CN112782594B - 考虑内阻的数据驱动算法估算锂电池soc的方法 - Google Patents

考虑内阻的数据驱动算法估算锂电池soc的方法 Download PDF

Info

Publication number
CN112782594B
CN112782594B CN202011551732.1A CN202011551732A CN112782594B CN 112782594 B CN112782594 B CN 112782594B CN 202011551732 A CN202011551732 A CN 202011551732A CN 112782594 B CN112782594 B CN 112782594B
Authority
CN
China
Prior art keywords
soc
battery
data
network
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011551732.1A
Other languages
English (en)
Other versions
CN112782594A (zh
Inventor
高明裕
张照娓
何志伟
董哲康
林辉品
杨宇翔
钱志凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202011551732.1A priority Critical patent/CN112782594B/zh
Publication of CN112782594A publication Critical patent/CN112782594A/zh
Application granted granted Critical
Publication of CN112782594B publication Critical patent/CN112782594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

本发明公开了考虑内阻的数据驱动算法估算锂电池SOC的方法。该发明方法首先使用试验设备对锂离子电池进行充放电试验,测量电池在不同工作状态下的电压、电流、温度以及内阻数据,并对得到的数据进行预处理。接着搭建一个双向GRU网络,经过处理的数据一部分作为训练集来训练网络,另一部分则作为测试集来评估网络性能。最后为了提高所构建网络性能,使用NAG算法对双向GRU网络进行优化。构建好的双向GRU‑NAG网络输入为电池的电压、电流、温度和内阻,输出为电池的剩余电量,有着估算速度快,过程简单的优点,是一种数据驱动的电池剩余电量估算模型。

Description

考虑内阻的数据驱动算法估算锂电池SOC的方法
技术领域
本发明属于电池技术领域,具体涉及一种使用考虑了内阻的双向GRU(GatedRecurrent Unit)-NAG(Nesterov Accelertated Gradient)算法估算锂离子电池SOC(State of Charge)的方法。
背景技术
近年来为了减少化石燃料消耗和温室气体排放,减少城市污染,电动汽车和混合动力汽车的数量日益增长。锂离子电池因具有能量密度高、循环寿命长、自放电能力低、无记忆效应、充电速度快等优点,在电动汽车和混合动力汽车中得到了广泛的应用。BMS(Battery Management System,电池管理系统)能够保证电动汽车的安全性、耐久性、可靠性和效率,执行对电池的管理和诊断任务。
电池的荷电状态(SOC,State of Charge)表示其剩余电量,它提供有关电池剩余可用能量及其潜在充放电策略的可靠信息,是BMS需要监控的基本状态之一。因此,SOC的准确估计在BMS中起着至关重要的作用。蓄电池是一个高度复杂的时变非线性系统,SOC受电流、电压、温度、电池老化等多种因素的影响,难以直接通过传感器测量得到。另外,不同的电池材料和工作条件使得电池的动态特性不稳定,因此准确、实时地获得电池SOC是非常具有挑战性的。
目前常用的SOC估算方法有查表法、安时积分法、基于模型的估算方法和数据驱动的估算方法四大类。使用查表法时电池需要长时间静置,实时性差;安时积分法是一种开环估计方法,存在累计误差;基于模型的估算方法计算复杂,对电池模型准确度要求高;数据驱动不需要建立复杂的电池模型,估算速度快,但是估算结果的不确定性较大。
数据驱动的SOC估算方法常常使用机器学习平台,通过可测量的电池数据构建神经网络模型,以实现SOC估计。数据驱动方法对数据的要求高,输入数据的好坏直接影响了SOC的估计性能。目前已有的数据驱动类方法,往往只考虑的电池的电流、电压以及温度三类参数,但是电池的内阻参数对SOC的估计的影响更大,并没有被充分考虑到使用数据驱动方法估算锂离子电池SOC中去。
发明内容
针对现有技术的不足,本发明提出了考虑内阻的数据驱动算法估算锂电池SOC的方法,通过构建一个双向GRU结构的网络来估算锂离子电池的SOC。该算法在估算电池的SOC的过程中除了分析锂离子电池的电流、电压、温度对估算的影响以外,还增加了对电池内阻变化的考虑,另外使用NAG算法优化网络参数,提高网络的训练速度并减小模型误差,该算法在保证估算精度的同时,提高了估算速度,可以满足实时性的要求。
考虑内阻的数据驱动算法估算锂电池SOC的方法,具体包括以下步骤:
步骤一、数据采集
对锂离子电池在不同放电条件下重复进行充放电试验,并采样记录试验过程中电池的电压、电流、温度以及内阻。
作为优选,采样间隔时间为1s。
步骤二、数据预处理
将步骤一采集得到的数据,使用安时积分法计算t时刻电池的剩余电量SOC(t):
Figure BDA0002857877400000021
其中,SOC(t0)为初始电池电量,η表示库仑效率,Cn表示电池的额定容量,I(t)为电池的瞬时放电电流。将计算结果作为剩余电量的真实值。
对步骤一采集到的数据进行归一化处理,将其缩放到[0,1]之间,以去除数据单位,便于对不同单位或量级的数据进行比较加权,提高网络训练速度。
所述归一化处理的方法为:
Figure BDA0002857877400000022
其中,xi为待处理数据,xmin和xmax分别为待处理数据的最小值和最大值。
将归一化处理后的数据作为数据集,并按照70%和30%的比例划分为训练集和测试集。
步骤三、构建SOC估计模型
搭建一个双向GRU网络,网络包括N个隐含层,每层由M个神经元构成,网络的学习率为l;
所述的双向GRU网络,在t时刻,输入xt同时提供给两个方向相反的隐含层,输出yt,由这两个单向隐含层共同决定,前向GRU层具有输入序列中t时刻以及之前时刻的信息,而后向GRU层中具有输入序列中t时刻以及之后时刻的信息。双向GRU的隐层状态传播过程为:
Figure BDA0002857877400000023
Figure BDA0002857877400000024
Figure BDA0002857877400000031
其中
Figure BDA0002857877400000032
分别表示前向推算和后向推算的隐层状态;
Figure BDA0002857877400000033
分别表示输入在前向推算和后向推算的权重;
Figure BDA0002857877400000034
分别表示前一时刻隐含层状态在前向推算和后向推算的权重;
Figure BDA0002857877400000035
分别表示前向推算和后向推算的偏置;σ函数用于合并这两个输出。
双向GRU网络的更新门zt、重置门rt、候选输出状态
Figure BDA0002857877400000036
以及GRU的输出ht的计算方法为:
zt=σ(Wz·[ht-1,xt]+bz)
rt=σ(Wr·[ht-1,xt]+br)
Figure BDA0002857877400000037
Figure BDA0002857877400000038
Wz和bz分别为重置门的权重矩阵和偏置;Wr和br分别为重置门的权重矩阵和偏置;Wh和bh分别为候选输出状态
Figure BDA0002857877400000039
的权重矩阵和偏置。
步骤四、模型训练优化
将向量x=[T,I,V,R]作为步骤四构建的双向GRU网络模型的输入,对模型进行训练,其中T=[T1,T2,…Tt,…Tn],I=[I1,I2,…It,…In],V=[V1,V2,…Vt,…Vn],R=[R1,R2,…Rt,…Rn];从模型的输出端获得电池的剩余容量SOC=[SOC1,SOC2,…SOCt,…SOCn]。其中Tt,It,Vt,Rt分别表示电池在t时刻的环境温度、放电电流、端电压和内阻;SOCt表示电池在t时刻电池的剩余电量。
使用NAG算法对训练后的双向GRU网络模型参数进行优化;针对模型的双向传输结构,将NAG算法公式改写为:
Figure BDA00028578774000000310
Figure BDA00028578774000000311
其中,θ’t=θt-γmt,θt为t时刻的网络参数;η代表网络的学习率;L(·)代表网络的损失函数;
Figure BDA00028578774000000312
代表损失函数的梯度矩阵;mt和γ分别为动量项和超参数,其中超参数表示历史梯度的影响力。
步骤五、模型性能测试
使用测试集测试步骤四中训练完成的双向GRU网络模型的性能,评价指标选用RMSE(Root Mean Square Error)和MAE(Mean Absolute Error)。RMSE表示样本的分散程度,RMSE越大表示样本越分散。MAE表示估计值和真实值之间的误差的平均值,MAE越大表示估计的误差越大。
Figure BDA0002857877400000041
Figure BDA0002857877400000042
其中,SOCt和SOCt’分别代表电池剩余电量的真实值和网络的预测值,真实值由电池充放电试验得到。
步骤六、保存模型,输出SOC
判断模型的性能测试结果是否达到所设定的要求,若未达到要求,则调整参数重新训练。达到要求后,保存训练好的模型,用于电池SOC估计。
本发明具有以下有益效果:
本发明使用双向GRU网络建立锂离子电池剩余电量估算模型,除了输入电池的电压、电流和温度参数以外,还充分考虑了电池内阻对SOC估算的影响。该方法解决了传统估算算法存在的模型复杂度高,精度差等问题。通过测试集的验证,应用该模型,仅需要测量电池的电流、电压、温度和内阻便能够实时估算出电池当前的SOC,具有实时性强、估算精度高等优点。该方法同样适用于其他类型电池的SOC估算中。
附图说明
图1为本发明系统的流程框图。
图2为本实施例的误差曲线。
具体实施方式
以下结合对本发明作进一步的解释说明;
如图1所示,考虑内阻的数据驱动算法估算锂电池SOC的方法,具体包括以下步骤:
步骤一、数据采集
分别在0℃、25℃和45℃温度下对Samsung INR 18650-20R锂离子电池进行充放电试验,并记录试验过程中电池的电压、电流、温度以及内阻,采样间隔时间为1s。其中电流采用在美国环境保护署(EPC,United States Environmental Protection Agency)制定的标准工况下的放电电流;锂离子电池通过ITECH公司生产的IT8818B可编程电子负载放电;爱斯佩克Espec GMC-71高低温试验箱可以得到电池的环境温度参数;使用HIOKI BT3562电池测试仪得到放电实验过程中的电压和内阻两组数据。试验过程为:首先对单节电池恒流2A充电至额定电压4.2V,接着恒压充电,直至电流下降到100mA。此时认为该电池处于满电状态。将满电电池放电至截止电压3.6V时结束试验,认为此时电池的剩余电量为0。
步骤二、数据预处理
构建一个监督学习神经网络,需要对数据进行预处理,创建标签值。将步骤一采集得到的数据,使用安时积分法计算t时刻电池的剩余电量SOC(t):
Figure BDA0002857877400000051
其中,SOC(t0)为初始电池电量,η表示库仑效率,Cn表示电池的额定容量,I(t)为电池的瞬时放电电流。通过对放电电流进行积分得到电池在t-t0这段时间放出的电量,用初始荷电状态减去放出电量即为当前时刻电池的剩余电量。对步骤一采集到的数据进行归一化处理,将其缩放到[0,1]之间,以去除数据单位,便于对不同单位或量级的数据进行比较加权,提高网络训练速度。
所述归一化处理的方法为:
Figure BDA0002857877400000052
其中,xi为待处理数据,xmin和xmax分别为待处理数据的最小值和最大值。
最后将归一化处理后的数据划分为训练集和测试集,其中训练集和测试集的划分比例分别为70%和30%。
步骤三、构建SOC估计模型
搭建一个双向GRU网络,其中包括3个隐含层,每层由200个神经元构成,网络的学习率为0.01;
所述的双向GRU网络,在t时刻,输入xt同时提供给两个方向相反的隐含层,输出yt,由这两个单向隐含层共同决定,前向GRU层具有输入序列中t时刻以及之前时刻的信息,而后向GRU层中具有输入序列中t时刻以及之后时刻的信息。双向GRU的隐层状态传播过程为:
Figure BDA0002857877400000053
Figure BDA0002857877400000054
Figure BDA0002857877400000061
其中
Figure BDA0002857877400000062
分别表示前向推算和后向推算的隐层状态;
Figure BDA0002857877400000063
分别表示输入在前向推算和后向推算的权重;
Figure BDA0002857877400000064
分别表示前一时刻隐含层状态在前向推算和后向推算的权重;
Figure BDA0002857877400000065
分别表示前向推算和后向推算的偏置;σ函数用于合并这两个输出。
双向GRU网络的更新门zt、重置门rt、候选输出状态
Figure BDA0002857877400000066
以及GRU的输出ht的计算方法为:
zt=σ(Wz·[ht-1,xt]+bz)
rt=σ(Wr·[ht-1,xt]+br)
Figure BDA0002857877400000067
Figure BDA0002857877400000068
Wz和bz分别为重置门的权重矩阵和偏置;Wr和br分别为重置门的权重矩阵和偏置;Wh和bh分别为候选输出状态
Figure BDA0002857877400000069
的权重矩阵和偏置。
步骤四、模型训练优化
将向量x=[T,I,V,R]作为步骤四构建的双向GRU网络模型的输入,对模型进行训练,其中T=[T1,T2,…Tt,…Tn],I=[I1,I2,…It,…In],V=[V1,V2,…Vt,…Vn],R=[R1,R2,…Rt,…Rn];从模型的输出端获得电池的剩余容量SOC=[SOC1,SOC2,…SOCt,…SOCn]。其中Tt,It,Vt,Rt分别表示电池在t时刻的环境温度、放电电流、端电压和内阻;SOCt表示电池在t时刻电池的剩余电量。
使用NAG算法对训练后的双向GRU网络模型参数进行优化;NAG算法的更新计算公式为:
m0=0
Figure BDA00028578774000000610
θt+1=θt-mt
将双向GRU网络模型的双向结构看作两个具有GRU单元的、信息传递方向相反的隐含层,针对模型的双向传输结构,将NAG算法公式改写为:
Figure BDA00028578774000000611
Figure BDA0002857877400000071
其中,θt’=θt-γmt,θt为t时刻的网络参数;η代表网络的学习率;
Figure BDA0002857877400000072
代表损失函数的梯度矩阵;mt为动量项;γ为超参数,表示历史梯度的影响力;L(·)代表网络的损失函数:
Figure BDA0002857877400000073
使用NGA算法优化双向GRU网络模型参数的具体步骤为:
s4.1初始化GRU单元zt、rt、ht的权重和偏置:Wzh,0,Wzx,0,bz,0;Wrh,0,Wrx,0,br,0;Wh,0,Wx,0,bh,0;初始化输出层的权重和偏置:Wo,0,bo,0
s4.2计算损失函数L(θ’);
s4.3计算损失函数对隐藏层权重和偏置的梯度:
Figure BDA0002857877400000074
s4.4计算损失函数对输出层权重和偏置的梯度:
Figure BDA0002857877400000075
s4.5计算隐藏层权重和偏置的动量项:
Figure BDA0002857877400000076
s4.6计算输出层权重和偏置的动量项:
Figure BDA0002857877400000077
s4.7更新隐藏层权重和偏置:
Figure BDA0002857877400000078
Figure BDA0002857877400000079
Figure BDA0002857877400000081
s4.8更新输出层权重和偏置:
Figure BDA0002857877400000082
步骤五、模型性能测试
使用测试集测试步骤四中训练完成的双向GRU网络模型的性能,评价指标选用RMSE(Root Mean Square Error)和MAE(Mean Absolute Error)。RMSE表示样本的分散程度,RMSE越大表示样本越分散。MAE表示估计值和真实值之间的误差的平均值,MAE越大表示估计的误差越大。
Figure BDA0002857877400000083
Figure BDA0002857877400000084
其中,SOCt和SOCt’分别代表电池剩余电量的真实值和网络的预测值,真实值由电池充放电试验得到。
下表为不同温度下的RMSE、MAE以及误差值:
Figure BDA0002857877400000085
图2中a、b、c分别为0℃、24℃、45℃条件下电池剩余电量真实值与网络输出的预测值及其误差。
步骤六、保存模型,输出SOC
判断模型的性能测试结果是否达到所设定的要求,若未达到要求,则调整参数重新训练。达到要求后,保存训练好的模型,用于电池SOC估计。
上述具体实施方式用来解释说明本发明,并不以限制本发明,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改、等同替换和改进等,都落入本发明的保护范围。

Claims (4)

1.考虑内阻的数据驱动算法估算锂电池SOC的方法,其特征在于:具体包括以下步骤:
步骤一、数据采集
对锂离子电池在不同放电条件下重复进行充放电试验,并采样记录试验过程中电池的电压、电流、温度以及内阻;
步骤二、数据预处理
根据步骤一采集得到的数据,使用安时积分法计算t时刻电池的剩余电量SOC(t),作为与预测结果对比的真实值;对步骤一采集的数据进行归一化处理,将其缩放到[0,1]之间,得到V=[V1,V2,…Vt,…Vn]、I=[I1,I2,…It,…In]、T=[T1,T2,…Tt,…Tn]、R=[R1,R2,…Rt,…Rn],其中Tt,It,Vt,Rt分别表示电池在t时刻的环境温度、放电电流、端电压和内阻;然后划分训练集和测试集;
步骤三、构建SOC估计模型
搭建双向GRU网络,包括N个隐含层,每层由M个神经元构成,网络的学习率为l;所述的双向GRU网络,在t时刻,输入xt同时提供给两个方向相反的隐含层,输出yt,由这两个单向隐含层共同决定,前向GRU层具有输入序列中t时刻以及之前时刻的信息,而后向GRU层中具有输入序列中t时刻以及之后时刻的信息;双向GRU的隐层状态传播过程为:
Figure FDA0003783325910000011
Figure FDA0003783325910000012
Figure FDA0003783325910000013
其中
Figure FDA0003783325910000014
分别表示前向推算和后向推算的隐层状态;
Figure FDA0003783325910000015
分别表示输入在前向推算和后向推算的权重;
Figure FDA0003783325910000016
分别表示前一时刻隐含层状态在前向推算和后向推算的权重;
Figure FDA0003783325910000017
分别表示前向推算和后向推算的偏置;σ函数用于合并这两个输出;
双向GRU网络的更新门zt、重置门rt、候选输出状态
Figure FDA0003783325910000018
以及GRU的输出ht的计算方法为:
zt=σ(Wz·[ht-1,xt]+bz)
rt=σ(Wr·[ht-1,xt]+br)
Figure FDA0003783325910000019
Figure FDA0003783325910000021
Wz和bz分别为重置门的权重矩阵和偏置;Wr和br分别为重置门的权重矩阵和偏置;Wh和bh分别为候选输出状态
Figure FDA0003783325910000022
的权重矩阵和偏置;
步骤四、模型训练优化
将向量x=[T,I,V,R]作为步骤四构建的双向GRU网络模型的输入,对模型进行训练,从模型的输出端获得电池的剩余电量SOC=[SOC1,SOC2,…SOCt,…SOCn];SOCt表示电池在t时刻电池的剩余电量;
使用NAG算法对训练后的双向GRU网络模型参数进行优化;NAG算法的更新计算公式为:
m0=0
Figure FDA0003783325910000023
θt+1=θt-mt
将双向GRU网络模型的双向结构看作两个具有GRU单元的、信息传递方向相反的隐含层,针对模型的双向传输结构,将NAG算法公式改写为:
Figure FDA0003783325910000024
Figure FDA0003783325910000025
其中,θt’=θt-γmt,θt为t时刻的网络参数;η代表网络的学习率;
Figure FDA0003783325910000026
代表损失函数的梯度矩阵;mt为动量项;γ为超参数,表示历史梯度的影响力;L(·)代表网络的损失函数:
Figure FDA0003783325910000027
步骤五、模型性能测试
使用测试集测试步骤四训练完成的双向GRU网络模型的性能,使用RMSE和MAE两个评价指标;
Figure FDA0003783325910000028
Figure FDA0003783325910000029
其中,SOCt和SOCt’分别代表电池剩余电量的真实值和网络的预测值;
步骤六、保存模型,输出SOC
判断模型的性能测试结果是否达到所设定的要求,若未达到要求,返回步骤四调整参数重新训练;达到要求后,保存训练好的模型,用于电池SOC估计。
2.如权利要求1所述考虑内阻的数据驱动算法估算锂电池SOC的方法,其特征在于:步骤一中数据采样间隔时间为1s。
3.如权利要求1所述考虑内阻的数据驱动算法估算锂电池SOC的方法,其特征在于:步骤二中使用安时积分法计算t时刻电池剩余电量SOC(t)的公式为:
Figure FDA0003783325910000031
其中,SOC(t0)为初始电池电量,η表示库仑效率,Cn表示电池的额定容量,I(t)为电池的瞬时放电电流。
4.如权利要求1所述考虑内阻的数据驱动算法估算锂电池SOC的方法,其特征在于:步骤二中对数据进行归一化处理的方法为:
Figure FDA0003783325910000032
其中,xi为待处理数据,xmin和xmax分别为待处理数据的最小值和最大值。
CN202011551732.1A 2020-12-24 2020-12-24 考虑内阻的数据驱动算法估算锂电池soc的方法 Active CN112782594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011551732.1A CN112782594B (zh) 2020-12-24 2020-12-24 考虑内阻的数据驱动算法估算锂电池soc的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011551732.1A CN112782594B (zh) 2020-12-24 2020-12-24 考虑内阻的数据驱动算法估算锂电池soc的方法

Publications (2)

Publication Number Publication Date
CN112782594A CN112782594A (zh) 2021-05-11
CN112782594B true CN112782594B (zh) 2022-09-20

Family

ID=75752163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011551732.1A Active CN112782594B (zh) 2020-12-24 2020-12-24 考虑内阻的数据驱动算法估算锂电池soc的方法

Country Status (1)

Country Link
CN (1) CN112782594B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702836B (zh) * 2021-07-23 2023-08-18 国家电网有限公司西北分部 一种基于emd-gru锂离子电池荷电状态估计方法
CN113933725B (zh) * 2021-09-08 2023-09-12 深圳大学 一种基于数据驱动确定动力电池荷电状态的方法
CN115629326B (zh) * 2022-12-21 2023-03-17 中国北方车辆研究所 户外空间内储能电池寿命预测方法、装置、设备及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035037A (zh) * 2014-05-12 2014-09-10 广东电网公司电力科学研究院 一种新能源汽车动力电池soh在线估算的方法
US20190138887A1 (en) * 2017-11-01 2019-05-09 Board Of Trustees Of Michigan State University Systems, methods, and media for gated recurrent neural networks with reduced parameter gating signals and/or memory-cell units
CN110007235A (zh) * 2019-03-24 2019-07-12 天津大学青岛海洋技术研究院 一种电动汽车蓄电池soc在线预测方法
CN110222431B (zh) * 2019-06-11 2022-04-12 哈尔滨工业大学 基于门控循环单元神经网络和卡尔曼滤波模型融合的锂离子电池剩余寿命预测方法
CN111301426B (zh) * 2020-03-13 2021-01-05 南通大学 基于gru网络模型预测未来行驶过程能耗的方法

Also Published As

Publication number Publication date
CN112782594A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
Yang et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
CN112782594B (zh) 考虑内阻的数据驱动算法估算锂电池soc的方法
Yang et al. State-of-charge estimation of lithium-ion batteries via long short-term memory network
CN110398697B (zh) 一种基于充电过程的锂离子健康状态估计方法
CN111323719A (zh) 一种电动汽车动力电池组健康状态在线确定方法和系统
CN113064093B (zh) 储能电池荷电状态与健康状态联合估算方法及系统
CN105717460B (zh) 一种基于非线性观测器的动力电池soc估计方法和系统
CN110658459B (zh) 基于双向循环神经网络的锂离子电池荷电状态估计方法
Mamo et al. Long short-term memory with attention mechanism for state of charge estimation of lithium-ion batteries
CN112557907A (zh) 一种基于gru-rnn的电动汽车锂离子电池的soc估计方法
Wang et al. A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction
CN113253116A (zh) 锂离子电池荷电状态估计方法、存储介质
CN113702843B (zh) 一种基于郊狼优化算法的锂电池参数辨识与soc估计方法
Li et al. A novel state estimation approach based on adaptive unscented Kalman filter for electric vehicles
CN112163372B (zh) 一种动力电池的soc估算方法
Takyi-Aninakwa et al. An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries
CN112630659A (zh) 一种基于改进bp-ekf算法的锂电池soc估算方法
CN112684363A (zh) 一种基于放电过程的锂离子电池健康状态估计方法
CN115201686B (zh) 一种不完备充放电数据下的锂离子电池健康状态评估方法
Zhao et al. State-of-health estimation with anomalous aging indicator detection of lithium-ion batteries using regression generative adversarial network
Lin et al. Simultaneous and rapid estimation of state of health and state of charge for lithium-ion battery based on response characteristics of load surges
CN116643196A (zh) 一种融合机理与数据驱动模型的电池健康状态估计方法
Lyu et al. State-of-charge estimation of lithium-ion batteries based on deep neural network
CN113420444A (zh) 一种基于参数在线辨识的锂离子电池soc估计方法
CN112557908A (zh) 一种锂离子动力电池soc和soh联合估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant