腔径得到改善。说明对羟基苯甲酸钠可以改善维甲酸诱导骨质疏松大鼠的卵巢和子宫损伤。
3.7对羟基苯甲酸钠对卵巢中ERα和MMP9表达的影响
如图12a-图12b所示,与正常组相比,模型组卵巢的ERα表达降低(P<0.05)、MMP9表达升高(P<0.01),给予对羟基苯甲酸钠(50mg/kg)治疗后,与模型组相比,骨质疏松大鼠卵巢中ERα表达升高(P<0.05)和MMP9表达降低(P<0.05)。说明对羟基苯甲酸钠对维甲酸造成的的生殖系统损伤有保护作用。
3.8对羟基苯甲酸钠对破骨细胞分化的影响
在体外试验中,为了研究对羟基苯甲酸钠对破骨细胞分化的影响,发明人用1μMRA培养RANKL诱导的RAW264.7细胞,用TRACP对RAW264.7细胞进行染色。结果如图13所示,显示,模型组RAW264.7细胞中诱导的破骨细胞数量较正常组显著增加(P<0.01),对羟基苯甲酸钠+RA组的破骨细胞数量较模型组明显减少(P<0.01)。说明对羟基苯甲酸钠可以抑制破骨细胞的分化。
4.结论与讨论
在剂量与依替膦酸二钠相近的情况下,对羟基苯甲酸钠增加骨质疏松模型大鼠的骨量、骨密度和骨微结构的效果优于依替膦酸二钠,并且对羟基苯甲酸钠可大鼠抑制血钙、血磷、尿钙、尿磷和碱性磷酸酶的升高,降低大鼠体内的氧化水平,减轻维甲酸造成的的生殖系统损伤。体外实验也证实对羟基苯甲酸钠可抑制破骨细胞的分化。说明对羟基苯甲酸钠可作为治疗骨质疏松的潜在药物。

Claims (8)

1.对羟基苯甲酸钠在制备治疗或预防骨质疏松药物或保健品中的应用。
2.根据权利要求1所述的应用,其特征在于:所述的骨质疏松为维甲酸诱导的骨质疏松。
3.一种治疗或预防骨质疏松的药物或保健品,其特征在于:以对羟基苯甲酸钠为有效成分。
4.根据权利要求3所述的治疗或预防骨质疏松的药物或保健品,其特征在于:所述的药物或保健品的剂型可以是药学上可接受的剂型。
5.根据权利要求4所述的治疗或预防骨质疏松的药物或保健品,其特征在于:所述的剂型为胶囊剂、片剂、颗粒剂、栓剂。
6.根据权利要求4所述的治疗或预防骨质疏松的药物或保健品,其特征在于:所述的剂型为缓释剂。
7.根据权利要求3所述的治疗或预防骨质疏松的药物或保健品,其特征在于:所述的骨质疏松为维甲酸诱导的骨质疏松。
8.对羟基苯甲酸钠在制备治疗生殖系统损伤药物中的应用。
CN202110325649.0A 2021-03-26 2021-03-26 对羟基苯甲酸钠在制备治疗骨质疏松药物中的应用 Pending CN112807295A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110325649.0A CN112807295A (zh) 2021-03-26 2021-03-26 对羟基苯甲酸钠在制备治疗骨质疏松药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110325649.0A CN112807295A (zh) 2021-03-26 2021-03-26 对羟基苯甲酸钠在制备治疗骨质疏松药物中的应用

Publications (1)

Publication Number Publication Date
CN112807295A true CN112807295A (zh) 2021-05-18

Family

ID=75862378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110325649.0A Pending CN112807295A (zh) 2021-03-26 2021-03-26 对羟基苯甲酸钠在制备治疗骨质疏松药物中的应用

Country Status (1)

Country Link
CN (1) CN112807295A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787701B1 (ko) * 2017-06-21 2017-10-18 한남대학교 산학협력단 와송 추출물을 유효성분으로 포함하는 골다공증 예방 또는 치료용 약학 조성물

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787701B1 (ko) * 2017-06-21 2017-10-18 한남대학교 산학협력단 와송 추출물을 유효성분으로 포함하는 골다공증 예방 또는 치료용 약학 조성물

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
REIHANE ZIADLOU等: "Regulation of Inflammatory Response in Human Osteoarthritic Chondrocytes by Novel Herbal Small Molecules", 《INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES》 *
杨序娟等: "接骨木中的酚酸类化合物及其对大鼠...细胞UMR106增殖及分化的影响", 《中草药》 *
杨洪梅: "接骨木促进骨折愈合及抗骨质疏松作用的研究进展", 《通化师范学院学报》 *
许枬等: "金毛狗脊中的一个新酚苷", 《中草药》 *

Similar Documents

Publication Publication Date Title
Bao et al. Constitutive β-catenin activation in osteoblasts impairs terminal osteoblast differentiation and bone quality
CN112870361A (zh) 铁死亡抑制剂在制备预防或治疗铁过载导致的骨质疏松或骨丢失的药物中的应用
WO2022041311A1 (zh) 2-溴棕榈酸在制备防治骨丢失相关疾病的药物中的应用
Hong et al. Cinnamic acid suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota
Xu et al. Trehalose reduces bone loss in experimental biliary cirrhosis rats via ERK phosphorylation regulation by enhancing autophagosome formation
Ma et al. Ortho-silicic acid inhibits RANKL-induced osteoclastogenesis and reverses ovariectomy-induced bone loss in vivo
Wang et al. Mechanical stress protects against chondrocyte pyroptosis through TGF-β1-mediated activation of Smad2/3 and inhibition of the NF-κB signaling pathway in an osteoarthritis model
Ma et al. Baohuoside I inhibits osteoclastogenesis and protects against ovariectomy-induced bone loss
CN117752675A (zh) 一种用于治疗骨质疏松的小分子rna及其应用
Zou et al. Rapid selenoprotein activation by selenium nanoparticles to suppresses osteoclastogenesis and pathological bone loss
Zhu et al. The effect of human-like collagen calcium complex on osteoporosis mice
CN112807295A (zh) 对羟基苯甲酸钠在制备治疗骨质疏松药物中的应用
Wang et al. Hydroxy-Safflower Yellow A alleviates osteoporosis in ovariectomized rat model by inhibiting carbonic anhydrase 2 activity
Wu et al. Study on the mechanism of probucol nanosuspension on hyperlipidemic pancreatitis and regulation of blood lipid function
Choi et al. Effects of Sigma Anti-bonding Molecule Calcium Carbonate on bone turnover and calcium balance in ovariectomized rats
WO2022011914A1 (zh) 树豆内酯a在制备治疗后天肥胖及其伴随症制剂中的应用
Liu et al. Bu-Gu-Sheng-Sui decoction promotes osteogenesis via activating the ERK/Smad signaling pathways
Peng et al. Hyperbaric oxygen and treadmill exercise partially prevented bone loss and bone microarchitecture deterioration in ovariectomized rats.
CN113648306A (zh) 佛手柑素在预防或治疗骨质疏松和/或骨丢失中的应用
CN115944643A (zh) 唾液酸在制备抗骨质疏松药物和食品中的应用
Ali et al. The bone-protective benefits of amino-conjugated calcium in an ovariectomized (OVX) rat model
CN109651345B (zh) 一组具有抗骨质疏松活性的化合物及其应用
CN112891345A (zh) 尿囊素在缓解糖皮质激素副作用方面的应用
Wei et al. Quantitative Proteomics Revealed the Pharmacodynamic Network of Bugu Shengsui Decoction Promoting Osteoblast Proliferation
Zhou et al. Urolithin A attenuates osteoclast differentiation and compensates for ovariectomy-induced bone loss in mice by inhibiting PI3K/AKT/mTOR signaling pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518

RJ01 Rejection of invention patent application after publication