CN112805878B - Antenna, wireless device and antenna array - Google Patents
Antenna, wireless device and antenna array Download PDFInfo
- Publication number
- CN112805878B CN112805878B CN201980066590.9A CN201980066590A CN112805878B CN 112805878 B CN112805878 B CN 112805878B CN 201980066590 A CN201980066590 A CN 201980066590A CN 112805878 B CN112805878 B CN 112805878B
- Authority
- CN
- China
- Prior art keywords
- antenna
- cavity slot
- floors
- aperture
- antenna feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/18—Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/20—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
- H01Q5/28—Arrangements for establishing polarisation or beam width over two or more different wavebands
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
一种天线,包括:在第一方向间隔开的两个地板;位于所述两个地板之间的三维(three‑dimensional,3D)空腔槽缝,其中,所述3D空腔槽缝包括所述第一方向上的孔径;以及天线馈源,用于在所述3D空腔槽缝内激励天线,其中,所述天线馈源短路到所述3D空腔槽缝,所述天线馈源和所述3D空腔槽缝形成一个闭环,能够生成可在所述3D空腔槽缝内激励不平衡TE20模式的所述闭环周围的磁场。
An antenna comprising: two floors spaced apart in a first direction; a three-dimensional (3D) cavity slot between the two floors, wherein the 3D cavity slot includes all the an aperture in the first direction; and an antenna feed for exciting an antenna within the 3D cavity slot, wherein the antenna feed is shorted to the 3D cavity slot, the antenna feed and The 3D cavity slot forms a closed loop capable of generating a magnetic field around the closed loop that can excite unbalanced TE20 modes within the 3D cavity slot.
Description
相关申请案的交叉参考Cross-references to related applications
本申请要求于2018年10月10日提交的申请号为62/743,587的美国临时专利申请的优先权以及要求于2018年12月14日提交的申请号为62/766,602的美国临时专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims priority to US Provisional Patent Application No. 62/743,587, filed on October 10, 2018, and US Provisional Patent Application No. 62/766,602, filed December 14, 2018 rights, the entire contents of which are incorporated herein by reference.
技术领域technical field
本发明涉及一种宽带垂直极化端射天线(end-fire antenna),可以用于5G毫米波通信。The present invention relates to a broadband vertically polarized end-fire antenna, which can be used for 5G millimeter wave communication.
背景技术Background technique
各种新兴应用,例如,虚拟现实(virtual reality,VR)、增强现实(augmentedreality,AR)、大数据分析、人工智能(artificial intelligence,AI)、三维(three-dimensional,3D)媒体、超高清视频传输等使得无线通信网络中的数据量大增。5G将频谱使用范围拓展到6GHz以下和24GHz以上(即毫米波),并开放了大量用以实现高数据速率和大容量的带宽。Various emerging applications, such as virtual reality (VR), augmented reality (AR), big data analysis, artificial intelligence (AI), three-dimensional (3D) media, ultra-high-definition video Transmission and the like have greatly increased the amount of data in wireless communication networks. 5G expands spectrum usage below 6GHz and beyond 24GHz (i.e. mmWave) and opens up a lot of bandwidth to enable high data rates and large capacities.
发明内容SUMMARY OF THE INVENTION
本发明涉及一种宽带垂直极化(vertical polarized,V-pol)端射天线。The present invention relates to a broadband vertical polarized (V-pol) end-fire antenna.
第一方面,涉及一种用于无线通信的天线,所述天线包括:在第一方向间隔开的两个地板;位于所述两个地板之间的三维(three-dimensional,3D)空腔槽缝,其中,所述3D空腔槽缝包括所述第一方向上的孔径;天线馈源,用于在所述3D空腔槽缝内激励天线,其中,所述天线馈源短路到3D空腔槽缝,所述天线馈源和所述3D空腔槽缝形成一个闭环,能够生成可在所述3D空腔槽缝内激励不平衡TE20模式的所述闭环周围的磁场。因此,可以实现一种可以用于5G毫米波通信的宽带垂直极化端射天线。A first aspect relates to an antenna for wireless communication, the antenna comprising: two floors spaced apart in a first direction; a three-dimensional (3D) cavity slot between the two floors a slot, wherein the 3D cavity slot includes an aperture in the first direction; an antenna feed for exciting an antenna in the 3D cavity slot, wherein the antenna feed is short-circuited to the 3D cavity The cavity slot, the antenna feed and the 3D cavity slot form a closed loop capable of generating a magnetic field around the closed loop that can excite an unbalanced TE20 mode within the 3D cavity slot. Therefore, a broadband vertically polarized end-fire antenna that can be used for 5G mmWave communication can be realized.
这种天线有利于实现一种通过实现高数据速率和大容量的大带宽进行无线通信的高效方案,尤其是进行5G毫米波通信。该天线对于毫米波通信有良好的线性,并且可以提高5G移动设备的多入多出(multiple input and multiple output,MIMO)分集系统的传输能力。Such an antenna facilitates an efficient scheme for wireless communications, especially 5G mmWave communications, by enabling high data rates and large bandwidths with large bandwidths. The antenna has good linearity for millimeter wave communication, and can improve the transmission capability of multiple input and multiple output (MIMO) diversity systems of 5G mobile devices.
根据第一方面提供的所述装置的第一种实现方式,所述天线馈源包括环形天线馈源,所述环形天线馈源提供生成不平衡TE20模式以及生成第二谐振频率的高效方案,以针对所述天线的辐射图实现大带宽和良好线性。According to a first implementation of the apparatus provided in the first aspect, the antenna feed includes a loop antenna feed, and the loop antenna feed provides an efficient solution for generating an unbalanced TE20 mode and generating a second resonant frequency to Large bandwidth and good linearity are achieved for the radiation pattern of the antenna.
根据第一方面或第一方面上述任一实现方式,在所述装置的第二种实现方式中,所述环形天线馈源包括:与所述两个地板中至少一个地板基本平行的第一部分;与所述两个地板中的其中一个地板基本垂直的第二部分;与所述两个地板中的其中一个地板基本垂直的第三部分,其中,所述第二部分比所述第三部分离所述孔径更近。因此,在有些情况下,所述环形天线馈源相比于其他类型的天线馈源,例如,L型天线馈源,可以更容易实现或制造。According to the first aspect or any of the foregoing implementations of the first aspect, in a second implementation of the device, the loop antenna feed includes: a first portion substantially parallel to at least one of the two floors; a second portion substantially perpendicular to one of the two floors; a third portion substantially perpendicular to the one of the two floors, wherein the second portion is separated from the third portion The aperture is closer. Thus, in some cases, the loop antenna feed may be easier to implement or manufacture than other types of antenna feeds, eg, L-shaped antenna feeds.
根据第一方面提供的所述装置的第三种实现方式或第一方面上述任一实现方式,所述第二部分基本接近所述孔径。因此,所述天线馈源在所述3D空腔槽缝内激励TE10模式,实现垂直极化。According to the third implementation manner of the device provided in the first aspect or any of the foregoing implementation manners of the first aspect, the second portion is substantially close to the aperture. Therefore, the antenna feed excites the TE10 mode in the 3D cavity slot to achieve vertical polarization.
根据第一方面提供的所述装置的第四种实现方式或第一方面上述任一实现方式,所述孔径的长度为λ1/2,其中,λ1表示与所述天线的第一谐振频率f1对应的波长。According to the fourth implementation manner of the device provided in the first aspect or any one of the foregoing implementation manners of the first aspect, the length of the aperture is λ 1 /2, where λ 1 represents the first resonance frequency with the antenna The wavelength corresponding to f1.
根据第一方面提供的所述装置的第五种实现方式或第一方面上述任一实现方式,所述天线馈源激励TE10模式并沿着所述第一方向在所述天线的第一谐振频率f1下生成E-field,以实现所述天线的垂直极化。According to the fifth implementation manner of the device provided in the first aspect or any of the foregoing implementation manners of the first aspect, the antenna feed excites the TE10 mode and is at the first resonance frequency of the antenna along the first direction The E-field is generated at f 1 to achieve vertical polarization of the antenna.
根据第一方面提供的所述装置的第六种实现方式或第一方面上述任一实现方式,所述孔径的宽度为w,所述w基本小于λ1/10。因此,所述天线可以在较薄的垂直尺寸上实现,并且在端射/侧射覆盖下实现较强的垂直极化。According to the sixth implementation manner of the device provided in the first aspect or any of the foregoing implementation manners of the first aspect, the aperture has a width w, and the w is substantially smaller than λ 1 /10. Therefore, the antenna can be implemented in thinner vertical dimensions and with strong vertical polarization under end-fire/side-fire coverage.
根据第一方面提供的所述装置的第七种实现方式或第一方面上述任一实现方式,所述天线馈源与所述孔径一端的距离为λ2/4,其中,λ2表示与所述天线的第二谐振频率f2对应的波长。因此,所述天线的带宽可以通过配置所述天线馈源相对于所述孔径一端的距离来配置。According to the seventh implementation manner of the device provided in the first aspect or any of the foregoing implementation manners of the first aspect, the distance between the antenna feed and one end of the aperture is λ 2 /4, where λ 2 represents the distance between the antenna feed and one end of the aperture. The wavelength corresponding to the second resonant frequency f2 of the antenna. Thus, the bandwidth of the antenna can be configured by configuring the distance of the antenna feed relative to one end of the aperture.
根据第一方面提供的所述装置的第八种实现方式或第一方面上述任一实现方式,所述两个地板由印制电路板(printed circuit board,PCB)的第一层和第二层组成,所述天线馈源由所述PCB的第三层或更多层以及所述PCB的一个或多个过孔组成。因此,所述天线可以通过PCB实现。According to the eighth implementation manner of the device provided in the first aspect or any one of the foregoing implementation manners of the first aspect, the two floors are composed of a first layer and a second layer of a printed circuit board (PCB). The antenna feed is composed of the third or more layers of the PCB and one or more vias of the PCB. Therefore, the antenna can be realized by a PCB.
根据第一方面提供的所述装置的第九种实现方式或第一方面上述任一实现方式,所述天线沿着所述第一方向有垂直极化,所述第一方向是所述PCB的厚度方向。因此,所述天线可以通过具有较薄垂直尺寸的PCB实现。According to the ninth implementation manner of the device provided in the first aspect or any of the foregoing implementation manners of the first aspect, the antenna is vertically polarized along the first direction, and the first direction is the direction of the PCB. thickness direction. Therefore, the antenna can be realized by a PCB with thinner vertical dimensions.
第二方面,涉及一种用于无线通信的无线装置,所述无线装置包括天线,所述天线包括:在第一方向间隔开的两个地板;位于所述两个地板之间的三维(three-dimensional,3D)空腔槽缝,其中,所述3D空腔槽缝包括所述第一方向上的孔径;天线馈源,用于在所述3D空腔槽缝内激励天线,天线馈源短路到所述3D空腔槽缝,所述天线馈源和所述3D空腔槽缝形成一个闭环,能够生成可在所述3D空腔槽缝内激励不平衡TE20模式的所述闭环周围的磁场。因此,可以实现一种可以用于5G毫米波通信的宽带垂直极化端射天线。A second aspect relates to a wireless device for wireless communication, the wireless device comprising an antenna comprising: two floors spaced apart in a first direction; a three-dimensional (three-dimensional) space between the two floors -dimensional, 3D) cavity slot, wherein the 3D cavity slot includes an aperture in the first direction; an antenna feed for exciting an antenna in the 3D cavity slot, an antenna feed Shorted to the 3D cavity slot, the antenna feed and the 3D cavity slot form a closed loop capable of generating a loop around the closed loop that excites an unbalanced TE20 mode within the 3D cavity slot. magnetic field. Therefore, a broadband vertically polarized end-fire antenna that can be used for 5G mmWave communication can be realized.
这种无线装置有利于实现一种通过用以实现高数据速率和大容量的大带宽进行无线通信的高效方案,尤其是进行5G毫米波通信。上述天线对于毫米波通信有良好的线性,并且可以提高5G移动设备的多入多出(multiple input and multiple output,MIMO)分集系统的传输能力。Such a wireless device facilitates realizing an efficient scheme for wireless communication, especially 5G mmWave communication, through a large bandwidth to achieve high data rate and large capacity. The above antenna has good linearity for millimeter wave communication, and can improve the transmission capability of a multiple input and multiple output (multiple input and multiple output, MIMO) diversity system of a 5G mobile device.
根据第二方面提供的所述无线装置的第一种实现方式,所述天线馈源包括环形天线馈源,所述环形天线馈源提供生成不平衡TE20模式以及生成第二谐振频率的高效方案,以针对所述天线的辐射图实现大带宽和良好线性。According to the first implementation manner of the wireless device provided in the second aspect, the antenna feed includes a loop antenna feed, and the loop antenna feed provides an efficient solution for generating an unbalanced TE20 mode and generating a second resonant frequency, Large bandwidth and good linearity are achieved with the radiation pattern for the antenna.
根据第二方面提供的所述无线装置的第二种实现方式或第二方面上述任一实现方式,所述环形天线馈源包括:与所述两个地板中至少一个地板基本平行的第一部分;与所述两个地板中的其中一个地板基本垂直的第二部分;与所述两个地板中的其中一个地板基本垂直的第三部分,其中,所述第二部分比所述第三部分离所述孔径更近。因此,在有些情况下,所述环形天线馈源相比于其他类型的天线馈源,例如,L型天线馈源,可以更容易实现或制造。According to the second implementation manner of the wireless device provided in the second aspect or any of the foregoing implementation manners of the second aspect, the loop antenna feed includes: a first portion substantially parallel to at least one of the two floors; a second portion substantially perpendicular to one of the two floors; a third portion substantially perpendicular to the one of the two floors, wherein the second portion is separated from the third portion The aperture is closer. Thus, in some cases, the loop antenna feed may be easier to implement or manufacture than other types of antenna feeds, eg, L-shaped antenna feeds.
根据第二方面提供的所述无线装置的第三种实现方式或第二方面上述任一实现方式,所述第二部分基本接近所述孔径。因此,所述天线馈源在所述3D空腔槽缝内激励TE10模式,实现垂直极化。According to the third implementation manner of the wireless apparatus provided in the second aspect or any of the foregoing implementation manners of the second aspect, the second portion is substantially close to the aperture. Therefore, the antenna feed excites the TE10 mode in the 3D cavity slot to achieve vertical polarization.
根据第二方面提供的所述无线装置的第四种实现方式或第二方面上述任一实现方式,所述孔径的长度为λ1/2,其中,λ1表示与所述天线的第一谐振频率f1对应的波长。According to the fourth implementation manner of the wireless device provided in the second aspect or any of the foregoing implementation manners of the second aspect, the length of the aperture is λ 1 /2, where λ 1 represents the first resonance with the antenna The wavelength corresponding to frequency f1.
根据第二方面提供的所述无线装置的第五种实现方式或第二方面上述任一实现方式,所述天线馈源激励TE10模式并沿着所述第一方向在所述天线的第一谐振频率f1下生成E-field,以实现所述天线的垂直极化。According to the fifth implementation manner of the wireless device provided in the second aspect or any of the foregoing implementation manners of the second aspect, the antenna feed excites the TE10 mode and resonates at the first resonance of the antenna along the first direction. The E - field is generated at frequency f1 to achieve vertical polarization of the antenna.
根据第二方面提供的所述无线装置的第六种实现方式或第二方面上述任一实现方式,所述孔径的宽度为w,所述w基本小于λ1/10。因此,所述天线可以在较薄的垂直尺寸上实现,并且在端射/侧射覆盖下实现较强的垂直极化。According to the sixth implementation manner of the wireless device provided in the second aspect or any of the foregoing implementation manners of the second aspect, the aperture has a width w, and the w is substantially smaller than λ 1 /10. Therefore, the antenna can be implemented in thinner vertical dimensions and with strong vertical polarization under end-fire/side-fire coverage.
根据第二方面提供的所述无线装置的第七种实现方式或第二方面上述任一实现方式,所述天线馈源与所述孔径一端的距离为λ2/4,其中,λ2表示与所述天线的第二谐振频率f2对应的波长。因此,所述天线的带宽可以通过配置所述天线馈源相对于所述孔径一端的距离来配置。According to the seventh implementation manner of the wireless device provided in the second aspect or any of the foregoing implementation manners of the second aspect, the distance between the antenna feed and one end of the aperture is λ 2 /4, where λ 2 represents the The wavelength corresponding to the second resonant frequency f2 of the antenna. Thus, the bandwidth of the antenna can be configured by configuring the distance of the antenna feed relative to one end of the aperture.
根据第二方面提供的所述无线装置的第八种实现方式或第二方面上述任一实现方式,所述两个地板由印制电路板(printed circuit board,PCB)的第一层和第二层组成,所述天线馈源由所述PCB的第三层或更多层以及所述PCB的一个或多个过孔组成。因此,所述天线可以通过PCB实现。According to the eighth implementation manner of the wireless device provided in the second aspect or any of the foregoing implementation manners of the second aspect, the two floors are composed of a first layer and a second layer of a printed circuit board (PCB). The antenna feed is composed of the third or more layers of the PCB and one or more vias of the PCB. Therefore, the antenna can be realized by a PCB.
根据第二方面提供的所述无线装置的第九种实现方式或第二方面上述任一实现方式,所述天线沿着所述第一方向有垂直极化,所述第一方向是所述PCB的厚度方向。因此,所述天线可以通过具有较薄垂直尺寸的PCB实现。According to the ninth implementation manner of the wireless device provided in the second aspect or any of the foregoing implementation manners of the second aspect, the antenna is vertically polarized along the first direction, and the first direction is the PCB thickness direction. Therefore, the antenna can be realized by a PCB with thinner vertical dimensions.
第三方面涉及一种用于无线通信的天线阵列,所述天线阵列包括多条天线,其中,每条天线包括:在第一方向间隔开的两个地板;位于所述两个地板之间的三维(three-dimensional,3D)空腔槽缝,其中,所述3D空腔槽缝包括所述第一方向上的孔径;天线馈源,用于在所述3D空腔槽缝内激励天线,所述天线馈源短路到所述3D空腔槽缝,所述天线馈源和所述3D空腔槽缝形成一个闭环,能够生成可在所述3D空腔槽缝内激励不平衡TE20模式的所述闭环周围的磁场。因此,可以实现一种可以用于5G毫米波通信的宽带垂直极化端射天线。A third aspect relates to an antenna array for wireless communication, the antenna array comprising a plurality of antennas, wherein each antenna comprises: two floors spaced apart in a first direction; A three-dimensional (3D) cavity slot, wherein the 3D cavity slot includes an aperture in the first direction; an antenna feed for exciting an antenna in the 3D cavity slot, The antenna feed is short-circuited to the 3D cavity slot, and the antenna feed and the 3D cavity slot form a closed loop capable of generating an unbalanced TE20 mode that can excite the 3D cavity slot. the magnetic field around the closed loop. Therefore, a broadband vertically polarized end-fire antenna that can be used for 5G mmWave communication can be realized.
这种天线阵列有利于实现一种通过用以实现高数据速率和大容量的大带宽进行无线通信的高效方案,尤其是进行5G毫米波通信。上述天线对于毫米波通信有良好的线性,并且可以提高5G移动设备的多入多出(multiple input and multiple output,MIMO)分集系统的传输能力。Such antenna arrays facilitate an efficient solution for wireless communications, especially 5G mmWave communications, through large bandwidths to achieve high data rates and large capacities. The above antenna has good linearity for millimeter wave communication, and can improve the transmission capability of a multiple input and multiple output (multiple input and multiple output, MIMO) diversity system of a 5G mobile device.
根据第三方面提供的所述装置的第一种实现方式,所述天线馈源包括环形天线馈源,所述环形天线馈源提供生成不平衡TE20模式以及生成第二谐振频率的高效方案,以针对所述天线的辐射图实现大带宽和良好线性。According to a first implementation of the apparatus provided in the third aspect, the antenna feed includes a loop antenna feed, and the loop antenna feed provides an efficient solution for generating an unbalanced TE20 mode and generating a second resonant frequency to Large bandwidth and good linearity are achieved for the radiation pattern of the antenna.
根据第三方面提供的所述天线阵列的第二种实现方式或第三方面上述任一实现方式,所述环形天线馈源包括:与所述两个地板中至少一个地板基本平行的第一部分;与所述两个地板中的其中一个地板基本垂直的第二部分;与所述两个地板中的其中一个地板基本垂直的第三部分,其中,所述第二部分比所述第三部分离所述孔径更近。因此,在有些情况下,所述环形天线馈源相比于其他类型的天线馈源,例如,L型天线馈源,可以更容易实现或制造。According to the second implementation manner of the antenna array provided in the third aspect or any of the foregoing implementation manners of the third aspect, the loop antenna feed includes: a first portion substantially parallel to at least one of the two floors; a second portion substantially perpendicular to one of the two floors; a third portion substantially perpendicular to the one of the two floors, wherein the second portion is separated from the third portion The aperture is closer. Thus, in some cases, the loop antenna feed may be easier to implement or manufacture than other types of antenna feeds, eg, L-shaped antenna feeds.
根据第三方面提供的所述天线阵列的第三种实现方式或第三方面上述任一实现方式,所述第二部分基本接近所述孔径。因此,所述天线馈源在所述3D空腔槽缝内激励TE10模式,实现垂直极化。According to the third implementation manner of the antenna array provided in the third aspect or any of the foregoing implementation manners of the third aspect, the second portion is substantially close to the aperture. Therefore, the antenna feed excites the TE10 mode in the 3D cavity slot to achieve vertical polarization.
根据第三方面提供的所述天线阵列的第四种实现方式或第三方面上述任一实现方式,所述孔径的长度为λ1/2,其中,λ1表示与所述天线的第一谐振频率f1对应的波长。According to the fourth implementation manner of the antenna array provided in the third aspect or any of the foregoing implementation manners of the third aspect, the length of the aperture is λ 1 /2, where λ 1 represents the first resonance with the antenna The wavelength corresponding to frequency f1.
根据第三方面提供的所述天线阵列的第五种实现方式或第三方面上述任一实现方式,所述天线馈源激励TE10模式并沿着所述第一方向在所述天线的第一谐振频率f1下生成E-field,以实现所述天线的垂直极化。According to the fifth implementation manner of the antenna array provided in the third aspect or any of the foregoing implementation manners of the third aspect, the antenna feed excites the TE10 mode and resonates at the first resonance of the antenna along the first direction The E - field is generated at frequency f1 to achieve vertical polarization of the antenna.
根据第三方面提供的所述天线阵列的第六种实现方式或第三方面上述任一实现方式,所述孔径的宽度为w,所述w基本小于λ1/10。因此,所述天线可以在较薄的垂直尺寸上实现,并且在端射/侧射覆盖下实现较强的垂直极化。According to the sixth implementation manner of the antenna array provided in the third aspect or any of the foregoing implementation manners of the third aspect, the width of the aperture is w, and the w is substantially smaller than λ 1 /10. Therefore, the antenna can be implemented in thinner vertical dimensions and with strong vertical polarization under end-fire/side-fire coverage.
根据第三方面提供的所述天线阵列的第七种实现方式或第三方面上述任一实现方式,所述天线馈源与所述孔径一端的距离为λ2/4,其中,λ2表示与所述天线的第二谐振频率f2对应的波长。因此,所述天线的带宽可以通过配置所述天线馈源相对于所述孔径一端的距离来配置。According to the seventh implementation manner of the antenna array provided in the third aspect or any of the foregoing implementation manners of the third aspect, the distance between the antenna feed and one end of the aperture is λ 2 /4, where λ 2 represents the The wavelength corresponding to the second resonant frequency f2 of the antenna. Thus, the bandwidth of the antenna can be configured by configuring the distance of the antenna feed relative to one end of the aperture.
根据第三方面提供的所述天线阵列的第八种实现方式或第三方面上述任一实现方式中,所述两个地板由印制电路板(printed circuit board,PCB)的第一层和第二层组成,所述天线馈源由所述PCB的第三层或更多层以及所述PCB的一个或多个过孔组成。因此,所述天线可以通过PCB实现。In the eighth implementation manner of the antenna array provided according to the third aspect or any one of the foregoing implementation manners of the third aspect, the two floors are composed of a first layer and a second layer of a printed circuit board (PCB). The antenna feed is composed of the third or more layers of the PCB and one or more vias of the PCB. Therefore, the antenna can be realized by a PCB.
根据第三方面提供的所述天线阵列的第九种实现方式或第三方面上述任一实现方式,所述天线沿着所述第一方向有垂直极化,所述第一方向是所述PCB的厚度方向。因此,所述天线可以通过具有较薄垂直尺寸的PCB实现。According to the ninth implementation manner of the antenna array provided in the third aspect or any of the foregoing implementation manners of the third aspect, the antenna is vertically polarized along the first direction, and the first direction is the PCB thickness direction. Therefore, the antenna can be realized by a PCB with thinner vertical dimensions.
本说明书主题的一个或多个实现方式的细节在附图和下面的描述中阐明。通过所述说明及附图以及权利要求书,本主题的其它特征、方面及优点将显而易见。The details of one or more implementations of the subject matter of this specification are set forth in the accompanying drawings and the description below. Other features, aspects and advantages of the subject matter will be apparent from the description and drawings, and from the claims.
附图说明Description of drawings
图1A和1B为一种实现方式提供的示意图,示出了通过折叠地板配置缝隙天线的示例性过程;1A and 1B are schematic diagrams provided for one implementation showing an exemplary process for configuring a slot antenna by folding a floor;
图2为一种实现方式提供的一种示意图,示出了配置三维(three-dimensional,3D)空腔槽缝的示例性过程;FIG. 2 is a schematic diagram provided by an implementation, illustrating an exemplary process for configuring a three-dimensional (3D) cavity slot;
图3为一种实现方式提供的一种示意图,示出了一种示例性宽带垂直极化(vertical polarized,V-pol)天线的各部分;3 is a schematic diagram provided by an implementation, showing portions of an exemplary broadband vertical polarized (V-pol) antenna;
图4为一种实现方式提供的一种示意图,示出了一种示例性宽带V-pol天线的示例性回波损耗;4 is a schematic diagram provided by an implementation showing an exemplary return loss of an exemplary broadband V-pol antenna;
图5为一种实现方式提供的一种示意图,示出了TE10模式中一种示例性宽带V-pol天线的示例性电场(electric field,E-field);FIG. 5 is a schematic diagram provided by an implementation, showing an exemplary electric field (E-field) of an exemplary broadband V-pol antenna in the TE10 mode;
图6A为一种实现方式提供的一种示意图,示出了TE20模式中一种示例性宽带V-pol天线的示例性E-field;6A is a schematic diagram provided by an implementation, showing an exemplary E-field of an exemplary broadband V-pol antenna in a TE20 mode;
图6B为一种实现方式提供的一种示意图,示出了TE20模式中一种示例性宽带V-pol天线的示例性磁场(magnetic field,H-field);6B is a schematic diagram provided by an implementation, showing an exemplary magnetic field (H-field) of an exemplary broadband V-pol antenna in TE20 mode;
图6C为一种实现方式提供的一种示意图,示出了具有方向相对而大约相等电场的示例性的典型平衡TE20模式;6C is a schematic diagram provided by an implementation showing an exemplary typical balanced TE20 mode with oppositely oriented but approximately equal electric fields;
图7A为一种实现方式提供的一种示意图,示出了TE10模式中一种示例性宽带V-pol天线的示例性E-field;7A is a schematic diagram provided by an implementation, showing an exemplary E-field of an exemplary broadband V-pol antenna in TE10 mode;
图7B为一种实现方式提供的一种示意图,示出了不平衡TE20模式中一种示例性宽带V-pol天线的示例性E-field;7B is a schematic diagram provided by an implementation, showing an exemplary E-field of an exemplary broadband V-pol antenna in an unbalanced TE20 mode;
图7C为一种实现方式提供的一种示意图,示出了TE10模式中一种示例性宽带V-pol天线的示例性H-field;7C is a schematic diagram provided by an implementation, showing an exemplary H-field of an exemplary broadband V-pol antenna in TE10 mode;
图7D为一种实现方式提供的一种示意图,示出了不平衡TE20模式中一种示例性宽带V-pol天线的示例性H-field;7D is a schematic diagram provided by an implementation showing an exemplary H-field of an exemplary broadband V-pol antenna in an unbalanced TE20 mode;
图8A为一种实现方式提供的一种示意图,示出了另一种示例性3D缝隙天线的各部分;FIG. 8A is a schematic diagram provided by an implementation, showing parts of another exemplary 3D slot antenna;
图8B为一种实现方式提供的一种示意图,示出了另一种示例性3D缝隙天线的示例性回波损耗;FIG. 8B is a schematic diagram provided by an implementation, showing an exemplary return loss of another exemplary 3D slot antenna;
图9A为一种实现方式提供的一种示意图,示出了又一种示例性3D缝隙天线的各部分;FIG. 9A is a schematic diagram provided by an implementation, showing parts of yet another exemplary 3D slot antenna;
图9B为一种实现方式提供的一种示意图,示出了又一种示例性3D缝隙天线的示例性回波损耗;9B is a schematic diagram provided by an implementation, illustrating exemplary return loss of yet another exemplary 3D slot antenna;
图10A和10B为一种实现方式提供的示意图,示出了一种示例性宽带V-pol天线300的增益图;10A and 10B are schematic diagrams provided for one implementation showing a gain diagram of an exemplary broadband V-
图11A和11B为一种实现方式提供的示意图,分别示出了在E面和H面示例性宽带V-pol天线在第一谐振频率下的增益和角度图;Figures 11A and 11B are schematic diagrams provided for one implementation showing the gain and angle plots of an exemplary broadband V-pol antenna at a first resonant frequency at the E-plane and H-plane, respectively;
图12A和12B为一种实现方式提供的示意图,分别示出了在E面和H面示例性宽带V-pol天线在第二谐振频率下的增益和角度图;Figures 12A and 12B are schematic diagrams provided for one implementation showing the gain and angle plots of an exemplary broadband V-pol antenna at a second resonant frequency at the E-plane and H-plane, respectively;
图13为一种实现方式提供的一种示意图,示出了一种示例性宽带V-pol天线阵列的示例性阵列增益。Figure 13 is a schematic diagram provided by an implementation showing an exemplary array gain of an exemplary broadband V-pol antenna array.
各个附图中的相似参考数字和命名表示相似的元件。Like reference numerals and designations in the various figures indicate like elements.
具体实施方式Detailed ways
以下详细描述了一种宽带垂直极化(vertical polarized,V-pol)端射天线,使本领域内专业人员可以在一个或多个特定实现方式的上下文中实现和使用所公开的主题。A broadband vertical polarized (V-pol) endfire antenna is described in detail below to enable those skilled in the art to make and use the disclosed subject matter in the context of one or more specific implementations.
本领域内普通技术人员可以对所公开的实现方式进行各种修改、更改和排列,这种修改、更改和排列对于本领域内普通技术人员来说是显而易见的,并且所定义的一般原则可以应用于其他实现方式和应用而不脱离本发明的范围。在某些情况下,可以省略为获得对所述主题的理解而不必要的细节,以避免将一个或多个所述实现方式与不必要的细节混淆,因为此类细节属于本领域普通技术人员的技术范围内。本发明的目的不限于所描述或图示的实现方式,而是赋予与所描述的原则和特征一致的最广泛的范围。Various modifications, alterations and permutations of the disclosed implementations may be made by those of ordinary skill in the art, such modifications, alterations and arrangements will be apparent to those of ordinary skill in the art, and the general principles defined may be applied to other implementations and applications without departing from the scope of the present invention. In some instances, details not necessary to obtain an understanding of the described subject matter may be omitted in order to avoid obscuring one or more of the described implementations with unnecessary detail, since such details are within the skill of those of ordinary skill in the art within the technical scope. The present invention is not intended to be limited to the implementations described or illustrated, but is to be accorded the widest scope consistent with the principles and features described.
在无线通信系统中,尤其是在运行在高频段(例如,5G系统中的毫米波频段)上的5G系统中,通过空口进行传播的过程中,高度信号衰减会限制无线链路预算。因此需要智能设计的用于多阵列天线的波束赋形算法,用以提高多入多出(multiple input andmultiple output,MIMO)系统中的空分复用增益,尤其是毫米波移动终端处于不可预测方向的信道条件下时。例如,波束极化可以动态适应现实的信道环境,从而使效率增加或最大化。在一些实现方式中,需要两种单独的线性极化(水平和垂直),从而使基站相控阵和移动终端相控阵均提高视距(line-of-sight,LOS)和非视距(non-line-of-sight,NLOS)条件下的MIMO分集系统中的容量。In wireless communication systems, especially 5G systems operating on high frequency bands (eg, mmWave bands in 5G systems), high signal attenuation during propagation over the air can limit wireless link budgets. Therefore, an intelligently designed beamforming algorithm for multi-array antennas is required to improve the space division multiplexing gain in multiple input and multiple output (MIMO) systems, especially when millimeter-wave mobile terminals are located in unpredictable directions under the channel conditions. For example, beam polarization can be dynamically adapted to realistic channel conditions to increase or maximize efficiency. In some implementations, two separate linear polarizations (horizontal and vertical) are required so that both the base station phased array and the mobile terminal phased array improve line-of-sight (LOS) and non-line-of-sight (LOS) Capacity in a MIMO diversity system under non-line-of-sight, NLOS) conditions.
具有电尺寸小的垂直剖面的线性极化天线振子实现起来复杂。随着消费终端的尺寸不断变小,天线需要设计成小尺寸。再者,对于偶极子天线,天线尺寸取决于工作频率。因此,在运行在毫米波频段的5G系统中减小天线尺寸更不容易。Linearly polarized antenna elements with vertical profiles with small electrical dimensions are complex to implement. As the size of consumer terminals continues to shrink, antennas need to be designed to be small. Again, for dipole antennas, the antenna size depends on the operating frequency. Therefore, reducing the size of the antennas in 5G systems operating in the mmWave frequency band is even more difficult.
在一些实现方式中,水平极化可通过典型的平面偶极子或八木天线实现。如果仅将水平偶极子旋转90度至垂直方向,原来半波尺寸的水平偶极子则电尺寸不够小。另外,当极化天线振子在相同的或相近的空间内并存时,对线性度和极化隔离度的干扰也需要谨慎考虑和解决。In some implementations, horizontal polarization can be achieved with a typical planar dipole or Yagi antenna. If the horizontal dipole is only rotated 90 degrees to the vertical direction, the original half-wave size of the horizontal dipole is not small enough in electrical size. In addition, when polarized antenna elements coexist in the same or similar space, the interference to linearity and polarization isolation also needs to be carefully considered and resolved.
本发明提供一种天线系统,以解决上述问题。所述天线系统可以支持具有电尺寸小的垂直剖面的端射覆盖下的垂直极化,以用于毫米波通信。所述天线系统可以支持垂直尺寸小的端射/侧射覆盖下的双极化。所述天线系统能够在紧凑型移动设备内实现毫米波天线,例如,为了提升5G移动设备的MIMO分集系统的容量。The present invention provides an antenna system to solve the above problems. The antenna system can support vertical polarization under end-fire coverage with a vertical profile with small electrical dimensions for mmWave communications. The antenna system can support dual polarization under end-fire/side-fire coverage with small vertical dimensions. The antenna system enables implementation of millimeter-wave antennas within compact mobile devices, eg, to increase the capacity of MIMO diversity systems for 5G mobile devices.
图1A和1B为一种实现方式提供的示意图,示出了通过折叠地板(ground plane)配置缝隙天线的示例性过程100。图1A示出了带有槽缝孔径150的地板110。所述地板110可以是导电材料。例如,所述地板110可以是平面金属板。所述槽缝孔径150长度为L=λ/2,宽度为w,其中,λ表示与所述缝隙天线的第一谐振频率对应的波长。所述槽缝孔径150有两条纵向边缘101和103。1A and 1B are schematic diagrams provided for one implementation showing an
在一些实现方式中,为了实现尺寸小的垂直剖面(例如,小于λ0/10,其中,λ0表示对应天线的第一谐振频率对应的波长),所述地板110可以沿着两条折线102和104进行折叠。所述两条折线102和104分别和所述槽缝孔径150的两条纵向边缘101和103在同一条线上或是沿着所述槽缝孔径150的两条纵向边缘101和103。通过折叠,所述地板110的两侧112和114可以形成两个相对的地板,例如,形成如图2中所示U-型结构215的U-型。In some implementations, in order to achieve a small vertical profile (eg, less than λ 0 /10, where λ 0 represents the wavelength corresponding to the first resonant frequency of the antenna), the
图2为一种实现方式提供的一种示意图,示出了配置三维(three-dimensional,3D)空腔槽缝210的示例性过程200。如图2所示,所述3D空腔槽缝210可以通过折叠包括带有槽缝孔径250的地板220的平面缝隙天线205来配置。所述槽缝孔径250在水平方向上长度为λ/2,在垂直方向上宽度为w。所述地板220和所述槽缝孔径250可以分别是,例如,图1中所示的地板110和槽缝孔径150。FIG. 2 is a schematic diagram provided by one implementation illustrating an
所述地板220可以沿着所述槽缝孔径250的两条纵向边缘折叠,形成U-型结构215,例如,以与图1所述类似的方式折叠。因此,所述U-型结构215有基本平行的两个地板,例如222和224,其中,“基本平行”包括平行或功能上等同于平行,只要功能性(例如,结构功能性或电功能性)能够保留。例如,如果所述两个地板222和224的相对角度小于1或2度,所述两个地板222和224视为彼此基本平行。The
背腔255可以增加到所述U-型结构215上,形成上述带有所述槽缝孔径250的3D空腔槽缝210。因此,如图2所示,所述3D空腔槽缝210长度为L=λ/2,宽度为w,深度为d。所述槽缝孔径250在所述U-型结构215的厚度方向上(即图2中由w表示的所述槽缝孔径250的宽度或垂直尺寸)进行辐射。A
如图2所示,所述3D空腔槽缝210为盒形。所述3D空腔槽缝210可以是长方体,立方体,或其他有六侧或面202、204、232、234、242和244的形状。在一些实现方式中,所述六侧202、204、232、234、242和244中每一侧基本是矩形。在一些实现方式中,所述槽缝孔径250形成于或位于所述3D空腔槽缝210的前沿或外侧244(如图2所示,向外面向看图者),而其他五侧202、204、232、234、242均以导电材料制成。As shown in FIG. 2 , the
在所述六侧中,顶侧202和底侧204分别与所述地板222和224基本平行或在同一平面。例如,所述顶侧202和底侧204可以是两个分别由所述地板222和224的部分形成的导电平面。所述顶侧202和底侧204基本平行,并且间隔距离为w,即为所述槽缝孔径250的宽度。如图2所示,所述侧面202和204中的每一个侧面是矩形,尺寸为L×d,其中,d为上述3D空腔槽缝210的深度。Of the six sides, the
所述3D空腔槽缝210还有两个边侧232和234。所述边侧232和234可以是用与上述地板222和224相同或不同材料制成的两个导电平面。所述边侧232和234基本平行,并且间隔距离为L,即为所述槽缝孔径250的长度。如图2所示,所述边侧232和234中的每一个侧面是矩形,尺寸为d×w,其中,d为上述3D空腔槽缝210的深度。The
所述3D空腔槽缝210还有内侧或后侧242和外侧或前侧244。所述内侧232可以是用与上述地板222和224相同或不同材料制成的导电平面。所述外侧232由上述槽缝孔径250组成。所述内侧242和外侧244基本平行,并且间隔距离为d,即为所述3D空腔槽缝210的深度。如图2所示,所述内侧242和外侧244中的每一个侧面是矩形,尺寸为L×w,其中,w为上述3D空腔槽缝210的宽度。The
在一些实现方式中,印制电路板(printed circuit board,PCB)可以用于利用PCB的多层和过孔结构形成3D空腔槽缝210。例如,上述3D空腔槽缝210的两个地板222和224,还有所述3D空腔槽缝210的顶侧和底侧202和204都可以通过PCB的两层配置。上述边侧232和234以及内侧242可以通过所述PCB的基片集成波导(substrate integrated waveguide,SIW)过孔(短路墙)配置。所述PCB两层之间的空间和相应的过孔可以定义上述槽缝孔径250。In some implementations, a printed circuit board (PCB) may be used to form the
在一些实现方式中,所述3D空腔槽缝210自身可以用作如图2箭头所示的具有垂直极化的空腔缝隙天线(以沿着PCB厚度方向为例)。然而,这样一个3D空腔缝隙天线的带宽是受限的。例如,所述3D空腔缝隙天线只支持将近7%的带宽。而对于在超过B257(26.5至29.5GHz)频段上进行的5G通信来说,天线需要支持至少12%的带宽。In some implementations, the
为了支持5G宽带通信,可以基于上述3D空腔槽缝210的结构配置一种宽带垂直极化(vertical polarized,V-pol)天线。在一些实现方式中,所述3D空腔槽缝210的深度和长度均会影响所述宽带V-pol天线的谐振频率。In order to support 5G broadband communication, a broadband vertical polarized (V-pol) antenna may be configured based on the structure of the above-mentioned
图3为一种实现方式提供的一种示意图,示出了一种示例性宽带垂直极化(vertical polarized,V-pol)天线300的各部分。所述示例性宽带V-pol天线300包括在第一方向(例如,图3中由h表示的垂直或高度方向)间隔开的两个地板312和314;位于两个地板312和314之间的3D空腔槽缝310;在所述3D空腔槽缝310内的天线馈源320。所述两个地板312和314可以是图2所述的两个地板222和224的示例。例如,所述两个地板312和314可以通过折叠平面金属板形成。所述3D空腔槽缝310可以是图2所述的3D空腔槽缝210的示例。FIG. 3 is a schematic diagram provided by an implementation showing portions of an exemplary broadband vertical polarized (V-pol)
所述3D空腔槽缝310长度为L=λ1/2,宽度或高度为h,深度为d。例如,所述3D空腔槽缝310可以是长方体,并由分别对应上述3D空腔槽缝210的六侧202、204、232、234、242和244的六侧或面302、304、332、334、342和344定义。所述3D空腔槽缝310包括在外侧344上的槽缝孔径350,而其他五侧由导电材料制成。所述槽缝孔径350可以是长度为L=λ1/2,宽度或高度为h的垂直槽缝孔径。The length of the
在所述六侧中,顶侧302和底侧304分别与所述地板312和314基本平行或在同一平面。例如,所述顶侧302和底侧304可以是两个分别由所述地板312和314的部分形成的导电平面。所述顶侧302和底侧304基本平行,并且间隔距离为h,即为所述槽缝孔径350的宽度或垂直高度。在一些实现方式中,所述槽缝孔径350(和上述3D空腔槽缝310)的宽度或高度h配置为小于1/10λ0,以实现上述宽带V-pol天线300的小尺寸垂直剖面。如图3所示,所述侧面302和304中的每一个侧面尺寸为L×d,其中,L为所述3D空腔槽缝310的长度,d为所述3D空腔槽缝310的深度。Of the six sides, the
所述3D空腔槽缝310还有两个边侧332和334。所述边侧332和334可以是用与上述地板312和314相同或不同材料制成的两个导电平面。所述边侧332和334基本平行,并且间隔距离为L,即为所述槽缝孔径350的长度。如图3所示,所述边侧333和334中的每一个侧面尺寸为d×h,其中,d为上述3D空腔槽缝310的深度。The
所述3D空腔槽缝310还有内侧342和外侧344。所述内侧342可以是用与上述地板312和314相同或不同材料制成的导电平面。所述外侧344由上述槽缝孔径350组成。所述内侧342和外侧344基本平行,并且间隔距离为d,即为所述3D空腔槽缝310的深度。如图3所示,所述内侧342和外侧344中的每一个侧面尺寸为L×h,其中,h为上述3D空腔槽缝310的高度。The
所述示例性宽带V-pol天线300包括所述用于在所述3D空腔槽缝310内激励所述3D空腔槽缝310的天线馈源320(例如,馈线)。所述天线馈源320用于激励TE10模式并沿着所述第一方向在所述示例性宽带V-pol天线300的第一谐振频率f1下生成电场(electricfield,E-field),以实现所述示例性宽带V-pol天线300的垂直极化。The exemplary broadband V-
所述天线馈源320短路到所述3D空腔槽缝310,因此,所述天线馈源320和所述3D空腔槽缝310形成一个闭环,能够生成可在所述3D空腔槽缝310内激励不平衡TE20模式的所述闭环周围的磁场。The
在一些实现方式中,所述天线馈源320可以是环形,包括沿着所述3D空腔槽缝310的水平或深度方向的水平部分322,以及沿着所述3D空腔槽缝310的垂直或高度方向的两个垂直部分324和326。在一些实现方式中,所述水平部分322与上述地板312和314基本平行,而所述垂直部分324和所述地板312和314基本垂直,其中,“基本垂直”包括垂直或功能上等同于垂直,只要功能性(例如,结构功能性或电功能性)能够保留。例如,如果所述垂直部分324与所述两个地板312和314的相对角度为88至92度,所述垂直部分324与所述两个地板312和314视为基本垂直。In some implementations, the
如图3所示,所述天线馈源320的水平部分322短路到所述3D空腔槽缝310的一侧(例如,所述3D空腔槽缝310的内侧342)。在一些实现方式中,所述天线馈源320的水平部分322连接到所述3D空腔槽缝310的内侧342,并向外延伸到上述外侧344且和上述槽缝孔径350尽可能接近。所述水平部分322的尺寸为L1×d1,其中,L1<L,d1≤d。在一些实现方式中,L1基本小于L(例如,小于L的1/5或1/10),d1基本等于d,使得所述水平部分322延伸至基本接近所述外侧344上的所述槽缝孔径350,其中,“基本等于”包括等于,或稍微大于或小于(例如,在5%或10%的可接受范围内),只要功能性能够保留;“基本接近”包括距离很短或可忽略不计(例如,所述距离小于1毫米或甚至0.1毫米),只要功能性能够保留。As shown in FIG. 3, the
在上述两个垂直部分324和326之间,所述垂直部分324在上述外侧344上离所述槽缝孔径350更近,而所述垂直部分326更接近上述外侧342。在一些实现方式中,所述两个垂直部分324和326彼此基本平行。所述两个垂直部分324和326中每一个垂直部分的一端短路到所述天线馈源320的水平部分322,且所述两个垂直部分324和326每一个垂直部分的另一端短路到所述3D空腔槽缝310的一侧(例如,所述3D空腔槽缝310的顶侧302或底侧304)。Between the aforementioned two
例如,在一些实现方式中,所述垂直部分324的一端从所述水平部分322位于或靠近更接近所述外侧344的外端延伸或连接到所述水平部分322;所述垂直部分326的一端从所述水平部分322位于或靠近更接近所述内侧342的内端延伸或连接到所述水平部分322。如图3所示,所述垂直部分324的另一端和垂直部分324的另一端均短路到所述3D空腔槽缝310的底侧304。在一些实现方式中,所述垂直部分324的另一端和垂直部分324的另一端均可以短路到所述3D空腔槽缝310的顶侧302。换言之,虽然图3示出的是所述垂直部分324和326从所述水平部分322向下沿着高度方向朝底侧304延伸,在另一些实现方式中,所述垂直部分324和326可以从所述水平部分322向上沿着高度方向朝顶侧302延伸。For example, in some implementations, one end of the
在一些实现方式中,所述垂直部分324和326可以有相同或不同的形状和尺寸。例如,所述垂直部分324尺寸可以为h2×L2,其中,h2≤h,L2≤L1。所述垂直部分326尺寸可以为h3×L3,其中,h3≤h,L3≤L1。在一些实现方式中,L2和L3均基本等于L1,h2和h3基本相等。h2和h3取决于所述水平部分322与所述3D空腔槽缝310的顶侧302或底侧304的相对位置。例如,如果所述水平部分322与所述顶侧304的间隔距离或高度为h1,则h2=h3=h–h1。In some implementations, the
在一些实现方式中,上述天线馈源320可以通过带有所述位于或尽可能接近所述3D空腔槽缝310的槽缝孔径350的垂直部分324的同轴馈源或带状线馈源进行配置,并短路到所述3D空腔槽缝310的一侧(例如,顶侧302或底侧304),以实现强垂直极化。例如,在一些实现方式中,所述垂直部分324和326可以通过沿着所述3D空腔槽缝310的高度方向朝上或朝下弯曲或折叠所述天线馈源320来构造。在一些实现方式中,所述天线馈源320可以是嵌入到所述3D空腔槽缝310的顶侧302或底侧304(在一些实现方式中,也可以说是折叠的地板312和314)之间的50Ohm的CPW线,并短路到所述底侧304。In some implementations, the
在一些实现方式中,所述天线馈源320可以通过PCB的一层或多层进行配置,以形成上述水平部分322和所述PCB的一个或多个过孔,进一步形成上述垂直部分324和326。在一些实现方式中,所述天线馈源320可以通过另外的方式进行配置。例如,所述天线馈源320可以配置为L型,包括所述水平部分322和所述垂直部分324,但不包括所述垂直部分326,其中,所述水平部分322和所述垂直部分324短路到上述3D空腔槽缝310。由此,所述天线馈源320和所述3D空腔槽缝310形成一个闭环,能够生成可在所述3D空腔槽缝310内激励不平衡TE20模式的所述闭环周围的磁场。作为示例,在一种L-型配置中,所述天线馈源320可以将所述水平部分322短路到所述3D空腔槽缝310的内侧342,将所述垂直部分324短路到所述3D空腔槽缝310的底侧304。由此,所述天线馈源320和所述3D空腔槽缝310形成所述闭环。In some implementations, the
在一些实现方式中,所述天线馈源320将所述3D空腔槽缝310的中心激励给所述3D空腔槽缝310。因此,所述天线馈源320可以被称作离焦天线馈伺。在一些实现方式中,可以对所述天线馈源320相对于所述3D空腔槽缝310的边侧332或334的位置进行配置,例如,以匹配阻抗,实现期望的回波损耗或增益图,或实现其他目的。如图3所示,所述天线馈源320与所述3D空腔槽缝310的边侧334距离为λ2/4,其中,λ2表示与所述示例性宽带V-pol天线300的第二谐振频率f2对应的波长。在一些实现方式中,所述天线馈源320可以置于其他位置,以激励所述3D空腔槽缝310。In some implementations, the
图4为一种实现方式提供的一种示意图,示出了一种示例性宽带V-pol天线(例如,上述示例性宽带V-pol天线300)的示例性回波损耗400。所述示例性回波损耗400可以是所述示例性宽带V-pol天线300的示例性模式分析结果。如图4所示,所述示例性宽带V-pol天线300在26.3GHz和29.9GHz的频率下的回波损耗(或S11所表示的反射系数)均大约为–10dB。因此,所述示例性宽带V-pol天线300具有大带宽,并且可以支持5G系统的26.5Ghz至29.5Ghz频段。FIG. 4 is a schematic diagram provided by an implementation showing an exemplary return loss 400 of an exemplary broadband V-pol antenna (eg, the exemplary broadband V-
图5为一种实现方式提供的一种示意图,示出了TE10模式中一种示例性宽带V-pol天线(例如,上述示例性宽带V-pol天线300)的示例性电场(electric field,E-field)500。在这一示例中,所述E-field500在第一谐振频率或辐射频率f1=26.5GHz下被测量。如图5所示,上述天线馈源320的垂直部分324和326激励所述TE10模式。因此,如箭头510所记,所得到的E-field500垂直,且在各处沿着上述槽缝孔径350的高度或宽度方向(也是上述3D空腔槽缝310的厚度或高度方向)排列成行,以实现所述示例性宽带V-pol天线300的垂直极化。FIG. 5 is a schematic diagram provided by an implementation showing an exemplary electric field (E) of an exemplary broadband V-pol antenna (eg, the above-described exemplary broadband V-pol antenna 300 ) in TE10 mode -field) 500. In this example, the
图6A为一种实现方式提供的一种示意图,示出了TE20模式中一种示例性宽带V-pol天线(例如,上述示例性宽带V-pol天线300)的示例性E-field600。在这一示例中,所述E-field600在为第二谐振频率或辐射频率f2=29.4GHz下被测量。图6B为一种实现方式提供的一种示意图,示出了TE20模式中一种示例性宽带V-pol天线(例如,上述示例性宽带V-pol天线300)的示例性磁场(magnetic field,E-field)650。在这一示例中,所述H-field在29.4Ghz的频率下被测量。FIG. 6A is a schematic diagram provided by an implementation showing an
如图6B所示,上述天线馈源320的水平部分322短路到上述3D空腔槽缝310的内侧342,所述天线馈源320的垂直部分324和326短路到所述3D空腔槽缝310的底侧304,形成环形馈电结构。如图6A所示,所述环形馈电结构相当于一个围绕该环形馈电结构生成的可在所述3D空腔槽缝310内激励不平衡TE20模式的H-field626的磁偶极子。As shown in FIG. 6B , the
相比于如图6C所示的具有方向相对而大约相等的E-field602和604的典型平衡TE20模式,在如图6A所示的上述不平衡TE20模式中,在所述天线馈源320所在一端具有较强的E-field620,在另一端具有较弱的E-field610。所述较强的E-field620和所述较弱的E-field610均是垂直的,但方向不同。由于不平衡,所述较强的E-field620主要作用在辐射上,并增强端射覆盖下的垂直极化。如下述图11A和11B以及图12A和12B所示,其辐射图中仍然有一个具有良好线性的主波束。In contrast to the typical balanced TE20 mode with opposite but approximately
图7A为一种实现方式提供的一种示意图,示出了TE10模式中一种示例性宽带V-pol天线(例如,上述示例性宽带V-pol天线300)的示例性E-field700。在这一示例中,所述E-field500在第一谐振频率或辐射频率f1=26.5GHz下被测量。图7B为一种实现方式提供的一种示意图,示出了上述不平衡TE20模式中示例性宽带V-pol天线300的示例性E-field730。在这一示例中,所述E-field在第二谐振频率或辐射频率f2=29.5GHz下被测量。FIG. 7A is a schematic diagram provided by an implementation showing an
图7C为一种实现方式提供的一种示意图,示出了上述TE10模式中示例性宽带V-pol天线300的示例性H-field760。在这一示例中,所述E-field500在第一谐振频率或辐射频率f1=26.5GHz下被测量。图7D为一种实现方式提供的一种示意图,示出了上述不平衡TE20模式中示例性宽带V-pol天线300的示例性H-field790。在这一示例中,所述E-field在第二谐振频率或辐射频率f2=29.5GHz下被测量。FIG. 7C is a schematic diagram provided by an implementation showing an exemplary H-
图8A为一种实现方式提供的一种示意图,示出了另一种示例性3D缝隙天线800的各部分。所述示例性3D缝隙天线800包括:两个地板812和814;在所述地板812和814之间形成的3D空腔槽缝810;在所述3D空腔槽缝810内的天线馈源820。所述3D空腔槽缝810可以具有与上述示例性宽带V-pol天线300的3D空腔槽缝310相同的结构。所述天线馈源820是短路到所述地板812和814的探测器馈源。所述天线馈源820可以偏移,且与所述3D空腔槽缝810的边侧834的相对距离为feed_x。然而,不同于会形成可激励不平衡TE20模式的环形馈电结构(例如,通过所述L型天线馈源320)的示例性宽带V-pol天线300的天线馈源320,所述探测器天线馈源820不会生成第二谐振频率以实现所述示例性3D缝隙天线800的大带宽。FIG. 8A is a schematic diagram provided by an implementation showing portions of another exemplary
图8B为一种实现方式提供的一种示意图,示出了另一种示例性3D缝隙天线800的示例性回波损耗850。所述示例性回波损耗850表示:即使偏移距离feed_x不同,所述短路的探测器天线馈源820不会生成所述第二谐振频率。相应地,所述示例性3D缝隙天线800不会有大带宽以支持5G系统通过26.5GHz至29.5GHz频段进行宽带通信。FIG. 8B is a schematic diagram provided by an implementation showing an
图9A为一种实现方式提供的一种示意图,示出了又一种示例性3D缝隙天线900的各部分。所述示例性3D缝隙天线900包括:两个地板912和914;在所述地板912和914之间形成的3D空腔槽缝910;在所述3D空腔槽缝910内的天线馈源920。所述3D空腔槽缝910可以具有与上述示例性宽带V-pol天线300的3D空腔槽缝310相同的结构。所述天线馈源920是开端式L-型探测器馈源,既不短路或连接到所述地板912和914中任何一个,也不短路或连接到到所述3D空腔槽缝910的内侧942。所述天线馈源920可以偏移,且与所述3D空腔槽缝910的边侧934的相对距离为feed_x。然而,不同于由于两端分别短路到或连接到所述3D空腔槽缝310的内侧342和底侧304(也可以是上述地板312和314)而属于闭端式天线馈源的示例性宽带V-pol天线300的天线馈源320,所述开端式L-型探测器天线馈源920不会生成第二谐振频率以实现所述示例性3D缝隙天线900的大带宽。FIG. 9A is a schematic diagram provided by an implementation showing portions of yet another exemplary
图9B为一种实现方式提供的一种示意图,示出了又一种示例性3D缝隙天线900的示例性回波损耗950。所述示例性回波损耗950表示:即使偏移距离feed_x不同,所述开端式L-型探测器天线馈源920不会生成所述第二谐振频率。相应地,所述示例性3D缝隙天线900不会有大带宽以支持5G系统通过26.5GHz至29.5GHz频段进行宽带通信。FIG. 9B is a schematic diagram provided by an implementation showing an
图10A和10B为一种实现方式提供的示意图,示出了上述示例性宽带V-pol天线300的增益图。具体地,图10A示出了所述示例性宽带V-pol天线300在TE10模式支持的26.5GHz下的增益图1000。主瓣方向(最大增益方向)1010是Theta=92°且Phi=84°,基本指向垂直方向(即图10A所示的Z轴)。如图10A所示,所述垂直方向是所述示例性宽带V-pol天线300的高度或厚度方向,垂直于由X轴和Y轴所示方向上的上述地板312和314。10A and 10B are schematic diagrams provided for one implementation showing the gain diagram of the exemplary broadband V-
图10B示出了所述示例性宽带V-pol天线300在不平衡TE20模式支持的29.5GHz下的增益图1050。主瓣方向(最大增益方向)1015是Theta=102°且Phi=74°,稍微自垂直方向(即图10B所示的Z轴)偏斜。FIG. 10B shows a gain diagram 1050 of the exemplary wideband V-
图11A和11B为一种实现方式提供的示意图1100和1150,分别示出了在E面和H面示例性宽带V-pol天线300在第一谐振频率下的增益和角度图。具体地,图11A示出了所述示例性宽带V-pol天线300在第一谐振频率为26.5GHz且Phi=90°时的E面共极化(co-polarization,co-pol)1110和交叉极化(cross-polarization,x-pol)1120。图11B示出了所述示例性宽带V-pol天线300在26.5GHz且Phi=90°时的H面共极化(co-polarization,co-pol)1130和交叉极化(cross-polarization,x-pol)1140。在E面和H面上均有低交叉极化表示所述示例性宽带V-pol天线300在第一谐振频率为26.5GHz时提供了良好线性。Figures 11A and 11B provide schematic diagrams 1100 and 1150 for one implementation showing the gain and angle plots of an exemplary broadband V-
图12A和12B为一种实现方式提供的示意图1200和1250,分别示出了在E面和H面示例性宽带V-pol天线在第二谐振频率下的增益和角度图。具体地,图12A示出了所述示例性宽带V-pol天线300在第二谐振频率为29.5GHz且Phi=90°时的E面共极化(co-polarization,co-pol)1210和交叉极化(cross-polarization,x-pol)1220。图12B示出了所述示例性宽带V-pol天线300在29.5GHz且Phi=90°时的H面共极化(co-polarization,co-pol)1230和交叉极化(cross-polarization,x-pol)1240。在E面和H面上均有低交叉极化表示所述示例性宽带V-pol天线300在第二谐振频率为29.5GHz时提供了良好线性。Figures 12A and 12B provide schematic diagrams 1200 and 1250 for one implementation showing gain and angle plots for an exemplary broadband V-pol antenna at a second resonant frequency at the E-plane and H-plane, respectively. Specifically, FIG. 12A shows the E-plane co-polarization (co-pol) 1210 and crossover of the exemplary broadband V-
图13为一种实现方式提供的一种示意图,示出了一种示例性宽带V-pol天线阵列的示例性阵列增益1300。所述示例性带宽V-pol天线阵列包括四条示例性宽带V-pol天线300。所述示例性阵列增益1300表示最大增益方向1310与Y轴方向对齐,即Phi=90°时的方向。FIG. 13 is a schematic diagram provided by an implementation showing an
本文所描述的主题和功能操作的实现方式可以实现为数字电子电路、有形的计算机软件或固件、计算机硬件,包括在本文中公开的结构及其结构等同物,或实现为它们中的一个或多个的组合。本文所描述的主题的实现方式可以实现为一个或多个计算机程序,即一个或多个计算机程序指令模块,编码在有形的、非瞬时性的、计算机可读的计算机存储介质上,以便由数据处理装置执行或控制数据处理装置的操作。可替代地或附加地,所述程序指令可以在人为产生的传播信号(例如,机器产生的电、光或电磁信号)中编码,所述电、光或电磁信号用于编码信息以传输到合适的接收器装置,以便由数据处理装置执行。所述计算机存储介质可以是机器可读存储设备,机器可读存储基板、随机或串行存取内存设备或计算机存储介质的组合。Implementations of the subject matter and functional operations described herein can be implemented as digital electronic circuitry, tangible computer software or firmware, computer hardware, including the structures disclosed herein and their structural equivalents, or as one or more of them a combination of. Implementations of the subject matter described herein can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a tangible, non-transitory, computer-readable computer storage medium for data transfer by The processing device performs or controls the operation of the data processing device. Alternatively or additionally, the program instructions may be encoded in a human-generated propagated signal (eg, a machine-generated electrical, optical or electromagnetic signal) used to encode information for transmission to a suitable receiver means for execution by the data processing means. The computer storage medium may be a machine-readable storage device, a machine-readable storage substrate, a random or serial access memory device, or a combination of computer storage media.
术语“数据处理装置”、“计算机”或“电子计算机设备”(或本领域普通技术人员理解的等同物)指的是数据处理硬件并包括所有用于处理数据的装置、设备和机器,例如包括可编程处理器、计算机或多个处理器或计算机。所述装置也可以是或也可以包括专用逻辑电路如中央处理器(central processing unit,CPU)、FPGA(field programmable gatearray,现场可编程门阵列)或ASIC(application-specific integrated circuit,专用集成电路)。在一些实现方式中,所述数据处理装置或专用逻辑电路(或所述数据处理装置和专用逻辑电路的组合)可以是基于硬件或软件的(或基于硬件和软件的组合的)。所述装置可以选择性地包括为计算机程序创造执行环境的代码,例如,构成处理器固件、协议栈、数据库管理系统、操作系统或执行环境的组合的代码。本发明考虑使用具有或不具有传统操作系统如Linux、Unix、Windows、MAC OS、Android、iOS或任何其他合适的传统操作系统的数据处理装置。The terms "data processing apparatus," "computer," or "electronic computer equipment" (or equivalents as understood by those of ordinary skill in the art) refer to data processing hardware and include all apparatus, equipment, and machines used to process data, including, for example, Programmable processor, computer or multiple processors or computers. The device may also be or may also include a dedicated logic circuit such as a central processing unit (CPU), an FPGA (field programmable gate array, field programmable gate array) or an ASIC (application-specific integrated circuit, application-specific integrated circuit). . In some implementations, the data processing apparatus or special purpose logic circuitry (or a combination of the data processing apparatus and special purpose logic circuitry) may be hardware or software based (or a combination of hardware and software based). The apparatus may optionally include code that creates an execution environment for the computer program, eg, code that constitutes a combination of processor firmware, protocol stacks, database management systems, operating systems, or execution environments. The present invention contemplates the use of data processing devices with or without conventional operating systems such as Linux, Unix, Windows, MAC OS, Android, iOS or any other suitable conventional operating system.
计算机程序,也可以称为或描述为程序、软件、软件应用、模块、软件模块、脚本或代码,可以以任何形式的编程语言编写,包括编译或直译语言、声明性语言或程序语言,并且可以以任何形式进行部署,包括作为独立程序或作为模块、组件、子例程或其它适合在计算环境中使用的单元进行部署。计算机程序可以但不需要对应文件系统中的文件。程序可存储在包括其它程序或数据的文件的一部分中,例如,存储在标记语言文档中、专用于相关程序的单个文件中或多个协调文件(例如,存储一个或多个模块、子程序或部分代码的文件)的一个或多个脚本中。计算机程序可以部署在一台计算机中执行,或部署在位于一个站点或分布于多个站点并通过通信网络互连的多台计算机中执行。虽然各个图中的程序的各部分示出为通过各种对象、方法或其他过程实现各种特征和功能的独立模块,所述程序也可以包括多个子模块,三方服务、部件、库等,视情况而定。相反地,所述各个部件的特征和功能可以结合成单个的模块,视情况而定。用于计算性确定的阈值可以是静态、动态或同时静态和动态确定的。A computer program, which may also be called or described as a program, software, software application, module, software module, script, or code, may be written in any form of programming language, including compiled or literal, declarative, or procedural languages, and may Deploy in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. Computer programs may, but need not, correspond to files in a file system. Programs may be stored in a portion of a file that includes other programs or data, for example, in a markup language document, in a single file dedicated to the associated program, or in multiple coordination files (e.g., storing one or more modules, subprograms, or part of the code file) in one or more scripts. A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network. Although portions of the programs in the various figures are shown as separate modules implementing various features and functions through various objects, methods, or other processes, the programs may also include multiple sub-modules, third-party services, components, libraries, etc., depending on the Depends. Rather, the features and functions of the various components described may be combined into a single module, as appropriate. Thresholds for computational determination may be statically, dynamically or both statically and dynamically determined.
本文所描述的各种方法、过程或逻辑流可以由一个或多个可编程计算机执行,所述一个或多个可编程计算机执行一个或多个计算机程序,以通过对输入数据进行操作并生成输出来执行功能。所述方法、过程或逻辑流也可以被专用逻辑电路执行,装置也可以被实现为专用逻辑电路,例如,CPU、FPGA或ASIC。Various methods, processes or logic flows described herein can be performed by one or more programmable computers executing one or more computer programs to operate on input data and generate output to perform the function. The methods, processes, or logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, eg, a CPU, FPGA, or ASIC.
适合执行计算机程序的计算机可以基于通用和/或专用微处理器,以及其他任何类型的CPU。通常,CPU从只读存储器(read-only memory,ROM)和/或随机存取存储器(random access memory,RAM)接收指令和数据。计算机元件包括:CPU,以运行或执行指令;一个或多个内存设备,以储存指令和数据。通常,计算机还包括一个或多个用于储存数据的大容量存储设备,例如,磁盘、磁光盘或光盘;或计算机恰当地耦合以从所述一个或多个大容量存储设备接收数据和/或转移数据到所述一个或多个大容量存储设备。然而,计算机不需要这样的设备。另外,计算机可以嵌入到另一个设备中,例如,移动手机、个人数字助理(personal digital assistant,PDA)、移动音视频播放器、游戏台、全球定位系统(globalpositioning system,GPS)接收器,或便携存储设备如通用串行总线(universal serialbus,USB)闪存盘,等等。Computers suitable for the execution of a computer program may be based on general and/or special purpose microprocessors, as well as any other type of CPU. Typically, a CPU receives instructions and data from read-only memory (ROM) and/or random access memory (RAM). Computer elements include: a CPU to run or execute instructions; and one or more memory devices to store instructions and data. Typically, a computer also includes one or more mass storage devices, such as magnetic, magneto-optical or optical disks, for storing data; or the computer is suitably coupled to receive data from and/or the one or more mass storage devices Transfer data to the one or more mass storage devices. However, a computer does not need such a device. Additionally, the computer can be embedded in another device, such as a mobile phone, personal digital assistant (PDA), mobile audio and video player, gaming console, global positioning system (GPS) receiver, or portable Storage devices such as universal serial bus (USB) flash drives, and the like.
适合储存计算机程序指令和数据的计算机可读介质(瞬时性或非瞬时性,视情况而定)包括各种形式的非易失性存储器、介质和存储器设备,例如,包括半导体存储器设备,例如可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、电可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)和闪存设备;磁盘,例如内部硬盘或可移动磁盘或磁光盘;和CD-ROM、DVD+/–R、DVD-RAM和DVD-ROM盘。所述存储器可以储存各种对象或数据,包括缓存、类、框架、应用、备份数据、功能、网页、网页模板、数据库表格、储存动态信息的存储库和任何其他适当信息,包括任何参数、变量、算法、指令、规则、约束或其引用。此外,所述存储器可以包括任何其他合适的数据,例如,日志、策略、安全或访问数据、报告文件以及其它数据。处理器和存储器可以由专用逻辑电路进行补充或并入到专用逻辑电路中。Computer-readable media (transitory or non-transitory, as the case may be) suitable for storage of computer program instructions and data include various forms of non-volatile memory, media, and memory devices, including, for example, semiconductor memory devices, such as Erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices; magnetic disks, such as internal hard disks or removable Magnetic or magneto-optical disks; and CD-ROM, DVD+/–R, DVD-RAM and DVD-ROM discs. The memory may store various objects or data, including caches, classes, frameworks, applications, backup data, functions, web pages, web page templates, database tables, repositories for storing dynamic information, and any other suitable information, including any parameters, variables , algorithms, directives, rules, constraints or references thereto. Additionally, the memory may include any other suitable data, such as logs, policies, security or access data, report files, and other data. The processor and memory may be supplemented by or incorporated in special purpose logic circuitry.
为了提供与用户的互动,本文中描述的主题的实现方式可以在计算机上实现,所述计算机具有向用户显示信息的显示设备,例如,CRT(cathode ray tube,阴极射线管)、LCD(liquid crystal display,液晶显示屏)、LED(light emitting diode,发光二极管),或等离子监控,以及所述用户可以向计算机提供用于输入的键盘和指向设备,例如鼠标、轨迹球或轨迹板。还可以使用触摸屏向所述计算机提供输入,例如,触摸屏可以是具有压力灵敏度的平板电脑表面、使用电容式或电感应式的多点触控屏,或其他类型的触摸屏。其他类型的设备也可以用于提供与用户的互动。例如,提供给用户的反馈可以是任何形式的传感反馈,例如,视觉反馈、听觉反馈,或触觉反馈;来自用户的输入可以以任何形式接收,包括声音、语言或触觉输入。另外,计算机可以通过发送文件到用户使用的设备或从该设备接收文件来与用户互动,例如,通过在用户的客户端设备上发送网页到网页浏览器以响应接收自网页浏览器的请求。In order to provide interaction with a user, implementations of the subject matter described herein can be implemented on a computer having a display device that displays information to the user, eg, CRT (cathode ray tube), LCD (liquid crystal tube) display, LED (light emitting diode, light emitting diode), or plasma monitoring, and the user can provide the computer with a keyboard and pointing device for input, such as a mouse, trackball, or trackpad. Input to the computer may also be provided using a touch screen, which may be, for example, a tablet computer surface with pressure sensitivity, a multi-touch screen using capacitive or inductive, or other types of touch screens. Other types of devices may also be used to provide interaction with the user. For example, the feedback provided to the user may be any form of sensory feedback, eg, visual feedback, auditory feedback, or tactile feedback; input from the user may be received in any form, including audio, verbal, or tactile input. Additionally, a computer may interact with a user by sending files to or receiving files from a device used by the user, eg, by sending a web page on the user's client device to a web browser in response to a request received from the web browser.
“图形用户界面(graphical user interface)”或“GUI”可以一个或多个使用,以描述一个或多个图形用户界面以及特定图形用户界面的每个显示器。因此,GUI可以表示任何图形用户界面,包括但不限于用于处理信息和高效向用户显示信息结果的网页浏览器、触摸屏,或命令行界面(command line interface,CLI)。通常,GUI可以包括多个用户界面(user interface,UI)元件,例如,相互作用场、下拉列表、按键,所述多个用户界面元件部分或全部关联到网页浏览器。上述以及其他UI元件可以关系到或表示所述网页浏览器的功能。A "graphical user interface" or "GUI" may be used one or more to describe one or more graphical user interfaces and each display of a particular graphical user interface. Thus, a GUI may represent any graphical user interface including, but not limited to, a web browser, a touch screen, or a command line interface (CLI) for processing information and efficiently displaying information results to a user. Typically, a GUI may include a number of user interface (UI) elements, eg, interaction fields, drop-down lists, buttons, some or all of which are associated with a web browser. The above and other UI elements may relate to or represent the functionality of the web browser.
本文中所描述的主题的实现方式可以在包括后端部件的计算系统如数据服务器中实现,或在包括中间件部件的计算系统如应用服务器中实现,或在包括前端部件的计算系统如具有图形用户界面或用户借以与本文中所描述的主题的实现方式互动的网页浏览器的客户端计算机中实现,或在包括一个或多个所述后端、中间件、前端部件的任何组合的计算系统中实现。所述系统的这些部件可以以任何有线或无线数字数据通信(或数据通信的组合)的形式或介质互相连接,例如通信网络。所述通信网络的例子包括局域网(localarea network,LAN)、无线接入网(radio access network,RAN)、城域网(metropolitanarea network,MAN)、广域网(wide area network,WAN)、全球微波接入互操作性(worldwide interoperability for microwave access,WIMAX)、无线局域网(wirelesslocal area network,WLAN),例如使用802.11a/b/g/n或802.20(或802.11x和802.20的组合,或与本发明一致其他协议)、互联网的全部或部分,或一个或多个位置上的任何其他通信系统或系统(或通信网络的组合)。例如,所述网络可以和网络协议(internet protocol,IP)包、帧中继帧、异步传输模式(asynchronous transfer mode,ATM)小区、声音、视频、数据或其他网络地址之间的合适的信息(或通信类型的组合)进行通信。Implementations of the subject matter described herein may be implemented in a computing system including back-end components, such as a data server, or in a computing system including middleware components, such as an application server, or in a computing system including front-end components, such as with graphics A user interface or client computer of a web browser whereby a user interacts with implementations of the subject matter described herein, or a computing system including any combination of one or more of the described backend, middleware, frontend components realized in. These components of the system may be interconnected in any form or medium of wired or wireless digital data communications (or combination of data communications), such as a communications network. Examples of such communication networks include local area network (LAN), radio access network (RAN), metropolitan area network (MAN), wide area network (WAN), worldwide microwave access Interoperability for microwave access (WIMAX), wireless local area network (WLAN), for example using 802.11a/b/g/n or 802.20 (or a combination of 802.11x and 802.20, or others consistent with the present invention protocol), all or part of the Internet, or any other communication system or system (or combination of communication networks) in one or more locations. For example, the network may communicate with appropriate information between internet protocol (IP) packets, frame relay frames, asynchronous transfer mode (ATM) cells, voice, video, data, or other network addresses ( or a combination of communication types) to communicate.
所述计算系统可以包括客户端和服务器。通常,客户端和服务器彼此远隔,典型地通过通信网络互动。客户端和服务器之间的关系是由于各自计算机上运行的计算机程序以及彼此之间具有客户端-服务器关系而产生的。The computing system may include clients and servers. Typically, clients and servers are remote from each other, typically interacting through a communication network. The relationship between client and server arises by virtue of computer programs running on the respective computers and by having a client-server relationship to each other.
虽然本文包含许多具体的实现方式细节,但不应该将其视为对本发明范围或权利要求的范围构成限制,而是针对特定发明的特定实现方式的特征的描述。在单独实现方式的上下文中,本文所描述的某些特征也可以在单个实现方式中组合实施。反之,在单个实现方式的上下文中描述的各特征也可以单独在多种实现方式中或在任何合适的子组合中实施。此外,尽管上文可将特征描述为以某些组合来实现,甚至最初要求保护,但是在某些情况下,可从要求保护的组合中去除该组合中的一个或多个特征,且所要求保护的组合可针对子组合或子组合的变型。While many implementation-specific details are contained herein, these should not be construed as limitations on the scope of the invention or the scope of the claims, but rather as descriptions of features of a particular implementation of a particular invention. Certain features that are described herein in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Furthermore, although features may be described above as being implemented in certain combinations, even though initially claimed, in A combination of protection can be directed to a subcombination or a variation of a subcombination.
本主题的特定实现方式已做描述。其他实现方式、对上述实现方式的更改、排列包含于下文中权利要求的范围内,本领域技术人员可以清楚了解。虽然各种操作在附图或权利要求中以特定顺序描述,不应将此理解为所述操作需要按所示特定顺序或连续顺序来执行,或全部所示操作均要执行(有些操作可以视为可选)以达到期望的结果。在有些情况下,多任务或并行处理(或多任务和并行处理组合)可以有优势,以此执行视为适宜。Specific implementations of this topic are described. Other implementations, modifications and arrangements of the above-mentioned implementations are included in the scope of the following claims, which can be clearly understood by those skilled in the art. Although various operations are described in the drawings or claims in a particular order, this should not be construed as requiring that the operations be performed in the particular order shown, or sequential order, or that all operations shown be performed (some operations may be viewed as is optional) to achieve the desired result. In some cases, multitasking or parallel processing (or a combination of multitasking and parallel processing) may be advantageous and such execution is deemed appropriate.
另外,上文所述的实现方式中的各种系统模块和部件的分隔或集成不应理解为需要在全部实现方式中进行所述分隔或集成,也不应理解为所述程序部件和系统通常可以在单个软件产品中集成或打包到多个软件产品中。In addition, the separation or integration of various system modules and components in the above-described implementations should not be construed as requiring such separation or integration in all implementations, nor should it be understood that the program components and systems generally Can be integrated in a single software product or packaged into multiple software products.
相应地,上文所述的示例性实现方式不定义或限制本发明。可能有其他变更、替换、更改且不脱离本发明的精神和范围。Accordingly, the exemplary implementations described above do not define or limit the invention. Other changes, substitutions, and alterations are possible without departing from the spirit and scope of the present invention.
另外,任何被要求保护的实现方式被视为适用于:至少一种计算机实现的方法;储存计算机可读指令的非瞬时性计算机可读介质,用于执行所述计算机实现的方法;计算机系统,包括计算机存储器,所述计算机存储器可互操作地与用于执行所述计算机实现的方法或存储在所述非瞬时性计算机可读介质中的所述指令的硬件处理器耦合。Additionally, any claimed implementation is deemed applicable to: at least one computer-implemented method; a non-transitory computer-readable medium storing computer-readable instructions for performing the computer-implemented method; a computer system, A computer memory is included that is interoperably coupled to a hardware processor for executing the computer-implemented method or the instructions stored in the non-transitory computer-readable medium.
Claims (27)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862743587P | 2018-10-10 | 2018-10-10 | |
US62/743,587 | 2018-10-10 | ||
US201862766602P | 2018-12-14 | 2018-12-14 | |
US62/766,602 | 2018-12-14 | ||
PCT/CN2019/084975 WO2020073643A1 (en) | 2018-10-10 | 2019-04-29 | Wideband vertical polarized end-fire antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112805878A CN112805878A (en) | 2021-05-14 |
CN112805878B true CN112805878B (en) | 2022-05-24 |
Family
ID=70164448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980066590.9A Active CN112805878B (en) | 2018-10-10 | 2019-04-29 | Antenna, wireless device and antenna array |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112805878B (en) |
WO (1) | WO2020073643A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3923019B1 (en) * | 2020-06-09 | 2022-11-16 | Acconeer AB | Electronic radar device |
CN116417780A (en) * | 2021-12-29 | 2023-07-11 | 华为技术有限公司 | Antenna structure, packaged antenna, chip and electronic equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2793946Y (en) * | 2005-05-30 | 2006-07-05 | 东南大学 | Balanced-feeding and waveguiding gap array antenna unit with wideband integration |
CN102210060A (en) * | 2008-10-07 | 2011-10-05 | 独立行政法人情报通信研究机构 | Pulse signal generator |
CN204516889U (en) * | 2015-04-08 | 2015-07-29 | 南开大学 | Based on the frequency reconfigurable Waveguide slot antenna of two horizontal PIN diode |
CN105098295A (en) * | 2014-05-16 | 2015-11-25 | 香港城市大学 | Apparatus and method for electromagnetic signal conversion |
CN105870553A (en) * | 2016-05-23 | 2016-08-17 | 西安电子科技大学 | Reconfigurable substrate integrated waveguide bandpass filter and reconfigurable method of filter |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4132995A (en) * | 1977-10-31 | 1979-01-02 | Raytheon Company | Cavity backed slot antenna |
US4769655A (en) * | 1987-05-14 | 1988-09-06 | General Motors Corporation | Vehicle slot antenna with passive ground element |
US7948440B1 (en) * | 2006-09-30 | 2011-05-24 | LHC2 Inc. | Horizontally-polarized omni-directional antenna |
CN102738558B (en) * | 2011-04-01 | 2015-03-04 | 北京九鹤科技有限公司 | Antenna feed structure and feeding method of wireless communication device, and wireless communication device |
US8860532B2 (en) * | 2011-05-20 | 2014-10-14 | University Of Central Florida Research Foundation, Inc. | Integrated cavity filter/antenna system |
US8884835B2 (en) * | 2012-08-09 | 2014-11-11 | Intel Mobile Communications GmbH | Antenna system, method and mobile communication device |
JP2016051961A (en) * | 2014-08-29 | 2016-04-11 | ルネサスエレクトロニクス株式会社 | Electronic device for communication |
CN105140651B (en) * | 2015-10-14 | 2018-02-09 | 深圳市信维通信股份有限公司 | Carry on the back chamber slot antenna configurations |
US20180034159A1 (en) * | 2015-11-02 | 2018-02-01 | Kabushiki Kaisha Toshiba | Cavity backed slot antenna |
-
2019
- 2019-04-29 WO PCT/CN2019/084975 patent/WO2020073643A1/en active Application Filing
- 2019-04-29 CN CN201980066590.9A patent/CN112805878B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2793946Y (en) * | 2005-05-30 | 2006-07-05 | 东南大学 | Balanced-feeding and waveguiding gap array antenna unit with wideband integration |
CN102210060A (en) * | 2008-10-07 | 2011-10-05 | 独立行政法人情报通信研究机构 | Pulse signal generator |
CN105098295A (en) * | 2014-05-16 | 2015-11-25 | 香港城市大学 | Apparatus and method for electromagnetic signal conversion |
CN204516889U (en) * | 2015-04-08 | 2015-07-29 | 南开大学 | Based on the frequency reconfigurable Waveguide slot antenna of two horizontal PIN diode |
CN105870553A (en) * | 2016-05-23 | 2016-08-17 | 西安电子科技大学 | Reconfigurable substrate integrated waveguide bandpass filter and reconfigurable method of filter |
Non-Patent Citations (2)
Title |
---|
A fully planar antenna for millimeter-wave and 5G communications based on a new CSRR-enhanced substrate-integrated waveguide;M.-T. Passia;《2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)》;20170501;全文 * |
LTCC多层宽带阵列天线设计;王元源;《火控雷达技术》;20110331;全文 * |
Also Published As
Publication number | Publication date |
---|---|
WO2020073643A1 (en) | 2020-04-16 |
CN112805878A (en) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rosaline et al. | Four element MIMO antenna systems with decoupling lines for high‐speed 5G wireless data communication | |
Mahmoud et al. | Performance of tri-band multi-polarized array antenna for 5G mobile base station adopting polarization and directivity control | |
Sharma et al. | Dual polarized triple band hybrid MIMO cylindrical dielectric resonator antenna for LTE2500/WLAN/WiMAX applications | |
US20140118206A1 (en) | Antenna and filter structures | |
Abed | Highly compact size serpentine‐shaped multiple‐input–multiple‐output fractal antenna with CP diversity | |
Sahu et al. | Dielectric resonator‐based wide band circularly polarized MIMO antenna with pattern diversity for WLAN applications | |
CN112805878B (en) | Antenna, wireless device and antenna array | |
US6724345B2 (en) | Antenna with periodic electromagnetic mode suppression structures and method for same | |
Zhai et al. | Uniplanar millimeter‐wave log‐periodic dipole array antenna fed by coplanar waveguide | |
Tiwari et al. | A High‐Frequency Planar‐Configured Millimeter‐Wave MIMO Antenna for Fifth‐Generation NR Operations | |
Ye et al. | A compact single‐feed circularly polarized microstrip antenna with symmetric and wide‐beamwidth radiation pattern | |
Cheng et al. | A shared-aperture dual-band high-efficiency antenna based on groove gap waveguide | |
CN116565518A (en) | Antennas and Antenna Equipment | |
Fakhte et al. | A high gain dielectric resonator loaded patch antenna | |
Bhowmik et al. | Design of compact omnidirectional substrate integrated waveguide exponentially tapered multiple H-plane horn antenna | |
Pradeep et al. | A Compact 4x4 Peace-Shaped Wideband MIMO Antenna for Sub-6 GHz 5G Wireless Applications. | |
Deshmukh et al. | Triple band E-shaped microstrip antenna | |
Lee et al. | Printed collinear dipole array antenna with a horizontally omnidirectional pattern for dual‐band WLAN | |
Dey et al. | Broadband millimeter wave MIMO antennas at 28 GHz with low mutual coupling using frequency selective surface wall | |
Anand et al. | Wide axial ratio bandwidth dual polarized S, C, X, and Ku band antenna using orthogonal SIW | |
Ram Krishna et al. | Microstrip fed square ring slot antenna for ultra‐wideband dual polarisation with good isolation | |
Iqbal et al. | Bidirectional CPW Fed Quad‐Band DRA for WLAN/WiMAX Applications | |
Saravanan et al. | A High Gain Dual Feed Microstrip Patch Antenna with Modified H-Slot for Ka-Band (28/38 GHz) Application. | |
Luo et al. | A low‐cost dual‐mode differentially‐fed patch antenna based on SISL platform with out‐of‐band suppression | |
Farahat et al. | 28 GHz Circular Polarized MIMO Antenna System With Polarization Diversity for Millimeter‐Wave Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |