CN112766568B - 一种基于卫星云图的超短期分布式光伏功率预测方法 - Google Patents

一种基于卫星云图的超短期分布式光伏功率预测方法 Download PDF

Info

Publication number
CN112766568B
CN112766568B CN202110065167.6A CN202110065167A CN112766568B CN 112766568 B CN112766568 B CN 112766568B CN 202110065167 A CN202110065167 A CN 202110065167A CN 112766568 B CN112766568 B CN 112766568B
Authority
CN
China
Prior art keywords
swr
matrix
moments
time
irradiance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110065167.6A
Other languages
English (en)
Other versions
CN112766568A (zh
Inventor
王珏
刘晓艳
操海洲
姚铁锤
王晓光
王彦棡
迟学斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Computer Network Information Center of CAS
Original Assignee
Computer Network Information Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Computer Network Information Center of CAS filed Critical Computer Network Information Center of CAS
Priority to CN202110065167.6A priority Critical patent/CN112766568B/zh
Publication of CN112766568A publication Critical patent/CN112766568A/zh
Application granted granted Critical
Publication of CN112766568B publication Critical patent/CN112766568B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Abstract

本发明涉及一种基于卫星云图的超短期分布式光伏功率预测方法,该方法包括以下步骤:以历史P个连续时刻的SWR矩阵SWR(T‑D‑P+1)~(T‑D)为输入,采用Res‑UNet模型输出D+Q个时刻的SWR矩阵SWRT‑D+1~T+Q;其中,T为指定时刻,D为延时时刻,P为历史时刻,Q为未来时刻;由矩阵SWRT‑D+1~T+Q,得到SWRT‑D+1~T+Q=SWRT‑D+1~T||SWRT+1~T+Q,其中,||表示拼接符,SWRT+1~T+Q为对应的未来Q个时刻的SWR矩阵;通过对SWRT+1~T+Q中Q个时刻的SWR矩阵进行双线性插值,得到站点s未来Q个时刻的辐照度
Figure DDA0003481018250000011
以Res‑UNet模型预测的
Figure DDA0003481018250000012
为输入,基于LSTM神经网络对分布式站点s未来Q个时刻功率进行预测。

Description

一种基于卫星云图的超短期分布式光伏功率预测方法
技术领域
本发明涉及分布式光伏功率预测技术,尤其涉及一种基于卫星云图的超短期分布式光伏功率预测方法。
背景技术
近年来,国际越来越重视可再生能源的开发和应用,而光伏发电是最主要的一种利用方式。相比集中式光伏,分布式光伏更能体现光伏发电绿色清洁、价格低廉、即发即用的特性。准确的超短期光伏发电功率预测可以帮助光伏电力系统调度和光伏电站的优化运行。
由于受辐照度影响,光伏发电呈现随机性、抖动性的特点,给光伏功率的准确预测带来了巨大挑战。因此研究太阳辐照度对于预测光伏发电出力具有重要意义。
对于太阳辐照度预测的研究,大量学者基于统计机器学习方法结合历史辐照度序列进行了相关工作,但由于无气象测量装置的分布式站点没有观测的辐照度数据,所以以上方法无法适用于分布式站点。卫星云图的获取依赖于卫星,覆盖范围大且有公开数据集支持,适合用于地面分布式光伏站点。但以往的大多方法只考虑了时间相关性而没有考虑空间相关性,且均需要对图像进行处理,增加了算法复杂度。
发明内容
本发明目的在于,利用卫星云图解决无历史辐照度序列的分布式站点的辐照度预测问题,从而达到提升功率预测精度的目的。
为实现上述目的,本发明提供了一种基于卫星云图的超短期分布式光伏功率预测方法,该方法包括以下步骤:
以历史P个连续时刻的SWR矩阵SWR(T-D-P+1)~(T-D)为输入,采用Res-UNet模型输出D+Q个时刻的SWR矩阵SWRT-D+1~T+Q;其中,T为指定时刻,D为延时时刻,P为历史时刻,Q为未来时刻;
由矩阵SWRT-D+1~T+Q,得到SWRT-D+1~T+Q=SWRT-D+1~T||SWRT+1~T+Q,其中,||表示拼接符,SWRT+1~T+Q为对应的未来Q个时刻的SWR矩阵;通过对SWRT+1~T+Q中Q个时刻的SWR矩阵进行双线性插值,得到站点s未来Q个时刻的辐照度
Figure GDA0003481018240000021
以Res-UNet模型预测的站点s未来Q个时刻的辐照度
Figure GDA0003481018240000022
为输入,基于LSTM神经网络对分布式站点未来Q个时刻功率进行预测。
优选地,Res-UNet模型采用U-Net的编码器-解码器的结构,以及引入残差块结构。
优选地,编码器部分由多个卷积-下采样-残差块结构的特征提取块堆叠而成,输入为历史P个时刻的SWR序列;每个特征提取块接受一个输入,应用两个3X3的卷积层,一个2X2的最大池化层以及3个残差块。
优选地,解码器部分包含多个特征重建块,每个块将输入传递到由一个2×2的上采样层和3×3卷积层组成的上卷积模块,两个3×3的卷积层以及3个残差块;每次输入也被相应特征提取块的特征矩阵所附加即横跳连接;所述特征重建块的数量与特征提取块的数量相同;生成的映射通过另一个3X3的卷积层,输出特征矩阵的数量等于所需的预测目标的数量。
优选地,采用双线性插值的方法可以估算得到地面站点s在t时刻的辐照度
Figure GDA0003481018240000023
双线性插值的公式如下:
Figure GDA0003481018240000024
Figure GDA0003481018240000031
其中,四个网格点的经纬度和辐照度分别为
Figure GDA0003481018240000032
地面站点经纬度为(lngs,lats),根据分布式站点周围网格点上的周围网格点上的t时刻的辐照度得到该站点s在t时刻的辐照度的估算值
Figure GDA0003481018240000033
通过对SWRT+1~T+Q中Q个时刻的SWR矩阵进行双线性插值,则可得到站点未来Q个时刻的辐照度
Figure GDA0003481018240000034
优选地,在基于LSTM神经网络对分布式站点未来Q个时刻功率进行预测步骤中,通过日期编码和时间编码学习光伏发电周期性,实现更精准地预测。
优选地,一天和一年的秒数分别设置为:
day=24*60*60#(2)
year=365.2425*day#(3)
优选地,将某一时刻t对应的时间戳设置为timestamp,通过正弦函数和余弦函数表达循环周期性,则有:
Figure GDA0003481018240000035
Figure GDA0003481018240000036
Figure GDA0003481018240000037
Figure GDA0003481018240000038
该t时刻对应的日期编码即为
Figure GDA0003481018240000039
时间编码为
Figure GDA00034810182400000310
本发明的有益效果在于:
(1)引入了卫星的SWR矩阵,弥补了分布式站点无辐照度测量的不足。
(2)相较于只考虑辐照度的时间相关,提出的Res-UNet模型考虑了辐照度的时空相关性。
(3)相较于只考虑历史与未来时刻的变化,功率编码器-解码器模块中日期和时间编码的引入可以有效学习光伏发电周期性。
附图说明
图1为本发明实施例提供的一种基于卫星云图的超短期分布式光伏功率预测方法流程示意图;
图2为Res-UNet模型使用的残差块;
图3为基于SWR邻域空间的辐照度估算示意图;
图4为基于卫星云图的超短期分布式光伏发电功率预测示意图。
具体实施方式
图1为本发明实施例提供的一种基于卫星云图的超短期分布式光伏功率预测方法流程示意图。如图1所示,本发明主要包含以下步骤:
步骤一、基于Res-UNet模型的短波辐照(Short Wave Radiation,SWR)矩阵预测。
SWR矩阵是分布于空间60N-60S,80E-160W,分辨率为0.05°x0.05°的辐照度网格,是逐10分钟序列数据,以弥补分布式站点无气象测量的不足。由于SWR矩阵有D个时刻(30分钟)的时间延迟,所以T时刻时只能获得T-D时刻之前的SWR矩阵。因此为实现对未来Q个时刻N个分布式站点的辐照度预测,需要实现对未来Q+D个时刻的SWR预测。
以历史P个连续时刻的SWR矩阵SWR(T-D-P+1)~(T-D)为输入,为得到未来Q个时刻的SWR矩阵SWRT+1~T+Q,Res-UNet模型需要输出接下来的D+Q个时刻的SWR矩阵SWRT-D+1~T+Q。如图4所示,Res-UNet模型采用了U-Net的编码器-解码器(Encoder-Decoder)的结构,左侧为编码器,右侧是解码器。由于输入的SWR矩阵时空特征复杂且尺寸较大,为实现逐像素点的辐照度预测,需要加深网络层数。Res-UNet模型引入的残差块(Residual Block)结构有效解决了网络加深会带来梯度弥散的问题。
图2为Res-UNet模型使用的残差块,x为conv-relu堆叠层的输入,H(x)为其要学习逼近的函数,原始输入x经过一个conv-relu堆叠层,学习到F(x),然后与原始输入x相加(element-wise addition)得到要逼近的目标H(x),即H(x)=F(x)+x,这种跨过堆叠层的连接方式为Short Connection。残差块的引入可以把原始信息流入更深的层,抑制信息的退化。反向传播过程中,Short Connection这一支路的导数是1,所以可以把深层的误差很好的保留传递给浅层,从而抑制梯度链式法则带来的梯度弥散。如图4所示,在Res-UNet模型中,残差块贯穿整个编码器和解码器结构中。
如图4所示,编码器由多个卷积-下采样-残差块结构的特征提取块堆叠而成,上一特征提取块的输出是下一特征提取块的输入,编码器初始输入为历史P个时刻的SWR序列SWR(T-D-P+1)~(T-D)。每个特征提取块接受一个输入,应用两个3X3的卷积层,一个2X2的最大池化层以及3个残差块。每经过一个卷积层,卷积核和隐层特征通道的数量会加倍;每经过一个最大池化层(max pooling layer),特征矩阵(feature map)的尺寸变小,尺度变大,多个池化层实现了对SWR矩阵的多尺度特征识别;残差块在当前尺度上进行时空特征的提取,不会改变隐层的尺寸及特征通道数,3个残差块的运用,使得同一尺度下,特征提取更充分,且抑制网络加深带来的梯度弥散。编码器这样的体系结构可以有效地学习SWR的时空特征。如图4所示,大小为[256,256,P]的SWR(T-D-P+1)~(T-D)经3×3卷积层后,尺寸不变,特征通道数映射为64,得到[256,256,64]的特征矩阵;然后会经过一个2×2最大池化层,尺寸减半,通道数量不变,得到[128,128,64]的特征矩阵;最后,会经过3个残差块,在该尺度和特征通道数量下,充分提取特征。这之后的每一个特征提取块都会在尺寸减半,特征通道加倍的基础上特征的充分提取,经多个特征提取块提取特征,最终输出其对应的高度抽象特征,即图4中的[16,16,512]的特征矩阵,该特征矩阵将作为解码器的输入。
解码器部分以编码器的输出为输入,包含多个特征重建块。特征重建块由一个2×2的上采样层和3×3卷积层组成的上卷积模块,两个3×3的卷积层以及3个残差块组成。每经一个上卷积模块,特征矩阵尺寸加倍,特征通道数减半,每经两个3×3卷积层,特征矩阵尺寸不变,特征通道数减半,特征重建块的数量与特征提取块的数量相同,残差块的运用,使得同一尺度下,特征提取更充分,且抑制网络加深带来的梯度弥散。每个特征重建块的输入不仅包含上一特征重建块的输出也被特征提取块中同尺寸的特征矩阵所附加即横跳连接(skip connection)。横跳连接融合特征提取部分的输出,将多尺度特征融合在了一起,确保了编码器编码图像时学习到的特征将被用于重建网格。如图4所示,编码器输出的大小为[16,16,512]的特征矩阵首先会经3×3卷积层得到[16,16,1024]的特征矩阵,该特征矩阵会作为第一个特征重建块的输入;然后[16,16,1024]的特征矩阵会经过上卷积模块得到[32,32,512]的特征矩阵;之后[32,32,512]的特征矩阵会和编码器中同尺度的特征矩阵进行拼接得到[32,32,1024]的特征矩阵;最后该特征矩阵在两个3×3卷积层作用下特征通道数减半,并经残差块进行特征充分提取得到[32,32,512]的输出,该特征矩阵将作为下一特征重建块的输入。解码器最终输出特征矩阵[256,256,D+Q],其通道数量等于预测目标的数量即D+Q,实现了对SWRT-D+1~T+Q的预测。
步骤二、基于SWR邻域空间的辐照度估算。对于Res-UNet得到SWRT-D+1~T+Q,有SWRT-D+1~T+Q=SWRT-D+1~T||SWRT+1~T+Q,||表示拼接符,SWRT+1~T+Q为对应的未来Q个时刻的SWR矩阵。为得到站点s(s∈[1,N])的辐照度,需要对站点周围的SWR矩阵点上的辐照度进行拟合。如图3所示,在某一时刻t时,四个网格点的经纬度和辐照度已知,分别为
Figure GDA0003481018240000061
Figure GDA0003481018240000062
地面站点经纬度为(lngs,lats)。双线性插值的公式如下:
Figure GDA0003481018240000063
Figure GDA0003481018240000071
由此,可以根据分布式站点周围网格点上的周围网格点上的t时刻的辐照度得到该站点s在t时刻的辐照度的估算值
Figure GDA0003481018240000072
通过对SWRT+1~T+Q中Q个时刻的SWR矩阵进行双线性插值则可以得到站点s未来Q个时刻的辐照度
Figure GDA0003481018240000073
进而可得到N个站点未来Q个时刻的辐照度
Figure GDA0003481018240000074
步骤三、基于LSTM的功率预测。
如图4所示,基于LSTM的光伏功率预测,以Res-UNet预测的未来Q个时刻辐照度为输入,实现了对分布式站点s未来Q个时刻功率的预测。由于地球的公转和自转,光伏发电功率变化呈现周期性,日期编码和时间编码分别描述了光伏发电功率的年周期性和日周期性。在光伏功率预测模型中加入日期编码和时间编码可以更好地学习光伏发电周期性,从而实现更精准地预测。
将一天和一年的秒数分别设置为:
day=24*60*60#(2)
year=365.2425*day#(3)
设某一时刻t对应的时间戳(从1970年1月1日开始所经过的秒数)为timestamp,通过正弦函数和余弦函数表达循环周期性,则有:
Figure GDA0003481018240000075
Figure GDA0003481018240000076
Figure GDA0003481018240000077
Figure GDA0003481018240000078
该t时刻对应的日期编码即为
Figure GDA0003481018240000079
时间编码为
Figure GDA00034810182400000710
如图4所示,基于LSTM的光伏功率预测同样采用编码器-解码器的结构,其中FC层表示全连接层,L表示LSTM单元,Xt∈R5表示t时刻的输入特征,Yt∈R5表示t时刻的输出特征。对于编码器而言,
Figure GDA0003481018240000081
为历史某一t时刻的日期编码、时间编码和站点s的光伏发电功率。对于解码器而言,
Figure GDA0003481018240000082
为未来某一t时刻的日期编码、时间编码和Res-UNet预测的站点s的辐照度。
Figure GDA0003481018240000083
Figure GDA0003481018240000084
为站点s未来某一t时刻的预测功率。编码器输入站点s历史H个时刻的特征XT-H+1~T,解码器输入站点s未来Q个时刻的特征XT+1~T+Q,输出未来Q个时刻的预测功率YT+1~T+Q,从而实现了对站点s未来功率的预测。
以下为具体的实施方案:
(1)选取了某个省份121个无气象测量装置的分布式光伏电站。输入的SWR矩阵为覆盖该121个站点的最小范围,大小为[222,222]的矩阵。
(2)基于Res-UNet的辐照度预测实验选取2018年07月01日至2018年08月31日每天08:00-20:00的数据作为训练集,2018年09月01日-2019年06月30日每天08:00-20:00的数据作为验证集,以历史1小时的P=6个连续SWR矩阵来预测未来1小时L+Q=6个连续的SWR矩阵。由于SWR有半小时(D=3)的数据延迟,所以实现了未来30分钟(Q=3)的辐照度预测。实验中,首先将[222,222]的矩阵放大至[256,256],然后每次将batch_size=8的批数据通过1个8层的Res_UNet,采用Adam优化算法以1e-5的学习率进行学习优化。
(3)在基于LSTM的功率预测实验中,将2018年09月01日-2019年06月30日每天08:00-20:00的数据随机抽取四分之一的天数作为验证集,剩余四分之三作为训练集。以历史S=4时刻的日期编码、时间编码、功率和未来Q个时刻的日期编码、时间编码和Res-UNet预测的辐照度,预测未来Q个时刻的功率。
本发明实施例的有益效果在于:
(1)引入了卫星的SWR网格,弥补了分布式站点无辐照度测量的不足。
(2)相较于只考虑辐照度的时间相关,提出的Res-UNet模型考虑了辐照度的时空相关性。
(3)相较于只考虑历史与未来时刻的变化,功率编码器-解码器模块中日期和时间编码的引入可以有效学习光伏发电周期性。

Claims (5)

1.一种基于卫星云图的超短期分布式光伏功率预测方法,其特征在于,包括以下步骤:
以历史P个连续时刻的SWR矩阵SWR(T-D-P+1)~(T-D)为输入,采用Res-UNet模型输出D+Q个时刻的SWR矩阵SWRT-D+1~T+Q;其中,T为指定时刻,D为延时时刻,P为历史时刻,Q为未来时刻;
由矩阵SWRT-D+1~T+Q,得到SWRT-D+1~T+Q=SWRT-D+1~T||SWRT+1~T+Q,其中,||表示拼接符,SWRT+1~T+Q为对应的未来Q个时刻的SWR矩阵;通过对SWRT+1~T+Q中Q个时刻的SWR矩阵进行双线性插值,得到站点s未来Q个时刻的辐照度
Figure FDA0003497364530000015
所述SWR矩阵是分布于空间60N-60S,80E-160W,分辨率为0.05°x0.05°的辐照度网格,是逐10分钟序列数据;
以Res-UNet模型预测的
Figure FDA0003497364530000014
为输入,基于LSTM神经网络对分布式站点s未来Q个时刻功率进行预测;
在基于LSTM神经网络对分布式站点未来Q个时刻功率进行预测步骤中,通过日期编码和时间编码学习光伏发电周期性,实现更精准地预测;
一天和一年的秒数分别设置为:
day=24*60*60 (2)
year=365.2425*day (3)
将某一时刻t对应的时间戳设置为timestamp,通过正弦函数和余弦函数表达循环周期性,则有:
Figure FDA0003497364530000011
Figure FDA0003497364530000012
Figure FDA0003497364530000013
Figure FDA0003497364530000021
该时刻t对应的日期编码即为
Figure FDA0003497364530000022
时间编码为
Figure FDA0003497364530000023
所述以历史P个连续时刻的SWR矩阵SWR(T-D-P+1)~(T-D)为输入,采用Res-UNet模型输出D+Q个时刻的SWR矩阵SWRT-D+1~T+Q步骤;包括:
先根据经纬度,从SWR矩阵中,选取覆盖121个分布式电站的区域,即[222,222]大小的矩阵,然后放大到[256,256]大小,然后根据batch size整合8个SWR矩阵,按批次输入到Res-UNet网络的encoder中进行卷积计算。
2.根据权利要求1所述的方法,其特征在于,所述Res-UNet模型采用U-Net的编码器-解码器的结构,以及引入残差块结构。
3.根据权利要求2所述的方法,其特征在于,所述编码器部分由多个卷积-下采样-残差块结构的特征提取块堆叠而成,输入为历史P个时刻的SWR序列;每个特征提取块接受一个输入,应用两个3×3的卷积层,一个2×2的最大池化层以及3个残差块。
4.根据权利要求3所述的方法,其特征在于,所述解码器部分包含多个特征重建块,每个块将输入传递到由一个2×2的上采样层和3×3卷积层组成的上卷积模块,两个3×3的卷积层以及3个残差块;每次输入也被相应特征提取块的特征矩阵所附加即横跳连接;所述特征重建块的数量与特征提取块的数量相同;生成的映射通过另一个3×3的卷积层,输出特征矩阵的数量等于所需的预测目标的数量。
5.根据权利要求1所述的方法,其特征在于,采用双线性插值的方法可以估算得到地面站点s在t时刻的辐照度
Figure FDA0003497364530000024
双线性插值的公式如下:
Figure FDA0003497364530000025
Figure FDA0003497364530000031
其中,四个网格点的经纬度和辐照度分别为
Figure FDA0003497364530000032
地面站点经纬度为(lngs,lats),根据分布式站点周围网格点上的辐照度得到该站点s在t时刻辐照度的估算值
Figure FDA0003497364530000034
通过对SWRT+1~T+Q中Q个时刻的SWR矩阵进行双线性插值,则可得到站点s未来Q个时刻的辐照度
Figure FDA0003497364530000033
CN202110065167.6A 2021-01-18 2021-01-18 一种基于卫星云图的超短期分布式光伏功率预测方法 Active CN112766568B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110065167.6A CN112766568B (zh) 2021-01-18 2021-01-18 一种基于卫星云图的超短期分布式光伏功率预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110065167.6A CN112766568B (zh) 2021-01-18 2021-01-18 一种基于卫星云图的超短期分布式光伏功率预测方法

Publications (2)

Publication Number Publication Date
CN112766568A CN112766568A (zh) 2021-05-07
CN112766568B true CN112766568B (zh) 2022-03-15

Family

ID=75702860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110065167.6A Active CN112766568B (zh) 2021-01-18 2021-01-18 一种基于卫星云图的超短期分布式光伏功率预测方法

Country Status (1)

Country Link
CN (1) CN112766568B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113298303B (zh) * 2021-05-19 2021-12-28 河海大学 针对气象卫星云图动态注意域的光伏功率预测方法
CN113311512A (zh) * 2021-06-24 2021-08-27 中国气象局公共气象服务中心(国家预警信息发布中心) 基于卫星辐射产品的光伏电站太阳辐射短期预报方法
CN113487100B (zh) * 2021-07-19 2023-08-15 国网浙江省电力有限公司电力科学研究院 光伏发电出力全局精准预测方法及系统
CN114743072B (zh) * 2022-05-24 2023-01-31 中国科学院计算机网络信息中心 一种短期时间序列预测模型的训练方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170124694A1 (en) * 2015-11-04 2017-05-04 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Prediction system for short-term solar irradiance and method for operating the same
CN108280551A (zh) * 2018-02-02 2018-07-13 华北电力大学 一种利用长短期记忆网络的光伏发电功率预测方法
CN108734331A (zh) * 2018-03-23 2018-11-02 武汉理工大学 基于lstm的短期光伏发电功率预测方法及系统
CN111815038A (zh) * 2020-06-24 2020-10-23 山东大学 一种光伏超短期预测方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111754026B (zh) * 2020-05-28 2024-03-15 国网冀北电力有限公司 光伏电站群功率预测方法、装置、计算机设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170124694A1 (en) * 2015-11-04 2017-05-04 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Prediction system for short-term solar irradiance and method for operating the same
CN108280551A (zh) * 2018-02-02 2018-07-13 华北电力大学 一种利用长短期记忆网络的光伏发电功率预测方法
CN108734331A (zh) * 2018-03-23 2018-11-02 武汉理工大学 基于lstm的短期光伏发电功率预测方法及系统
CN111815038A (zh) * 2020-06-24 2020-10-23 山东大学 一种光伏超短期预测方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Weighted Res-UNet for High-quality Retina Vessel Segmentation;Xiao Xiao 等;《2018 9th International Conference on Information Technology in Medicine and Education (ITME)》;20181127;第1-5页 *
人工神经网络算法在光伏发电短期功率预测中的应用;张一平 等;《太阳能》;20190428;第1-7页 *

Also Published As

Publication number Publication date
CN112766568A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN112766568B (zh) 一种基于卫星云图的超短期分布式光伏功率预测方法
Heo et al. Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting
CN111652404B (zh) 一种全天气地表温度反演方法和系统
CN116128170B (zh) 一种光伏电站功率超短期预测方法、装置及相关设备
CN114549925A (zh) 一种基于深度学习的海浪有效波高时间序列预测方法
CN115113301B (zh) 一种基于多源数据融合的应急短临预报方法及系统
CN114021741A (zh) 一种基于深度学习的光伏电池板巡检方法
CN113984198B (zh) 一种基于卷积神经网络的短波辐射预测方法及系统
CN112598590B (zh) 基于深度学习的光学遥感时间序列影像重建方法及系统
CN112990553B (zh) 使用自注意机制和双线性融合的风电超短期功率预测方法
CN117058367A (zh) 高分辨率遥感影像建筑物语义分割方法及装置
CN116760031A (zh) 基于气象数据的高时间分辨率光伏功率预测方法和装置
CN116612393A (zh) 一种太阳辐射预测方法、系统、电子设备及存储介质
CN115760642A (zh) 一种用于太阳辐射预测的地基云图修复方法
CN113313180B (zh) 一种基于深度对抗学习的遥感图像语义分割方法
CN115840261A (zh) 一种台风降水短临预测模型优化及预测方法
CN111177652B (zh) 一种遥感降水数据的空间降尺度方法及系统
CN113537573A (zh) 基于双重时空特征提取的风电功率运行趋势预测方法
Nagem et al. Predicting solar flares by converting goes x-ray data to gramian angular fields (GAF) images
CN113919533A (zh) 一种基于人工智能的空气质量溯源预报方法
Karalasingham et al. Downscaling Surface Albedo to Higher Spatial Resolutions With an Image Super-Resolution Approach and PROBA-V Satellite Images
CN117493786B (zh) 一种对抗生成网络和图神经网络结合的遥感数据重构方法
CN117239744B (zh) 融合风云4号气象卫星数据的超短期光伏功率预测方法
Fu et al. Photovoltaic Power Prediction Based on Gray-scale Satellite Cloud Image and Optimized LSTM
CN116486278B (zh) 基于时空信息镶嵌的小时级臭氧估算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant