CN112763448A - 一种基于atr-ftir技术的米糠中多糖含量的快速检测方法 - Google Patents

一种基于atr-ftir技术的米糠中多糖含量的快速检测方法 Download PDF

Info

Publication number
CN112763448A
CN112763448A CN202110071956.0A CN202110071956A CN112763448A CN 112763448 A CN112763448 A CN 112763448A CN 202110071956 A CN202110071956 A CN 202110071956A CN 112763448 A CN112763448 A CN 112763448A
Authority
CN
China
Prior art keywords
rice bran
sample
polysaccharide
content
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110071956.0A
Other languages
English (en)
Inventor
丁超
丁海臻
刘强
倪小颖
张婷婷
赵思琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Finance and Economics
Original Assignee
Nanjing University of Finance and Economics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Finance and Economics filed Critical Nanjing University of Finance and Economics
Priority to CN202110071956.0A priority Critical patent/CN112763448A/zh
Publication of CN112763448A publication Critical patent/CN112763448A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3572Preparation of samples, e.g. salt matrices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于ATR‑FTIR技术的米糠中多糖含量的快速检测方法,该方法包括以下步骤:(1)定量称取经过去杂处理后的新鲜米糠,结合衰减全反射傅里叶变换红外光谱仪测量其光学性质。(2)随后立即采用气相色谱技术分析米糠中多糖含量。(3)基于偏最小二乘回归法,依据样品中多糖含量以及其光谱信息建立定量预测模型并选取最优的建模参数,确保回归预测模型的鲁棒性和稳定性。(4)开展独立实验,结合构建的ATR‑FTIR模型,开展盲样的米糠多糖含量的无损检测。本发明可以实现基于近红外光谱技术的米糠中木糖、阿拉伯糖等多糖组分的无损定量检测,检测精度Rp2>0.90、RPD>2.0,大大提升了米糠中多糖含量检测的时效性。

Description

一种基于ATR-FTIR技术的米糠中多糖含量的快速检测方法
技术领域
本发明属于农产品加工与储藏技术领域,尤其涉及一种基于ATR-FTIR技术的米糠中多糖含量的快速检测方法。
背景技术
米糠是稻谷加工过程中的主要副产物,主要由果皮、种皮、外胚乳、糊粉层和胚组成。我国年产米糠近1000万t,是一种量大、价廉、营养丰富的谷物加工副产品。稻谷中近64%的营养素集中在米糠中,米糠多糖是米糠中最具开发价值的功能成分之一,其由木糖、半乳糖、甘露糖、鼠李糖、阿拉伯糖和葡萄糖等多种单糖构成。具有抗氧化、抗肿瘤、调节免疫力、降血脂和降血糖等多种生理功能活性,是生产保健食品的良好原料。
然而目前对于米糠中多糖含量的测量,大多通过前处理后通过化学方式测量得到,前处理复杂,操作步骤繁琐,时效性低,无法满足加工过程中品质变化的快速评价。已有相关的多糖测定法有GB/T 5513-2019 粮油检验粮食中还原糖和非还原糖测定以及中国专利一种简单有效的桑叶多糖检测方法 (CN105806793B),两者均需要先对多糖进行提取后测量,过程较为繁琐。因此,开发一种适合评价米糠稳定化过程中快速无损检测方式,是推动粮食副产物利用技术发展的重要途径。
光谱无损检测技术作为一种重要的无损检测手段,可以用于复杂化学成分的快速定量分析。其中,衰减全反射傅里叶变换红外光谱(ATR-FTIR)分析技术可以通过对干涉图傅里叶转化实现光谱的特征精确表达,测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。化学物质中不同功能键对应的红外光谱共振、吸收频率/倍频等存在差异,可以用于判定官能团数量和类型并进行化学成分表征,甚至可以用于特征成分的鉴定和定量分析。基于衰减全反射傅里叶变换红外光谱(ATR-FTIR)分析技术的检测方法具有前处理简单、检测效率高及非破坏等优势,该方法现已广泛地应用于有机化学、无机化学、生物催化、石油化工、材料科学、医药和环境等领域。因此,利用ATR-FTIR分析技术,建立米糠多糖的快速检测方法体系,特别是加工过程中品质过程无损检测,对于米糠的深度开发和综合利用具有重要意义。
发明内容
本发明的目的在于提供一种基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,解决上述背景技术中米糠多糖检测过程中存在的问题以及现有技术的不足之处。
本发明是这样实现的,一种基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,该方法包括以下步骤:
步骤一、定量称取经过去杂处理后的新鲜米糠,结合衰减全反射傅里叶变换红外光谱仪测量其光学性质。
步骤二、随后立即采用气相色谱技术分析米糠中多糖含量。
步骤三、基于偏最小二乘回归法,依据样品中多糖含量以及其光谱信息建立定量预测模型并选取最优的建模参数,确保回归预测模型的鲁棒性和稳定性。
步骤四、开展独立实验,结合构建的ATR-FTIR模型,开展盲样的米糠多糖含量的无损检测。本发明可以实现基于近红外光谱技术的米糠中木糖、阿拉伯糖等多糖组分的无损定量检测,检测精度Rp2>0.90、 RPD>2.0,大大提升了米糠中多糖含量检测的时效性。
步骤五、利用之前建立的模型,基于待测的米糠光学性质信息输出其多糖含量。在优选的实施方式中,所述步骤(1)中的所述米糠过60目筛以保证样品均一性。
在优选的实施方式中,所述步骤(2)中的所述米糠为红外辐射过程中样品,处理后采用衰减全反射傅里叶红外光谱技术获取了样品的红外光谱信号,辐射处理时间为0-60s,光谱采集范围3000-10000cm-1,分辨率4cm-1,扫描次数64次。
在优选的实施方式中,所述步骤(2)中,将傅里叶红外变换光谱仪预热30分钟后,取大约1g米糠样品,与溴化钾一起磨碎后压片,重复三次,取其平均光谱用于后期化学计量学模型构建。
在优选的实施方式中,所述步骤(3)中,采用偏最小二乘回归(Partial LeastSquares Regression,PLSR) 分析方法,PLS算法基本原理与PCA类似,通过数据变换后,可将原有数据重新投影成正交、互不相关的隐含变量(LatentVariables,LVs)。但区别在于建模时,PLS算法同时对自变量X和因变量Y进行分解,并探讨自变量与因变量间的关联性。主要步骤包括
(1)构建原始数据矩阵,包括n个样本m个自变量的矩阵(n×m)和目标特性矩阵(Y,n×m)并分解。
X=AM+B;Y=CN+D
(2)将得分矩阵A和C进行线性回归,得关系矩阵E。
C=AE;E=AC(AC)-1
(4)对未知Y的样本预测时,通过对自变量矩阵Xp和校正得到的Py求出未知样本X矩阵的得分Ap,并进一步得到Yp
Yp=Ap EN
本文中米糠多糖光学数据存在高维度、变量相关性大等情况,应用PLS算法可以优先解决较高相关性的数据并建立回归预测模型,适合处理米糠多糖光学数据并建立米糠多糖含量预测模型。
在优选的实施方式中,所述步骤(3)中,根据K-S邻近算法选取四分之三容量的样本作为建模集,
其余四分之一样本集作为预测集,构建化学计量学模型。原理如下:
(1)计算所有样本两两之间欧式距离,值最大的两个样本分别标记样本1和样本2,归入验证集;
(2)计算所有剩余样本与验证集已有样本的欧氏距离,距离值最小的样本3归入验证集;
(3)寻找剩余所有样本分别与样本1,样本2和样本3对应的最小欧式距离的样本,再分别对比这三个对应的样本,欧氏距离相对最大的进入验证集,设为样本4;
(4)重复操作,直至选出目标验证集数目样本。
在米糠多糖预测模型建立过程中,实验先收集了120个样本的光学性质信息以及化学含量数据,用以模型建立;再次独立收集了30个样本的光学性质信息以及化学含量数据,用以模型验证。
在优选的实施方式中,所述步骤(3)中依据建模的相对分析误差(RPD)对于模型实用性进行分析, RPD越大说明稳健性越高,当RPD≥2.0时说明模型预测效果较好,否则应进行多次重复实验,直至建模效果达到预期。将样品中经过不同辐照时长处理的米糠多糖实际含量作为自变量x,将经过偏最小二乘回归法得到的米糠多糖的预测含量水平作为因变量y,建立化学计量学模型,对应模型评价参数包括决定系数R2,均方根误差RMSE和相对分析误差RPD。
Figure RE-GSB0000192451330000031
Figure RE-GSB0000192451330000032
Figure RE-GSB0000192451330000033
在优选的实施方式中,所述步骤(3)中,预测模型和分类模型建立均采用Matlab软件PLS_toolbox 7.5 工具箱;所有图形绘制采用Origin 9.0软件。
相比于现有的米糠多糖检测方法存在的缺点或不足,本发明的优点在于:可以实现基于近红外光谱技术的米糠多糖含量无损定量检测,大大提升了米糠多糖检测过程中的时效性,对于米糠的进一步开发和利用具有重要的意义。
附图说明
“图1,图2是本发明一个实施例中,所建米糠阿拉伯糖和木糖模型预测值与实际值偏差图。图1是米糠多糖中木糖含量建模预测值与真实值,图2是米糠多糖中阿拉伯糖含量建模预测值与真实值。
图3,图4是本发明一个实施例中,模型建造时RMSE和LVs的关系变化图,选取标注点作为建模参数。图3是建模过程中米糠木糖RMSE与LVs关系图,图4是建模过程中米糠阿拉伯糖RMSE与LVs关系图。
具体实施方式
现结合以下实施例对本发明做进一步的说明,所述实施例,只是对本发明起到解释与说明的作用,并不能限定本发明。凡是在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
实施例1
1、原料选取
选用收获时间小于7天,水分含量小于17%(湿基),无霉变虫咬的健康稻谷作为实验对象。
2、分别使用
(1)稻谷经脱壳后,碾米制成米糠并过60目筛备用。
(2)立即采用气相色谱技术分析米糠中多糖含量;
(3)将傅里叶红外变换光谱仪预热30分钟后,取大约1g米糠样品,与溴化钾一起磨碎后压片,重复三次,取其平均光谱进用于后期化学计量学模型构建,对每一条光谱进行多元散射校正;
(4)依据建模的相对分析误差(RPD)对于模型实用性进行分析,RPD越大说明稳健性越高,当RPD≥2.0 时说明模型预测效果较好,否则应进行多次重复实验,补充实验样本量,扩大模型的说服力。
实施例2
该实施例与上述实施例1基本相同,差别之处在于:
步骤(1)中,将处理条件设置为过100目筛。
实施例3
该实施例与上述实施例1基本相同,差别之处在于:
在步骤(4)中,将预热时间设置为35min。
对比实施例
选取上述1~3中不同处理条件下的得到的米糠样品,分别测量其光学性质和多糖含量。然后分析不同实施例中建模效果,结果如图一、二中所示,模型预测值与实际测量值相差较小,说明具有较为良好的预测效果。从图三,图四中可以看出,RMSE值与LVs值的关系分布图,选取其中标注点作为建模参数,此时相对效果较好。

Claims (8)

1.一种基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,其特征在于,该方法包括以下步骤:
步骤一、定量称取经过去杂处理后的新鲜米糠,结合衰减全反射傅里叶变换红外光谱仪测量其光学性质。
步骤二、随后立即采用气相色谱技术分析米糠中多糖含量。
步骤三、基于偏最小二乘回归法,依据样品中多糖含量以及其光谱信息建立定量预测模型并选取最优的建模参数,确保回归预测模型的鲁棒性和稳定性。
步骤四、根据完善后的模型,通过外部实验进行模型预测精度验证,并采用盲样进行准确性分析。
步骤五、利用之前建立的模型,基于待测的米糠光学性质信息输出其多糖含量。
2.如权利要求1所述的基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,其特征在于,在步骤(1)中,所述米糠过60目筛以保证样品均一性。
3.如权利要求1所述的基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,其特征在于,在步骤(2)中,所述米糠为红外辐射过程中样品,处理后采用衰减全反射傅里叶红外光谱技术获取了样品的红外光谱信号,辐射处理时间为0-60s,光谱采集范围为3000-10000cm-1,分辨率4cm-1,扫描次数64次。
4.如权利要求1所述的基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,其特征在于,在步骤(3)中,将傅里叶红外变换光谱仪预热30分钟后,取大约1g米糠样品,与溴化钾一起磨碎后压片,重复三次,取其平均光谱进用于后期化学计量学模型构建。
5.如权利要求1所述的基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,其特征在于,在步骤(3)中,采用偏最小二乘回归(Partial Least Squares Regression,PLSR)分析方法,PLS算法基本原理与PCA类似,通过数据变换后,可将原有数据重新投影成正交、互不相关的隐含变量(Latent Variables,LVs)。但区别在于建模时,PLS算法同时对自变量X和因变量Y进行分解,并探讨自变量与因变量间的关联性,主要步骤包括
(1)构建原始数据矩阵,包括n个样本m个自变量的矩阵(n×m)和目标特性矩阵(Y,n×m)并分解。
X=AM+B;Y=CN+D
(2)将得分矩阵A和C进行线性回归,得关系矩阵E。
C=AE;E=AC(AC)-1
(3)对未知Y的样本预测时,通过对自变量矩阵Xp和校正得到的Py求出未知样本X矩阵的得分Ap,并进一步得到Yp
Yp=ApEN
本文中米糠多糖光学性质数据存在高维度、变量相关性大等情况,应用PLS算法可以优先解决较高相关性的数据并建立回归预测模型,适合处理米糠多糖光学数据并建立米糠多糖含量预测模型。
6.如权利要求1所述的基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,其特征在于,在步骤(3)中,根据K-S邻近算法选取四分之三容量的样本作为建模集,其余四分之一样本集作为预测集,构建化学计量学模型。原理如下:
(1)计算所有样本两两之间欧式距离,值最大的两个样本分别标记样本1和样本2,归入验证集;
(2)计算所有剩余样本与验证集已有样本的欧氏距离,距离值最小的样本3归入验证集;
(3)寻找剩余所有样本分别与样本1,样本2和样本3对应的最小欧式距离的样本,再分别对比这三个对应的样本,欧氏距离相对最大的进入验证集,设为样本4;
(4)重复操作,直至选出目标验证集数目样本。
在米糠多糖预测模型建立过程中,实验先收集了120个样本的光学性质信息以及化学含量数据,用以模型建立;再次独立收集了30个样本的光学性质信息以及化学含量数据,用以模型验证。
7.如权利要求1所述的基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,其特征在于,在步骤(3)中,依据建模的相对分析误差(RPD)对于模型实用性进行分析,RPD越大说明稳健性越高,当RPD≥2.0时说明模型预测效果较好,否则应进行多次重复实验,直至建模效果达到预期。将样品中的米糠多糖实际含量作为自变量x,将经过偏最小二乘回归法得到的米糠多糖的预测含量水平作为因变量y,建立化学计量学模型,对应模型评价参数包括决定系数(R2),均方根误差(RMSE)、预测均方根误差(RMSEP)、和相对分析误差(RPD)。
Figure FSA0000231198400000021
Figure FSA0000231198400000022
Figure FSA0000231198400000023
8.如权利要求1所述的基于ATR-FTIR技术的米糠中多糖含量的快速检测方法,其特征在于,在步骤(3)中,预测模型和分类模型建立均采用Matlab软件PLS_toolbox 7.5工具箱;所有图形绘制采用Origin 9.0软件。
CN202110071956.0A 2021-01-19 2021-01-19 一种基于atr-ftir技术的米糠中多糖含量的快速检测方法 Pending CN112763448A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110071956.0A CN112763448A (zh) 2021-01-19 2021-01-19 一种基于atr-ftir技术的米糠中多糖含量的快速检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110071956.0A CN112763448A (zh) 2021-01-19 2021-01-19 一种基于atr-ftir技术的米糠中多糖含量的快速检测方法

Publications (1)

Publication Number Publication Date
CN112763448A true CN112763448A (zh) 2021-05-07

Family

ID=75703269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110071956.0A Pending CN112763448A (zh) 2021-01-19 2021-01-19 一种基于atr-ftir技术的米糠中多糖含量的快速检测方法

Country Status (1)

Country Link
CN (1) CN112763448A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160234A (zh) * 2021-11-17 2022-03-11 长沙荣业软件有限公司 碾米生产工艺控制方法及米珍生产线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445217A (zh) * 2015-07-27 2016-03-30 南京财经大学 基于衰减全反射傅里叶变换红外光谱技术的糙米中黄曲霉毒素含量的快速检测方法
CN109221871A (zh) * 2018-10-24 2019-01-18 南京财经大学 一种红外辐射辅助米糠快速稳定的方法
CN110749575A (zh) * 2019-10-17 2020-02-04 夏永刚 一种中药多糖二维红外光谱鉴别预测模型及其构建方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445217A (zh) * 2015-07-27 2016-03-30 南京财经大学 基于衰减全反射傅里叶变换红外光谱技术的糙米中黄曲霉毒素含量的快速检测方法
CN109221871A (zh) * 2018-10-24 2019-01-18 南京财经大学 一种红外辐射辅助米糠快速稳定的方法
CN110749575A (zh) * 2019-10-17 2020-02-04 夏永刚 一种中药多糖二维红外光谱鉴别预测模型及其构建方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苏珊尼尔森: "食品分析第5版", vol. 1, 31 May 2019, 中国轻工业出版社, pages: 120 - 126 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160234A (zh) * 2021-11-17 2022-03-11 长沙荣业软件有限公司 碾米生产工艺控制方法及米珍生产线
CN114160234B (zh) * 2021-11-17 2022-11-01 长沙荣业软件有限公司 碾米生产工艺控制方法及米珍生产线

Similar Documents

Publication Publication Date Title
Fan et al. Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method
Zhang et al. Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm
Zhao et al. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat
CN102879353B (zh) 近红外检测花生中蛋白质组分含量的方法
CN108680515B (zh) 一种单粒水稻直链淀粉定量分析模型构建及其检测方法
CN111157511B (zh) 一种基于拉曼光谱技术的鸡蛋新鲜度无损检测方法
Xiao et al. Discrimination of organic and conventional rice by chemometric analysis of NIR spectra: a pilot study
CN108169165B (zh) 基于太赫兹光谱和图像信息融合的麦芽糖混合物定量分析方法
WO2020248961A1 (zh) 一种无参考值的光谱波数选择方法
Ning et al. Rapid evaluation of soil fertility in tea plantation based on near-infrared spectroscopy
CN108613943B (zh) 一种基于光谱形态转移的近红外单籽粒作物成分检测方法
Jiang et al. Comparison of wavelength selected methods for improving of prediction performance of PLS model to determine aflatoxin B1 (AFB1) in wheat samples during storage
Yu et al. Rapid and nondestructive freshness determination of tilapia fillets by a portable near-infrared spectrometer combined with chemometrics methods
Wang et al. Extraction and classification of origin characteristic peaks from rice Raman spectra by principal component analysis
Wang et al. Determination of polysaccharide content in shiitake mushroom beverage by NIR spectroscopy combined with machine learning: A comparative analysis
Liu et al. Research on the online rapid sensing method of moisture content in famous green tea spreading
Tian et al. Quantitative detection of crude protein in brown rice by near-infrared spectroscopy based on hybrid feature selection
CN112763448A (zh) 一种基于atr-ftir技术的米糠中多糖含量的快速检测方法
Sun et al. Nondestructive identification of barley seeds varieties using hyperspectral data from two sides of barley seeds
Liu et al. Non-destructive detection of single corn seed vigor based on visible/near-infrared spatially resolved spectroscopy combined with chemometrics
Zhao et al. Fast detection of the tenderness of mulberry leaves by a portable near-infrared spectrometer with variable selection
CN106706554A (zh) 一种快速无损测定玉米单穗籽粒直链淀粉含量的方法
Sun et al. Improved partial least squares regression for rapid determination of reducing sugar of potato flours by near infrared spectroscopy and variable selection method
CN107796779A (zh) 橡胶树叶片氮素含量的近红外光谱诊断方法
CN102519903B (zh) 一种近红外光谱测定双孢蘑菇白度值的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination