CN112805731A - Toilet space management system and method employing IoT sensors - Google Patents

Toilet space management system and method employing IoT sensors Download PDF

Info

Publication number
CN112805731A
CN112805731A CN201980064971.3A CN201980064971A CN112805731A CN 112805731 A CN112805731 A CN 112805731A CN 201980064971 A CN201980064971 A CN 201980064971A CN 112805731 A CN112805731 A CN 112805731A
Authority
CN
China
Prior art keywords
sensor
toilet
iot
server
consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980064971.3A
Other languages
Chinese (zh)
Inventor
黄印成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruijia Technology Singapore Pte Ltd
Original Assignee
Ruijia Technology Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruijia Technology Singapore Pte Ltd filed Critical Ruijia Technology Singapore Pte Ltd
Publication of CN112805731A publication Critical patent/CN112805731A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/30Information sensed or collected by the things relating to resources, e.g. consumed power

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Operations Research (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

A first embodiment of the present invention is a toilet management system for maintaining a plurality of toilets by employees, comprising: (a) a plurality of IoT sensors configured to create sensor data for calculating a consumption state of a plurality of consumables, an environmental state of each toilet, and a flow pattern of each toilet; (b) a gateway configured to receive sensor data from each IoT sensor; and (c) a server in communication with the gateway and the database. The database includes a description of each IoT sensor, an employee profile, a time series profile, a consumable replenishment schedule, and a maintenance schedule with a plurality of task items. The server creates and tracks consumable replenishment and maintenance schedules and pushes data to the mobile device. A second embodiment is a method for toilet management that employs a server connected to multiple IoT sensors in multiple toilets. Some IoT sensors may be configured to receive commands from a server through a gateway.

Description

Toilet space management system and method employing IoT sensors
Technical Field
The present disclosure relates to toilet maintenance. More particularly, the present disclosure relates to toilet management systems and methods employing IoT sensor devices.
Background
Sanitary products and equipment such as faucets, urinals, toilets, soap dispensers, hand dryers, toilet paper roll dispensers and other toilet products all work independently. These devices are typically not connected to any network and therefore do not provide any electronic feedback or status information to cleaning staff and technical staff servicing the toilet. The tasks of cleaning, diagnosing, inspecting, and replenishing dispensable items such as soap, toilet paper rolls, or paper towels are performed manually by cleaning staff. Also, technicians servicing the equipment must perform a walk through inspection or otherwise be reminded by cleaning staff to schedule the service. Since the consumption of consumables and the cleaning requirements are not precisely known, the maintenance of the toilet may be unpredictable, leading to inconsistent results and higher labor costs.
Whenever a malfunction or break occurs (e.g., water leak, faucet overflow, no flush), the technician typically does not realize until someone reports or complains of the problem. A technician is then deployed to identify and repair the malfunctioning plumbing fixture equipment. There is a need for a system or method with real-time information and predictive capabilities to better alert employees about any problems in the facility's toilet and immediately direct technical or cleaning staff to proceed with troubleshooting.
Disclosure of Invention
A first embodiment of the present invention is a toilet management system for maintaining a plurality of toilets by employees, comprising: (a) a plurality of IoT sensors configured to create sensor data for calculating a consumption state of a plurality of consumables, an environmental state of each toilet, and a flow pattern of each toilet; (b) a gateway configured to receive sensor data from each IoT sensor; and (c) a server in communication with the gateway and the at least one user interface via the network, wherein the server comprises a database. The database includes: (i) an IoT description for each IoT sensor, wherein each IoT description comprises a set of data attributes and a set of sensor parameters; (ii) an IoT list for each toilet; (iii) an employee profile for each member of the employee; (iv) a time series profile of sensor data for each of a plurality of toilets; (v) at least one consumable replenishment schedule; (vi) at least one maintenance schedule having a plurality of task items. The server is configured to: (i) storing and collating sensor data in a time series archive; (ii) generating a plurality of task items and a plurality of reports, wherein each task item includes a current task state; (iii) monitoring IoT sensors in real-time and creating a plurality of emergency maintenance alerts; (iv) recommending an update to the consumable replenishment schedule and the maintenance schedule; (v) generating screen information for a user interface to present task items, reports, and emergency maintenance alerts; and receives data input from the employee.
A second embodiment of the present invention is a toilet management method employing an IoT sensor, including the steps of: (a) connecting to a gateway configured to receive sensor data from a plurality of IoT sensors, wherein an IoT sensor is configured to create sensor data; (b) providing a server in communication with the gateway and the at least one user interface over a network, wherein the server comprises a database; and (c) executing the following steps on the server: (i) calculating a consumption state of a plurality of consumables, an environmental state of each toilet, and a flow rate pattern of each toilet; (ii) storing and collating sensor data in a time series archive; (iii) generating a plurality of task items and a plurality of reports, wherein each task item includes a current task state; (iv) monitoring IoT sensors in real-time and creating a plurality of emergency maintenance alerts; (v) recommending an update to the consumable replenishment schedule and the maintenance schedule; and (vi) generating screen information for a user interface to present task items, reports, and emergency maintenance alerts, and also to receive data input from employees. The database includes: (i) an IoT description for each IoT sensor, wherein each IoT description comprises a set of data attributes and a set of sensor parameters; (ii) an IoT list for each toilet; (iii) an employee profile for each member of the employee; (iv) a time series profile of sensor data for each of a plurality of toilets; (v) at least one consumable replenishment schedule; and (vi) at least one maintenance schedule having a plurality of task items.
Each IoT sensor may communicate with the gateway via at least one of a wireless transceiver and a wired link. Communications between IoT sensors, gateways, servers, and user interfaces may also be encrypted and bi-directional. For example, at least one of the IoT sensors may be configured to receive at least one command from the server through the gateway.
Additionally, the gateway may include at least one of: (a) the Wi-Fi access point is used for summarizing data packet transmission to and from the server; (b) a local area network; and (c) a narrowband IoT ("NB-IoT") or 3G SIM card based mobile communication network. IoT sensors may also be made via message queue telemetry transmissions.
Drawings
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
fig. 1 is a block diagram of a first embodiment of the present invention, illustrating a system including a server connected to IoT sensors through a gateway and a network.
Fig. 2 is a flow chart of a second embodiment of the present invention illustrating the collection and analysis of IoT sensor data for managing multiple toilets.
FIG. 3 is a dashboard screen of an embodiment of the present invention as displayed on a user interface, providing a building management summary, a human management summary, and a performance metrics summary.
Fig. 4 is a building management summary of an embodiment of the invention as displayed on a user interface.
FIG. 5 is a human management summary of an embodiment of the invention as displayed on a user interface.
FIG. 6 is a performance indicator summary of an embodiment of the invention as displayed on a user interface.
FIG. 7 is an administration reporting screen of an embodiment of the present invention as displayed on a user interface.
FIG. 8 is a user list screen of an embodiment of the present invention as displayed on a user interface.
FIG. 9 is a setup screen of an embodiment of the present invention as displayed on a user interface.
Detailed Description
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. As used herein, unless otherwise noted, the terms "comprising," "including," "containing," and "including" and grammatical variations thereof are intended to mean "open" or "inclusive" language such that they include the recited elements but also allow for the inclusion of additional, unrecited elements. The terms "connect," "connected," or "connecting," and grammatical variations thereof, as used herein, are intended to refer to a link of two items, either directly linked together or indirectly linked together through a wireless and/or wired network.
As used herein, the term network may be the internet, an intranet, and/or a combination of both. The network may be implemented using any combination of Wi-Fi, WAN, LAN, cellular, wire, fiber optic cable to transmit data from a gateway or user interface to a server.
As used herein, a server may be a single stand-alone server, multiple dedicated servers, and/or a virtual server running on a larger network of servers. The database may be located on the server itself or may be accessible by a server on a separate network or platform. The sensor data may be stored in a server or may be stored off-site in a data storage network.
The user interface may be a visual screen on a portable tablet, smart phone, dedicated device, laptop or desktop computer. In field use, a smaller visual screen is typically included, and thus the information format of the mobile device may be different from the format displayed on a laptop or desktop computer. The level of access between members of an employee may vary depending on roles such as between cleaning employees, technical employees, supervisor employees, and server administrators.
Fig. 1 is a block diagram 1-00 of an embodiment of a system 1-01 including an IoT sensor, a gateway 10, a network 11, a user interface 06, a mobile sensor 05, and a server 12. The toilet 01 includes a plurality of IoT sensors belonging to the categories of the consumption sensor 02, the environmental sensor 03, and the flow pattern sensor 04. The IoT sensors are connected to a server 12 through a gateway 10 and a network 11. The user interface 06 accesses the server 12 through the network 11 and is connected to one or more mobile sensors 05. The server 12 comprises a database 13.
Fig. 2 is a flow chart of a second embodiment of the invention, 2-00, illustrating the collection and analysis of IoT sensor data for managing multiple toilets 01. Flow diagrams 2-00 illustrate steps 2-01 through 2-06 (see below) for implementing embodiments of the present invention.
Figure BDA0003002844930000051
FIG. 3 is a dashboard screen 3-00 of an embodiment of the invention as displayed on the user interface 06, providing a building management summary, a human management summary, and a performance index summary. The building management summary of the screen includes statistical information for cleaning and maintenance. The human management summary includes statistical information about the availability of cleaning staff and the availability of technical staff. The performance index summary includes an off-time metric, a cleanliness index, soap consumption, tissue consumption, water consumption, and energy consumption.
Fig. 4 is a building management summary screen 4-00 of an embodiment of the present invention displayed on the user interface 06. The building management summary of the screen includes statistical information for cleaning and maintenance. This screen includes statistical information from ammonia sensors, soap dispenser sensors, paper towel dispenser sensors, faucet sensors, toilet flush sensors, urinal flush sensors, hand dryer power meters, temperature sensors, and humidity sensors.
FIG. 5 is a human management summary screen 5-00 of an embodiment of the invention as displayed on the user interface 06. The human management summary of the screen includes statistical information about the availability of cleaning staff and the availability of technical staff.
FIG. 6 is a performance index summary screen 6-00 of an embodiment of the invention as displayed on the user interface 06. The performance metric summary includes a downtime metric, a list of metrics, and a cleanliness metric. Also included are measures of soap consumption, tissue consumption, water consumption, and energy consumption.
FIG. 7 is an administration report screen 7-00 of an embodiment of the present invention as displayed on user interface 06. The management report screen includes equipment and consumption information subdivided by month and year.
FIG. 8 is a user list screen 8-00 of an embodiment of the present invention as displayed on user interface 06. Users are classified by job category, including cleaning staff, technical staff, and supervisor staff. The screen includes fields for name, username (or employee ID), gender, work place, creation date, and action (or task item).
FIG. 9 is a setup screen 9-00 of an embodiment of the invention as displayed on user interface 06. The screen includes a maintenance schedule that includes cleaning schedule recommendations and predictive maintenance.
The first embodiment of the invention (system 1-01) and the second embodiment of the invention (method) both use multiple IoT sensors. These IoT sensors may be categorized as follows.
I. Consumption sensor
a. Hand drier power meter: measuring the total current consumption of the toilet 01; the server 12 issues an alarm whenever the current level indicates a possible lack of power and/or a change in current consumption indicates a heating element damage or short circuit.
b. A paper towel sensor: measuring a balance level of the towel in the dispenser; the server 12 issues an alert whenever a threshold is reached (e.g., less than 10% remaining) indicating that the towel needs to be replenished or replenished.
c. Soap dispenser sensor: a single soap dispenser or a combination soap dispenser; measuring the level of soap liquid in a storage tank of a soap liquid groove; the server 12 issues an alert whenever a threshold is reached (e.g., less than 10% remaining) indicating a need to replenish or refill the soap dispenser.
d. Toilet paper roll dispenser sensor: measuring a level of balance of the toilet paper roll in the dispenser; the server 12 issues an alarm whenever a threshold is reached (e.g., less than 10% remaining) indicating that the toilet paper roll needs to be replenished or replenished.
e. Bathroom power meter: measuring the overall current draw and/or whether the hand dryer is active; the server 12 will issue an alert whenever the current level indicates a blower failure and/or the heating element is inactive or malfunctioning
f. The urinal washes the sensor: indicating that the solenoid valve is in an open or closed position and/or water flow; the server 12 issues an alert whenever a time threshold is reached indicating that the solenoid is stuck in the open or closed position and/or whenever the water flow exceeds the threshold for a period of time; possibly also as an indicator of traffic and/or usage patterns.
g. Toilet flush sensor: indicating that the solenoid valve is in an open or closed position and/or water flow; the server 12 issues an alert whenever a time threshold is reached indicating that the solenoid is stuck in the open or closed position and/or whenever the water flow exceeds the threshold for a period of time; possibly also as an indicator of traffic patterns; the toilet flush sensor may comprise an infrared sensor; the toilet flush sensor may be used as an occupancy counter and/or an indicator indicating that a user of the toilet 01 is in the toilet compartment.
h. A faucet sensor: indicating that the solenoid is in an open or closed position and/or water flow; the server 12 issues an alarm whenever a time threshold is reached indicating that the solenoid is stuck in an open or closed position, whenever the faucet is turned on but there is no water flow, and/or whenever the water flow exceeds the threshold for a period of time.
Environmental condition sensor
a. An ammonia sensor: measuring the presence of ammonia in toilet 01; the server 12 issues an alarm whenever a threshold is reached indicating that the ammonia odor level in the toilet 01 is not satisfactory.
b. A humidity sensor: the humidity of the toilet 01 was measured.
c. An air quality sensor: measuring the air quality level in the toilet 01; the server 12 issues an alarm whenever a threshold value indicating the air quality in the bathroom 01 is reached; the air quality may be evaluated by an air quality sensor to check for the presence of LPG, carbon monoxide, smoke and/or other hazardous gases.
d. Movement sensor 05: sensors that are not permanently installed in the toilet 01, such as sensors carried with them by maintenance personnel; the motion sensor 05 can be used for odor, humidity, temperature, LPG, smoke and carbon monoxide readings; the mobile sensor 05 may be integrated into a smart phone or a dedicated device; the readings may then be uploaded to the server 12 and database 13 via a smartphone or tablet via the cellular network 11 or gateway 10 with a wireless transceiver; moving the sensors 05 is convenient, especially during transition periods where not all toilets 01 contain a complete array of IoT sensors or where a particular sensor is too expensive or delicate to fit into all toilets 01.
e. An odor sensor: measuring odor in toilet 01; the server 12 issues an alarm whenever a threshold is reached indicating that the odour level in the toilet 01 is not satisfactory.
f. A smoke sensor: measuring the smoke level in toilet 01; the server 12 issues an alarm whenever a threshold is reached indicating smoke in the toilet 01.
g. Sound level sensor: the sound level in toilet 01 is measured in decibels; the server 12 issues an alert whenever a threshold is reached indicating an abnormal sound level.
h. A temperature sensor: the ambient temperature of the toilet compartment 01 is measured.
i. A water leakage sensor: detecting whether water is accumulated or leaked in the toilet 01; the server 12 issues an alarm whenever a leak is detected.
Flow pattern sensor
a. A person counter: detecting the number of persons entering or leaving a toilet
B, RFID sensor: detecting when an RFID card of a member of an employee having associated cleaning staff, technician or supervisor ID information is detected; the information is sent to the server 12 for tracking, recording and analysis.
c. The urinal washes the sensor: a sensor for detecting urinal usage; the sensor is a dual purpose sensor in that it can be used to indicate both the water consumption of urinal flushing and occupancy or flow patterns in the toilet 01.
d. Toilet flush sensor: a sensor for detecting occupancy of the toilet; the sensor is a dual purpose sensor in that it can indicate both the water consumption of the toilet flush and the occupancy or flow pattern in the toilet 01.
A first embodiment of the present invention is a toilet management system for maintaining a plurality of toilets 01 by a worker, comprising: (a) a plurality of IoT sensors configured to create sensor data for calculating consumption states of a plurality of consumables, an environmental state of each toilet 01, and a flow pattern of each toilet 01; (b) a gateway 10 configured to receive sensor data from each IoT sensor; and (c) a server 12 in communication with the gateway 10 and the at least one user interface 06 over the network 11, wherein the server 12 comprises a database 13. The database 13 includes: (i) an IoT description for each IoT sensor, wherein each IoT description comprises a set of data attributes and a set of sensor parameters; (ii) IoT list for each toilet 01; (iii) an employee profile for each member of the employee; (iv) a time series profile of sensor data for each of a plurality of toilets 01; (v) at least one consumable replenishment schedule; and (vi) at least one maintenance schedule having a plurality of task items. The server 12 is configured to: (i) storing and collating sensor data in a time series archive; (ii) generating a plurality of task items and a plurality of reports, wherein each task item includes a current task state; (iii) monitoring IoT sensors in real-time and creating a plurality of emergency maintenance alerts; (iv) recommending an update to the consumable replenishment schedule and the maintenance schedule; (v) generating screen information for the user interface 06 to present task items, reports, and emergency maintenance alerts; and receives data input from the employee.
A second embodiment of the present invention is a toilet management method employing an IoT sensor, including the steps of: (a) connected to a gateway 10, the gateway 10 configured to receive sensor data from a plurality of IoT sensors, wherein the IoT sensors are configured to create sensor data; (b) providing a server 12 in communication with the gateway 10 and the at least one user interface 06, wherein the server 12 comprises a database 13; and (c) executing on the server 12 the steps of: (i) calculating consumption states of a plurality of consumables, an environmental state of each toilet 01, and a flow rate pattern of each toilet 01; (ii) storing and collating sensor data in a time series archive; (iii) generating a plurality of task items and a plurality of reports, wherein each task item includes a current task state; (iv) monitoring IoT sensors in real-time and creating a plurality of emergency maintenance alerts; (v) recommending an update to the consumable replenishment schedule and the maintenance schedule; and (vi) generating screen information for the user interface 06 to present task items, reports, and emergency maintenance alerts, and also to receive data input from employees. The database 13 includes: (i) an IoT description for each IoT sensor, wherein each IoT description comprises a set of data attributes and a set of sensor parameters; (ii) IoT list for each toilet 01; (iii) an employee profile for each member of the employee; (iv) a time series profile of sensor data for each toilet 01 of the plurality of toilets; (v) at least one consumable replenishment schedule; and (vi) at least one maintenance schedule having a plurality of task items.
Each IoT sensor may communicate with the gateway 10 via at least one of a wireless transceiver and a wired link. Communication between the IoT sensors, the gateway 10, the server 12, and the user interface 06 may also be encrypted, and at least one of the IoT sensors may be configured to receive at least one command from the server through the gateway.
The command received by at least one of the IoT sensors may be at least one of a flush command, a water flow command, an alarm signal, and a configuration command. For example, a flush command may be sent by the server to a urinal flush sensor to flush the urinal and/or to a toilet flush sensor to flush the toilet. A water flow command may be sent to a faucet sensor to start, stop, and/or pulse water flow through the faucet. The alarm signal may be used to flash an LED and/or emit an audible signal to help warn and instruct members of the employee to repair, replace, maintain, and/or replenish items in one of toilets 01. The configuration commands may be used to configure the IoT sensors with a level of specificity, a scheduled reporting frequency, and/or a sleep pattern.
Additionally, the gateway 10 may include at least one of: (a) a Wi-Fi access point for summarizing data packet transmissions to and from the server 12; (b) a local area network; and (c) an NB-IoT or 3G SIM card based mobile communication network. IoT sensors may also be made via message queue telemetry transmissions.
A Wi-Fi access point is a wireless access point that allows Wi-Fi devices to connect to a wired network. It is usually connected to the router as a stand-alone device (via a wired network), but it may also be an integral part of the router itself.
NB-IoT refers to a low power WAN standard that uses SIMs to implement cellular devices and services. NB-IoT is particularly focused on indoor coverage, low cost, long battery life, and high connection density. 3G is a widely used cellular telephone communication standard. NB-IoT or 3G may both provide coverage for remote areas without wired telecommunications infrastructure.
Message queue telemetry transport) is an ISO standard publish-subscribe based messaging protocol. It works on top of the TCP/IP protocol. It is designed for connection to remote locations that require small code footprint or limited network bandwidth.
The consumption status may be calculated based on sensor data of at least one of a soap dispenser sensor, a faucet sensor, a hand dryer power meter, a toilet paper roll dispenser sensor, a paper towel sensor, a waste bin sensor, at least one urinal flush sensor, and at least one toilet flush sensor. The environmental status may be calculated from sensor data of at least one of a temperature sensor, a humidity sensor, a sound level sensor, a smoke sensor, an odor sensor, a water leakage sensor, and an air quality sensor. The flow pattern may be calculated from sensor data of at least one of the RFID sensor, the person counter, the at least one urine flush sensor, and the at least one toilet flush sensor. The at least one odor sensor may be an ammonia sensor. Each emergency maintenance alert may be determined based on at least one of a consumption status, an environmental status, a traffic pattern, and a loss of communication between the server 12 and one of the IoT sensors.
The emergency maintenance alert may be categorized by at least one of a water leak, a faucet overrun, a flush failure, a soap dispenser refill indication, a paper towel refill indication, and a toilet paper refill indication. The flush failure may be due to, for example, insufficient water pressure, insufficient water flow, air in the water line, and/or excessive water pressure.
Server 12 may also be configured to employ machine learning or artificial intelligence ("AI") programming to predict emerging flow trends and recommend changes for consumable replenishment schedules and maintenance schedules.
Machine learning or AI (sometimes referred to as machine intelligence) is the intelligence exhibited by machines, in contrast to the natural intelligence exhibited by humans and other animals. Machine learning or AI programs can mimic human functions associated with other human thoughts, such as learning and problem solving. The server 12 may use machine learning or AI to step up the quality of service ("QoS") for a particular cleaning task and predict future changes in the demand for consumables, maintenance, and repairs. For example, if the occupancy rate of a toilet 01 increases, the system 1-01 may predict that the toilet 01 will have an increased demand for soap, paper towels, and toilet paper rolls. For use in larger facilities, such as airports, machine learning or AI connections may also be used to connect additional data outside of the toilet management system, such as passengers that are about to arrive at the airport, to predict consumption and maintenance needs due to possible usage increases.
The report may include at least one of: (a) a consumption history comprising at least one of energy consumption, water consumption, paper towel consumption, trash bin usage, toilet paper roll consumption, and soap consumption, wherein the consumption history is calculated from sensor data in the time series profile; (b) a building management summary indicating a cleaning status and a maintenance status of the toilet 01; (c) a human management summary indicating at least one of availability of cleaning staff, availability of technical staff, a staff scheduling turn table, response time statistics, staff attendance statistics, staff efficiency statistics, and a plurality of staff replacement recommendations; (d) a performance index summary indicating at least one of an outage time metric, an equipment fault history, a cleanliness index, and a flow history; (e) system state including each IoT sensor and gateway 10; and (f) occupancy of each toilet 01 determined from sensor data collected from the urine flush sensor and the toilet flush sensor of each toilet 01. The entry in the equipment failure history record may include at least one of a unit identifier, a location, a frequency of failure, and a type of failure. The server 12 may be configured to recommend alternative toilets 01 to the user based on the occupancy of each toilet 01. Reports may be presented in at least one dashboard screen in each user interface 06.
Each user interface 06 may be configured to: (a) associating each task item with at least one member of the employee; (b) allowing the current task state of each task item to be updated; (c) recording readings of at least one motion sensor 05; and (d) recording the specific cleaning. Each user interface 06 may be at least one of a portable tablet, a smart phone, a dedicated device, a laptop computer, or a desktop computer. Each employee profile may include a work location, an employee ID, a work indication, and a work schedule.
Although various aspects and embodiments have been disclosed herein, it will be apparent to those skilled in the art from this disclosure that various other modifications and variations of this invention can be made without departing from the spirit and scope of the invention, which is set forth in the following claims. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit of the invention being indicated by the following claims.

Claims (32)

1. A toilet management system employing IoT sensors, comprising:
(a) a plurality of IoT sensors configured to create sensor data for calculating a consumption state of a plurality of consumables, an environmental state of each toilet, and a flow pattern of each toilet;
(b) a gateway configured to receive sensor data from each IoT sensor;
(c) a server in communication with the gateway and the at least one user interface over a network, wherein the server comprises a database;
(d) wherein the database comprises:
(i) an IoT description for each IoT sensor, wherein each IoT description comprises a set of data attributes and a set of sensor parameters;
(ii) an IoT list for each toilet;
(iii) an employee profile for each member of the employee;
(iv) a time series profile of sensor data for each of the plurality of toilets;
(v) at least one consumable replenishment schedule; and
(vi) at least one maintenance schedule having a plurality of task items;
(e) wherein the server is configured to:
(i) storing and collating sensor data in the time series profile;
(ii) generating a plurality of task items and a plurality of reports, wherein each task item includes a current task state;
(iii) monitoring IoT sensors in real-time and creating a plurality of emergency maintenance alerts;
(iv) recommending an update to the consumable replenishment schedule and the maintenance schedule; and
(v) generating screen information for a user interface to present task items, reports, and emergency maintenance alerts; and receives data input from the employee.
2. The system of claim 1, wherein:
(a) each IoT sensor communicates with the gateway via at least one of a wireless transceiver and a wired link;
(b) communication between the IoT sensor, the gateway, the server, and the user interface is encrypted; and
(c) at least one of the IoT sensors is configured to receive at least one command from the server through the gateway.
3. The system of claim 2, wherein the gateway comprises at least one of:
(a) a Wi-Fi access point for summarizing data packet transmissions to and from the server;
(b) a local area network; and
(c) mobile communication networks based on NB-IoT or 3G SIM cards.
4. The system of claim 2, wherein communication with the IoT sensor is via message queue telemetry transmission.
5. The system of claim 1, wherein:
(a) calculating a consumption status based on sensor data of at least one of a soap dispenser sensor, a faucet sensor, a hand dryer power meter, a toilet paper roll dispenser sensor, a paper towel sensor, a waste bin sensor, at least one urinal flush sensor, and at least one toilet flush sensor;
(b) calculating an environmental state from sensor data of at least one of a temperature sensor, a humidity sensor, a sound level sensor, a smoke sensor, an odor sensor, a water leakage sensor, and an air quality sensor; and
(c) the flow pattern is calculated from sensor data of at least one of the RFID sensor, the person counter, the at least one urine flush sensor, and the at least one toilet flush sensor.
6. The system of claim 5, wherein at least one odor sensor is an ammonia sensor.
7. The system of claim 5, wherein each emergency maintenance alert is determined based on at least one of the consumption status, the environmental status, the traffic pattern, and a loss of communication between the server and one of the IoT sensors.
8. The system of claim 1, wherein the emergency maintenance alert is categorized by at least one of a water leak, a faucet overrun, a flush failure, a soap dispenser refill indication, a paper towel refill indication, and a toilet paper roll refill indication.
9. The system of claim 1, wherein the server is further configured to: machine learning or AI programming is employed to predict emerging flow trends and recommend changes to the consumable replenishment schedule and the maintenance schedule.
10. The system of claim 1, wherein the report includes at least one of:
(a) a consumption history comprising at least one of energy consumption, water consumption, paper towel consumption, trash bin usage, toilet paper roll consumption, and soap consumption, wherein the consumption history is calculated from sensor data in the time series profile;
(b) a building management summary indicating a cleaning status and a maintenance status of the toilet;
(c) a human management summary indicating at least one of availability of cleaning staff, availability of technical staff, a staff scheduling turn table, response time statistics, staff attendance statistics, staff efficiency statistics, and a plurality of staff replacement recommendations;
(d) a performance index summary indicating at least one of an outage time metric, an equipment fault history, a cleanliness index, and a flow history;
(e) a system state including each IoT sensor and gateway; and
(f) occupancy of each toilet is determined from sensor data collected from a urine flush sensor and a toilet flush sensor of each toilet.
11. The system of claim 10, wherein the entry in the equipment failure history record comprises at least one of a unit identifier, a location, a frequency of failure, and a type of failure.
12. The system of claim 10, wherein the server is further configured to recommend alternative toilets to the user based on occupancy of each toilet.
13. The system of claim 10, wherein the report is presented in at least one dashboard screen in each user interface.
14. The system of claim 1, wherein each user interface is configured to:
(a) associating each task item with at least one member of the employee;
(b) allowing the current task state of each task item to be updated;
(c) recording readings of at least one mobile sensor; and
(d) the specific cleaning is recorded.
15. The system of claim 1, wherein each user interface is included on at least one of a portable tablet, a smart phone, a dedicated device, a laptop computer, and a desktop computer.
16. The system of claim 1, wherein each employee profile comprises a work location, an employee ID, a work indication, and a work schedule.
17. A method of toilet management employing an IoT sensor, comprising the steps of:
(a) connecting to a gateway configured to receive sensor data from a plurality of IoT sensors, wherein the IoT sensors are configured to create sensor data;
(b) providing a server in communication with the gateway and at least one user interface over a network, wherein the server comprises a database, and the database comprises:
(i) an IoT description for each IoT sensor, wherein each IoT description comprises a set of data attributes and a set of sensor parameters;
(ii) an IoT list for each toilet;
(iii) an employee profile for each member of the employee;
(iv) a time series profile of sensor data for each of the plurality of toilets;
(v) at least one consumable replenishment schedule; and
(vi) at least one maintenance schedule having a plurality of task items; and
(c) executing on the server the steps of:
(i) calculating a consumption state of a plurality of consumables, an environmental state of each toilet, and a flow rate pattern of each toilet;
(ii) storing and collating sensor data in the time series profile;
(iii) generating a plurality of task items and a plurality of reports, wherein each task item includes a current task state;
(iv) monitoring IoT sensors in real-time and creating a plurality of emergency maintenance alerts;
(v) recommending an update to the consumable replenishment schedule and the maintenance schedule; and
(vi) screen information for a user interface is generated to display task items, reports, and emergency maintenance alerts, and also to receive data input from employees.
18. The method of claim 17, wherein:
(a) each IoT sensor communicates with the gateway via at least one of a wireless transceiver and a wired link;
(b) communication between the IoT sensor, the gateway, the server, and the user interface is encrypted; and
(c) at least one of the IoT sensors is configured to receive at least one command from the server through the gateway.
19. The method of claim 18, wherein the gateway comprises at least one of:
(a) a Wi-Fi access point for summarizing data packet transmissions to and from the server;
(b) a local area network; and
(c) mobile communication networks based on NB-IoT or 3G SIM cards.
20. The method of claim 18, wherein communication with the IoT sensor is via message queue telemetry transmission.
21. The method of claim 17, wherein:
(a) calculating a consumption status based on sensor data of at least one of a soap dispenser sensor, a faucet sensor, a hand dryer power meter, a toilet paper roll dispenser sensor, a paper towel sensor, a waste bin sensor, at least one urinal flush sensor, and at least one toilet flush sensor;
(b) calculating an environmental state from sensor data of at least one of a temperature sensor, a humidity sensor, a sound level sensor, a smoke sensor, an odor sensor, a water leakage sensor, and an air quality sensor; and
(c) the flow pattern is calculated from sensor data of at least one of the RFID sensor, the person counter, the at least one urine flush sensor, and the at least one toilet flush sensor.
22. The method of claim 21, wherein at least one odor sensor is an ammonia sensor.
23. The method of claim 21, wherein each emergency maintenance alert is determined based on at least one of the consumption status, the environmental status, the traffic pattern, and a loss of communication between the server and one of the IoT sensors.
24. The method of claim 17, wherein the emergency maintenance alert is categorized by at least one of a water leak, a faucet overrun, a flush failure, a soap dispenser refill indication, a paper towel refill indication, and a toilet paper roll refill indication.
25. The method according to one of claims 17, wherein the server is further configured to perform the steps of: machine learning or AI programming is employed to predict emerging flow trends and recommend changes to the consumable replenishment schedule and the maintenance schedule.
26. The method of claim 17, wherein the report includes at least one of:
(a) a consumption history comprising at least one of energy consumption, water consumption, paper towel consumption, trash bin usage, toilet paper roll consumption, and soap consumption, wherein the consumption history is calculated from sensor data in the time series profile;
(b) a building management summary indicating a cleaning status and a maintenance status of the toilet;
(c) a human management summary indicating at least one of availability of cleaning staff, availability of technical staff, a staff scheduling turn table, response time statistics, staff attendance statistics, staff efficiency statistics, and a plurality of staff replacement recommendations;
(d) a performance index summary indicating at least one of an outage time metric, an equipment fault history, a cleanliness index, and a flow history;
(e) a system state including each IoT sensor and gateway; and
(f) occupancy of each toilet is determined from sensor data collected from a urine flush sensor and a toilet flush sensor of each toilet.
27. The method of claim 26, wherein the entries in the equipment failure history record include at least one of a unit identifier, a location, a frequency of failure, and a type of failure.
28. The method of claim 26, wherein the server is further configured to perform the steps of: and recommending alternative toilets to the user based on the occupancy condition of each toilet.
29. The method of claim 26, wherein the report is presented in at least one dashboard screen in each user interface.
30. The method of one of claim 17, wherein each user interface is configured to:
(a) associating each task item with at least one member of the employee;
(b) allowing the current task state of each task item to be updated;
(c) recording readings of at least one mobile sensor; and
(d) the specific cleaning is recorded.
31. The method of claim 17, wherein each user interface is included on at least one of a portable tablet, a smart phone, a dedicated device, a laptop computer, and a desktop computer.
32. The method of claim 17 wherein each employee profile comprises a work location, an employee ID, a work indication, and a work schedule.
CN201980064971.3A 2018-02-12 2019-02-12 Toilet space management system and method employing IoT sensors Pending CN112805731A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
SG10201801167X 2018-02-12
SG10201804763R 2018-06-05
SG10201806060T 2018-07-16
SG10201806397W 2018-07-26
SG10201808649X 2018-10-01
SG10201808649XA SG10201808649XA (en) 2018-02-12 2018-10-01 A SYSTEM AND METHOD FOR TOILET ROOM MANAGEMENT EMPLOYING IoT SENSORS
PCT/SG2019/000001 WO2020071998A1 (en) 2018-02-12 2019-02-12 A system and method for toilet room management employing iot sensors

Publications (1)

Publication Number Publication Date
CN112805731A true CN112805731A (en) 2021-05-14

Family

ID=68062757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980064971.3A Pending CN112805731A (en) 2018-02-12 2019-02-12 Toilet space management system and method employing IoT sensors

Country Status (4)

Country Link
CN (1) CN112805731A (en)
PH (1) PH12021550711A1 (en)
SG (2) SG10201808649XA (en)
WO (1) WO2020071998A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2022016394A (en) 2020-07-02 2023-04-11 Essity Hygiene & Health Ab A dispenser comprising a replaceable liquid container.
CN111866151A (en) * 2020-07-24 2020-10-30 中国人民解放军东部战区总医院 Wisdom bathroom management system
US20220107632A1 (en) * 2020-10-02 2022-04-07 Kohler Co. Systems and methods for monitoring and controlling a bathroom
WO2022081087A1 (en) * 2020-10-13 2022-04-21 Rigel Technology (S) Pte. Ltd. Toilet seat and cover
CN113920622A (en) * 2021-10-09 2022-01-11 昌合精研(北京)科技有限公司 Consumable management method and system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2364080A1 (en) * 2001-06-26 2002-12-26 Steve Mann Infrared sensor operated fixtures, or infrared sensor system
CN1720377A (en) * 2002-12-04 2006-01-11 阿利查尔技术有限公司 Passive sensors for controlling automatic bathroom flushers and faucets
US20060005312A1 (en) * 2003-12-31 2006-01-12 Kimberly-Clark Worldwide, Inc. System and method for measuring and monitoring overflow or wetness conditions in a washroom
CN1902361A (en) * 2003-12-04 2007-01-24 阿利查尔技术有限公司 Passive sensors and control algorithms for faucets and bathroom flushers
US20090119142A1 (en) * 2007-11-05 2009-05-07 Sloan Valve Company Restroom convenience center
CA2778470A1 (en) * 2011-11-04 2013-05-04 Heiner Ophardt Dispenser and contaminant sensor
WO2014035307A1 (en) * 2012-08-31 2014-03-06 Sca Hygiene Products Ab A data collection and monitoring system and method
CN106295947A (en) * 2016-02-17 2017-01-04 北京市西杰物业管理服务中心 Public lavatory environmental sanitation keep a public place clean intelligent operation and check management system
CN106522307A (en) * 2016-12-29 2017-03-22 李子潇 Water-saving washing and toilet flushing integrated device
US20170091691A1 (en) * 2015-09-30 2017-03-30 Antalios System for controlling the sanitary status of premises and method for determining the next cleaning
US20180075375A1 (en) * 2015-03-30 2018-03-15 Kimberly-Clark Worldwide, Inc. System and Method for Instructing Personnel on Washroom Maintenance Requirements

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2364080A1 (en) * 2001-06-26 2002-12-26 Steve Mann Infrared sensor operated fixtures, or infrared sensor system
CN1720377A (en) * 2002-12-04 2006-01-11 阿利查尔技术有限公司 Passive sensors for controlling automatic bathroom flushers and faucets
CN1902361A (en) * 2003-12-04 2007-01-24 阿利查尔技术有限公司 Passive sensors and control algorithms for faucets and bathroom flushers
US20060005312A1 (en) * 2003-12-31 2006-01-12 Kimberly-Clark Worldwide, Inc. System and method for measuring and monitoring overflow or wetness conditions in a washroom
US20090119142A1 (en) * 2007-11-05 2009-05-07 Sloan Valve Company Restroom convenience center
CN101911108A (en) * 2007-11-05 2010-12-08 斯洛文阀门公司 Restroom convenience center
CA2778470A1 (en) * 2011-11-04 2013-05-04 Heiner Ophardt Dispenser and contaminant sensor
WO2014035307A1 (en) * 2012-08-31 2014-03-06 Sca Hygiene Products Ab A data collection and monitoring system and method
US20180075375A1 (en) * 2015-03-30 2018-03-15 Kimberly-Clark Worldwide, Inc. System and Method for Instructing Personnel on Washroom Maintenance Requirements
US20170091691A1 (en) * 2015-09-30 2017-03-30 Antalios System for controlling the sanitary status of premises and method for determining the next cleaning
CN106295947A (en) * 2016-02-17 2017-01-04 北京市西杰物业管理服务中心 Public lavatory environmental sanitation keep a public place clean intelligent operation and check management system
CN106522307A (en) * 2016-12-29 2017-03-22 李子潇 Water-saving washing and toilet flushing integrated device

Also Published As

Publication number Publication date
WO2020071998A1 (en) 2020-04-09
PH12021550711A1 (en) 2021-11-03
SG10201808649XA (en) 2019-09-27
SG11202102901UA (en) 2021-04-29

Similar Documents

Publication Publication Date Title
CN112805731A (en) Toilet space management system and method employing IoT sensors
US10430737B2 (en) Restroom convenience center
US20220107632A1 (en) Systems and methods for monitoring and controlling a bathroom
US20160132839A1 (en) Systems and processes for facilities maintenance scheduling
US11886213B2 (en) Connected sanitaryware systems and methods
US20200250774A1 (en) System and method for predictive cleaning
JP2019503444A (en) System, method and apparatus for monitoring toilet equipment
CN109002065A (en) Pressure blowdown control system and method
US10581267B2 (en) Automated testing of emergency lights
US20210176319A1 (en) Water management system and user interface
RU2665882C2 (en) Distributed data acquisition equipment configuration
US11543791B1 (en) Determining operations for a smart fixture based on an area status
US20230358588A1 (en) Disaggregation of water consumption data
US20220101278A1 (en) Sanitary facility management system and sanitary facility management method
KR100881596B1 (en) Method and system for managering state of lavatory
Embia et al. Edge Computing‐Based Conditional Monitoring
KR20130017996A (en) Method for verifying reliability for monitoring in real time the water quality according to usn
US11605247B2 (en) Generating people counts based on dispenser usage
JP2007165040A (en) Maintenance control method of secondary battery
US20230315086A1 (en) Device, algorithm and cloud-based system for building maintenance management
US11983678B1 (en) Systems and methods for restroom consumables monitoring and maintenance scheduling
Ng et al. Assessing lift maintenance performance of high-rise residential buildings
McCalley et al. Auto-steered information-decision processes for electric system asset management
KR20240018502A (en) connected faucet system
KR20150052756A (en) Apparatus and Method for Remote Monitoring Based on the Recognizing Position using Smart Device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40052537

Country of ref document: HK