CN112752960B - 确定电气或电子系统的特征温度 - Google Patents

确定电气或电子系统的特征温度 Download PDF

Info

Publication number
CN112752960B
CN112752960B CN201980062221.2A CN201980062221A CN112752960B CN 112752960 B CN112752960 B CN 112752960B CN 201980062221 A CN201980062221 A CN 201980062221A CN 112752960 B CN112752960 B CN 112752960B
Authority
CN
China
Prior art keywords
tsep
model
temperature
value
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980062221.2A
Other languages
English (en)
Other versions
CN112752960A (zh
Inventor
A·布莱恩特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reinhausen Machinery Manufacturing Co ltd
Original Assignee
Reinhausen Machinery Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reinhausen Machinery Manufacturing Co ltd filed Critical Reinhausen Machinery Manufacturing Co ltd
Publication of CN112752960A publication Critical patent/CN112752960A/zh
Application granted granted Critical
Publication of CN112752960B publication Critical patent/CN112752960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/10Thermometers specially adapted for specific purposes for measuring temperature within piled or stacked materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • G01K2007/422Dummy objects used for estimating temperature of real objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2217/00Temperature measurement using electric or magnetic components already present in the system to be measured

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Conversion In General (AREA)

Abstract

一种用于确定电气或电子系统的特征温度(Tj)的方法包括在操作期间测量所述系统的特征参数,并且基于热模型(M_th)和测量的参数的第一子集来估计温度(Tj)。基于TSEP模型(M_TSEP)和估计的特征温度(Tj)来预测TSEP的第一值(V1)。基于测量的参数的第二子集来确定TSEP的第二值(V2)。比较第一值和第二值(V1、V2),并且基于比较的结果来适配模型(M_TSEP、M_th)。

Description

确定电气或电子系统的特征温度
本发明涉及一种用于确定电气或电子系统的特征温度的方法以及一种电气或电子系统。
在电气或电子系统或装置中,由于特定的特征温度对例如可靠性、寿命或劣化率的影响,因而特征温度会引起特别的关注。在某些情况下,超过一定绝对限制的特征温度也会导致装置或系统的破坏。因此,在系统或装置的操作期间确定或监视特征温度可能是至关重要的或者至少是期望的。
然而,在许多情况下,例如,由于恶劣的环境,直接测量关注的特征温度可能不切实际或不可行。特别地,功率半导体装置的结温可能是这种情况,因为在操作期间它们通常是“带电”的且处于高噪声环境中。其它示例包括功率变压器或电抗器的绕组温度或者有载分接开关内的特征温度,例如电阻温度。
间接估计这种特征温度的现有方法需要对每个单独的系统或装置进行事先校准,这在工业应用中是不切实际的,尤其是在半导体装置的情况下实际上是不可能的。其它方法需要特定的实验室设置或者系统或装置的专用操作模式,在某些情况下还需要特定的兼容负载。
因此,本发明的目的是提供一种用于确定电气或电子系统的特征温度的改进构思,其可以在系统或装置的正常操作期间执行且不需要在操作之前进行校准。
该目的通过独立权利要求的主题来实现。进一步的实施方式和实施例是从属权利要求的主题。
改进构思基于以下思想:通过基于系统的热模型来估计特征温度,并且基于TSEP模型和热模型的输出预测系统的温度敏感电气参数TSEP的第一值,来实现系统的自动校准或自校准。将第一值与基于测量的TSEP的第二值进行比较。然后,适配热模型和/或TSEP模型以将TSEP的这两个值匹配。
根据改进构思,提供了一种用于确定电气或电子系统的特征温度的方法。该方法包括在系统操作期间测量系统的一个或多个特征参数,尤其是电气参数和/或热参数和/或温度,并且基于系统的热模型和测量的参数的第一子集来估计系统的特征温度。然后,基于TSEP模型和估计的特征温度来预测TSEP的第一值。基于测量的参数的第二子集来确定TSEP的第二值。然后,比较TSEP的第一值与TSEP的第二值,并且基于比较结果来适配热模型和/或TSEP模型。
第一子集和第二子集可以分别包含一个或多个参数。这些子集可以重叠或不相交。可替换地,这些子集可以相同,尤其是可以相同且分别仅包含一个参数。
TSEP模型可以是预定模型。热模型也是如此。热模型可以包含用于确定系统的热阻抗的模型。热模型可以例如基于或包括有限元方法、降阶模型、热电阻-电容网络模型。特别地,降阶模型或热电阻-电容网络模型可以被拟合为有限元模型。
在操作期间执行该方法(尤其是测量),意指在系统预期的正常或生产操作期间执行该方法。特别地,在系统或装置的生产期间,既不必在测试环境中执行,也不必在操作的专用校准模式中执行。
在一些实施方式中,该方法包括例如在系统的初始操作(尤其是初始正常操作)之前,通过训练序列来运行电气或电子系统或其一部分。根据改进构思,训练序列可以提高自动校准的收敛性。
TSEP是系统的TSEP,尤其是包括在所述系统中的电气或电子装置的TSEP。
例如,适配TSEP模型可以意指适配用于基于特征温度来预测TSEP的参数,例如拟合参数或回归参数。
例如,适配热模型可以意指适配用于确定热阻抗的参数。
例如,比较TSEP的第一值和第二值可以包括确定这些值之间的差。例如,比较的结果可以包括该差。
通过根据所述改进构思的方法,克服了基于热建模的温度仿真和基于测量的TSEP的温度估计这两种方法的缺点。特别地,不比较由这两种方法得到的特征温度,而代替的是比较相应的TSEP值。通过这种方式,摆脱了需要基于测量的TSEP来校准温度估计。推导TSEP的第二值的准确度在系统的整个生命周期中都不会改变,因此将正确地跟踪电气参数和热参数的任何变化,例如由于劣化或测量电路漂移而引起的变化。另一方面,推导TSEP的第一值将正确地反映环境温度或者系统的影响系统的特征温度和例如功率损耗的其它温度。这可以被视为使用热模型来校准TSEP,或者使用测量来保持对热模型的正确跟踪。无论哪种方式都表征了整个电热系统,即,既进行了有效的电气校准又进行了热表征。
例如,该方法的最终结果可以由特征温度给出,该特征温度在匹配TSEP的第一值和第二值的情况下将是有效的。
根据几个实施例,该方法包括基于另一TSEP模型和估计的特征温度来预测另一TSEP的第一值,尤其是系统或系统的装置的另一TSEP的第一值。基于测量的参数的第二子集来确定另一TSEP的第二值。将另一TSEP的第一值与另一TSEP的第二值进行比较。基于另一TSEP的第一值与第二值的比较结果以及TSEP的第一值和第二值的比较结果来适配热模型或TSEP模型。
通过适配所述模型来匹配两个独立的TSEP,可以进一步提高温度估计的准确度。
根据几个实施例,该方法还包括至少重复以下步骤:测量特征参数,估计特征温度以及预测特征温度的第一值。对于重复,使用适配的热模型代替热模型,并且/或者使用适配的TSEP模型代替TSEP模型。
为了改进温度估计,可以将重复的步骤重复几次。对于每次重复,使用先前重复的适配的热模型或TSEP模型。例如,可以重复所重复的步骤,直到TSEP的第一值和第二值之间的差小于预定的阈值,并且,如果适用,另一TSEP的第一值和第二值之间的差小于预定的另一阈值。
根据几个实施例,特征温度是包括在所述系统中的电气或电子装置的特征温度。
根据几个实施例,电气或电子系统是电力电子系统,例如功率转换器,并且特征温度是包括在所述系统中的功率半导体装置的特征温度,尤其是结温。
根据几个实施例,一个或多个测量的特征参数的第一子集包括功率半导体装置的导通状态(即正向)电流和/或功率半导体装置的导通状态(即正向)电压和/或功率半导体装置的断开状态电压和/或功率半导体装置在相应测量间隔内的总导通状态持续时间和/或功率半导体装置在相应测量间隔内的总断开状态持续时间和/或电力电子系统的参考温度。
根据几个实施例,参考温度是电力电子系统的基板温度或热敏电阻温度。
根据几个实施例,一个或多个测量的特征参数的第二子集包括功率半导体装置的导通状态电流和/或导通状态电压。
根据几个实施例,TSEP和/或另一TSEP由功率半导体装置的导通状态电压(尤其是在功率半导体装置的预定导通状态电流处)、功率半导体装置的栅极阈值电压、功率半导体装置的内部栅极电阻或者功率半导体装置的特征开关参数(尤其是在预定导通状态电压或断开状态电压或导通状态电流处)给出。
在一些实施方式中,特征开关参数由电流相对于时间的变化率di/dt、电压相对于时间的变化率dv/dt、开关峰值电流或开关峰值电压给出。
根据几个实施例,估计特征温度的步骤包括确定由于装置引起的功率耗散以及将功率耗散用作热模型的输入。
根据几个实施例,功率耗散包括功率半导体装置的开关功率耗散和/或传导功率耗散。
根据几个实施例,估计特征温度的步骤包括确定由于系统的另一装置或另几个装置引起的交叉耦合功率耗散,以及使用交叉耦合功率耗散作为热模型的输入,尤其是作为热模型的另一输入。
根据改进构思,还提供了一种电气或电子系统。该系统包括电气或电子装置、测量单元和计算单元。测量单元被配置为在电气或电子系统的操作期间测量装置的一个或多个特征参数。
计算单元被配置为基于系统的热模型和测量的参数的第一子集来估计装置的特征温度,基于TSEP模型和估计的特征温度来预测TSEP的第一值,基于测量的参数的第二子集来确定TSEP的第二值,比较TSEP的第一值和第二值,以及基于比较结果来适配热模型或TSEP模型。
根据几个实施例,电气或电子系统包括变压器,尤其是电力变压器,例如,其填充有绝缘剂,尤其是液体绝缘剂。电气或电子装置包括变压器的绕组,并且特征温度由变压器的绕组温度(尤其是热点绕组温度)给出。
根据几个实施例,电气或电子系统包括电抗器(例如并联电抗器)或者电感器(例如填充有隔离介质的电感器)。电气或电子装置包括电抗器的绕组,并且特征温度由电抗器的绕组温度(尤其是热点绕组温度)给出。
根据几个实施例,电气或电子系统包括有载分接开关,例如电阻类型的有载分接开关。特征温度由有载分接开关内的温度(例如,有载分接开关的电阻的温度)给出。
根据几个实施例,电气或电子系统包括电力电子系统,并且电气或电子装置包括功率半导体装置。特征温度由功率半导体装置的结温给出。
根据几个实施例,功率半导体包括晶体管,例如,绝缘栅双极型晶体管IGBT,或者双极结型晶体管BJT,或者MOS场效应晶体管MOSFET,或者结型场效应晶体管JFET,或者高电子迁移率晶体管HEMT。
根据几个实施例,功率半导体包括晶闸管或二极管,例如肖特基二极管或PIN二极管。
根据几个实施例,电力电子系统包括功率转换器,并且功率转换器包括功率半导体装置。
根据几个实施例,电力电子系统包括固态断路器、固态继电器、晶闸管开关或静态VAR补偿器,其包括功率半导体装置。
根据改进构思的电气或电子系统的其他实施方式和实施例容易地从根据改进构思的方法的各种实施方式和实施例得到,反之亦然。特别地,可以相应地实现针对电气或电子系统描述的单个或几个部件或布置以根据改进的系统执行方法。
在下文中,参照附图针对示例性实施方式来详细解释本发明。在功能上相同或具有相同效果的部件可以用相同的附图标记表示。相同的部件或具有相同功能或效果的部件可以仅针对其首次出现的附图进行描述。在后续附图中不必重复其描述。
在附图中,
图1示出了根据改进构思的方法的示例性实施方式的流程图。
图2A示出了根据改进构思的电气或电子系统的示例性实施例的框图。
图2B示出了根据改进构思的电气或电子系统的另一示例性实施例的框图;以及
图3示出了根据改进构思的电气或电子系统的另一示例性实施例的框图。
图1示出了根据改进构思的方法的示例性实施方式的流程图。
在示出的示例性且非限制性情况下,电气或电子系统包括具有功率半导体装置的功率转换器。然而,以下针对图1的讨论类似地适用于其它类型的电气或电子系统,例如针对图3所解释的。在功率转换器的操作期间,测量系统的一个或多个特征参数。在所示出的示例中,在持续时间Ti的预定测量间隔内测量功率转换器的参考温度Tb和功率转换器的多个电气参数,所述多个电气参数包括:功率半导体装置的总断开状态持续时间toff、功率半导体装置的总导通状态持续时间ton、功率半导体装置的导通状态电流Ion、功率半导体装置的断开状态电压Voff以及功率半导体装置的导通状态电压Von
例如,根据导通状态持续时间ton和断开状态持续时间toff、导通状态电流Ion以及断开状态电压Voff来确定开关功率损耗PSW
例如,根据导通状态持续时间ton和断开状态持续时间toff、导通状态电流Ion以及导通状态电压Von,例如基于其关系来确定传导功率损耗Pcond
可以将传导功率损耗Pcond和开关功率损耗PSW相加,并且它们的和可以用作热模型M_th的输入。该和对应于由于功率半导体装置的自发热Psh而引起的功率耗散。可选地,可以确定由于功率转换器的另外的装置引起的、可能影响功率半导体装置的结温Tj的交叉耦合功率耗散Pcc,并且其可以用作热模型M_th的附加输入。
热模型M_th的输出可以表示结温Tj与参考温度Tb之间的温度差Tj-b,例如,参考温度Tb可以是功率转换器的基板温度或内部热敏电阻的温度。因此,可以将参考温度Tb与热模型M_th的输出相加,从而估计结温Tj
然后,估计的结温Tj可以用作TSEP模型M_TSEP的输入。TSEP模型M_TSEP的输出表示功率转换器(尤其是功率半导体装置)的一个或多个TSEP的第一值V1。一个或多个TSEP可以包括功率半导体装置的导通状态电压Von、栅极阈值电压、内部栅极电阻和/或特征开关参数。
例如,TSEP模型M_TSEP可以利用以下事实:在功率半导体装置的稳定状态下,结温Tj的变化率等于参考温度Tb的变化率,以实现恒定的功率耗散。因此,结温Tj可以以偏移随着参考温度Tb而变化。该偏移可以对应于相应热阻乘以恒定功率耗散。此外,导通状态电压Von也随着温度变化率而变化,但存在比例因子。
一个或多个TSEP的第二值V2是从测量的参数的子集获得的,在示出的示例中是从导通状态电流Ion和/或导通状态电压Von获得的(参见计算框CALC)。在简单示例中,第二值V2仅取决于导通状态电压Von,或者可以等于导通状态电压Von。在后一种情况下,不需要计算步骤CALC。然而,在更复杂的TSEP的可替代情况下,也可能需要例如功率半导体装置的开关参数、导通状态电流Ion和计算步骤CALC。
分别相互比较TSEP的第一值V1和第二值V2,尤其是确定相应的差。根据该差,适配热模型M_th的热参数P_th和/或TSEP模型M_TSEP的TSEP参数P_TSEP并将其用于相应地适配模型M_th、M_TSEP。
在第一值V1与第二值V2之间的差足够小(例如都落在相应的阈值以下)的情况下,可以将结温Tj视为结温确定的最终结果。否则,可以基于适配的模型M_th、M_TSEP等再次确定结温Tj
图2A示出了根据改进构思的电气或电子系统的示例性实施例的框图。
该系统包括功率转换器PC,该功率转换器PC包含一个或多个(为简化起见仅示出一个)功率半导体装置PS,例如IGBT、BJT、MOSFET、HEMT、JFET、晶闸管或二极管。仅作为非限制性示例将IGBT的电路符号示于图2A中。
功率转换器PC还包括用于确定功率转换器PC(尤其是功率半导体装置PS)的电气参数的测量单元MU,所述电气参数包括例如针对图1解释的一个或多个测量的参数。
功率转换器PC还包括用于执行针对图1描述的一个或多个计算步骤的计算单元CU。
计算单元CU和测量单元MU例如可以包括在功率转换器PC的驱动单元(未示出)或控制单元(未示出)中,或者可以是功率转换器PC的单独电路(未示出)的一部分。
图2B示出了根据改进构思的电气或电子系统的另一示例性实施例的框图。
除了计算单元CU和测量单元MU的布置之外,图2B的系统与图2A的系统相同。特别地,计算单元CU和测量单元MU不是功率转换器PC的一部分,而是包括在耦合至功率转换器PC的电路C中。该电路可以例如包括包含计算单元CU的微处理器(未示出)。
图3示出了根据改进构思的电气或电子系统的另一示例性实施例的框图。
该系统包括具有箱体T的电力变压器或电抗器,尤其是并联电抗器。在箱体T内布置有一个或多个绕组W1、W2、W3。例如,箱体T可以被绝缘剂IM(例如变压器油)填充或部分地填充。
在这样的系统中,特征温度是绕组W1、W2、W3之一的绕组温度或热点温度。
相对于图1的讨论,绕组温度替换结温Tj。变压器或电抗器的环境温度或绝缘剂IM的温度可以替换图1的基板温度Tb。图1的总导通状态持续时间ton和总断开状态持续时间toff、导通状态电压Von和断开状态电压Voff以及导通状态电流Ion可以被影响变压器或电抗器的功率耗散的适当量替换。实际上,变压器或电抗器的热模型M_th的所有必要输入均视情况而定,并且是本领域技术人员已知的或者可直接导出的。用于针对其确定第一值V1和第二值V2的TSEP可以被变压器或电抗器的任何温度敏感参数(例如,绕组W1、W2、W3之一的电阻)替换。
通过这些或其它合适的替换,对于变压器或电抗器,也可以类似地执行针对图1描述的方法。
通过相应的合适的替换,对于有载分接开关,也可以类似地执行针对图1所描述的方法。
通过根据该改进构思的方法或系统,可以在没有事先校准的情况下并且在系统正常操作期间确定电气或电子系统的特征温度。这是通过使用仿真和估计的混合方法来实现的。强制使TSEP的确定的值匹配会导致基于容易获得的量来表征整个系统。该改进构思广泛地适用于多种电气或电子系统,其仅需要对参数进行合适的选择。
在系统的整个生命周期中都实现对系统或装置的温度灵敏度的有效的重新校准。因此,在装置的整个生命周期中都跟踪电气参数和热参数的长期变化,这意指本质上提供了状况监视。
该改进构思的另一个优点是,除了对TSEP特征的近似估计之外,不需要事先获知装置特征。对TSEP特征的近似估计可依赖于所使用的数学模型,包括最小二乘拟合、自适应滤波、卡尔曼滤波和主成分分析。数据表参数也可能就足够了。
在功率转换器的情况下,不需要改变功率转换器模块,尤其是不需要模块内的额外连接或传感器。
根据改进构思的实施方式可涉及功率半导体装置的结温估计,其可实现下一代“智能”功率转换器中的几个特征,包括:动态评级控制(智能高估/低估)、优化的并联逆变器堆电流共享、状况监视(检测磨损和异常操作、提供预测性维护)、温度周期计数和剩余使用寿命估计、在开发和类型测试期间对逆变器堆设计的改进的验证、改进的过温检测。
给功率转换器制造商带来的好处可包括优化的性能(例如,额定电流或效率)与成本关系(例如,通过减少边际)。对功率转换器的最终用户的好处可包括及早检测到异常操作并潜在地降低操作成本。
为了演示在不使用改进构思的情况下缺乏校准的效果,以功率转换器中使用的IGBT的产品变型为例。通常,对于95%的生产批次,IGBT的导通状态电压降或栅极阈值电压的变化范围可能为±100mV或甚至更大。当与1-10mV/K的典型TSEP灵敏度结合时,这会给出10-100℃范围内的误差,从而将使结温估计毫无意义。这突显了改进构思的好处。
附图标记
Tb 基板温度
ton 总导通状态持续时间
toff 总断开状态持续时间
Ion 导通状态电流
Von 导通状态电压
Voff 断开状态电压
Tj 结温
Tj-b 温差
PSW 开关功率损耗
Pcond 传导功率损耗
Psh 自发热功率耗散
Pcc 交叉耦合功率耗散
V1,V2 TSEP的值
M_th 热模型
M_TSEP TSEP模型
CALC 计算步骤
P_th 热参数
P_TSEP TSEP参数
PC 功率转换器
CU 计算单元
MU 测量单元
C 电路
PS 功率半导体装置
T 箱体
IM 绝缘剂
W1,W2,W3 变压器或电抗器的绕组

Claims (14)

1.一种用于确定电气或电子系统的特征温度Tj的方法,其中,所述方法包括重复地执行以下步骤:
-在所述系统的操作期间,测量所述系统的一个或多个特征参数,测量的一个或多个特征参数包括第一子集和第二子集;
-基于所述系统的热模型M_th和测量的参数的所述第一子集来估计特征温度Tj
-基于温度敏感电气参数TSEP模型M_TSEP和估计的特征温度Tj来预测温度敏感电气参数TSEP的第一值V1,所述TSEP模型M_TSEP包括一个或多个TSEP模型参数,并且被配置为基于估计的特征温度Tj和所述TSEP模型参数来预测温度敏感电气参数TSEP的第一值V1;
-基于测量的参数的所述第二子集来确定TSEP的第二值V2;
-比较TSEP的第一值V1和第二值V2;
-基于比较的结果来适配热模型M_th或TSEP模型M_TSEP;以及
-使用适配的热模型代替热模型M_th,并且/或者,使用适配的TSEP模型代替TSEP模型M_TSEP。
2.根据权利要求1所述的方法,包括:
-基于另一TSEP模型和估计的特征温度Tj来预测另一TSEP的第一值V1;
-基于测量的参数的第二子集来确定所述另一TSEP的第二值V2;
-比较所述另一TSEP的第一值V1和第二值V2;
-其中,还基于所述另一TSEP的第一值V1与第二值V2的比较的结果来适配热模型M_th或TSEP模型M_TSEP。
3.根据权利要求1或2中的一项所述的方法,其中,特征温度Tj是包括在所述系统中的电气或电子装置的特征温度Tj
4.根据权利要求3所述的方法,其中:
-所述系统是电力电子系统;并且
-特征温度Tj是包括在所述系统中的功率半导体装置PS的特征温度Tj
5.根据权利要求4所述的方法,其中,第一子集包括以下参数中的至少一个:
-功率半导体装置PS的导通状态电流Ion
-功率半导体装置PS的导通状态电压Von
-功率半导体装置PS的断开状态电压Voff
-功率半导体装置PS在相应测量间隔内的总导通状态持续时间ton
-功率半导体装置PS在相应测量间隔内的总断开状态持续时间toff
-电力电子系统的参考温度Tb
6.根据权利要求4所述的方法,其中,第二子集包括功率半导体装置PS的导通状态电流Ion和/或导通状态电压Von
7.根据权利要求4所述的方法,其中,TSEP由以下给出:
-功率半导体装置PS的导通状态电压Von;或者
-功率半导体装置PS的栅极阈值电压;或者
-功率半导体装置PS的内部栅极电阻;或者
-功率半导体装置PS的特征开关参数。
8.根据权利要求4所述的方法,其中,估计特征温度Tj的步骤包括:
-确定由于装置PS引起的功率耗散Psh;以及
-使用功率耗散Psh作为热模型M_th的输入。
9.根据权利要求8所述的方法,其中,功率耗散Psh包括功率半导体装置PS的开关功率耗散PSW或传导功率耗散Pcond
10.根据权利要求3所述的方法,其中,估计特征温度Tj的步骤包括:
-确定由于系统的所述电气或电子装置与系统的另一装置之间的交叉耦合引起的交叉耦合功率耗散Pcc;以及
-使用交叉耦合功率耗散Pcc作为热模型M_th的输入。
11.一种电气或电子系统,包括:
-电气或电子装置;
-测量单元MU,被配置为在所述系统的操作期间测量所述装置的一个或多个特征参数,测量的一个或多个特征参数包括第一子集和第二子集;
-计算单元CU,被配置为重复地执行以下步骤:
-基于所述系统的热模型M_th和测量的参数的所述第一子集来估计所述装置的特征温度Tj
-基于温度敏感电气参数TSEP模型M_TSEP和估计的特征温度Tj来预测温度敏感电气参数TSEP的第一值V1,所述TSEP模型M_TSEP包括一个或多个TSEP模型参数,并且被配置为基于估计的特征温度Tj和所述TSEP模型参数来预测温度敏感电气参数TSEP的第一值V1;
-基于测量的参数的所述第二子集来确定TSEP的第二值V2;
-比较TSEP的第一值V1和第二值V2;
-基于比较结果来适配热模型M_th或TSEP模型M_TSEP;并且
-使用适配的热模型代替热模型M_th,并且/或者,使用适配的TSEP模型代替TSEP模型M_TSEP。
12.根据权利要求11所述的系统,所述系统包括电力变压器或电抗器,其中:
-所述装置包括变压器或电抗器的绕组(W1、W2、W3);并且
-特征温度Tj由变压器或电抗器的绕组温度给出。
13.根据权利要求11所述的系统,所述系统包括电力电子系统,其中:
-所述装置包括功率半导体装置PS;并且
-特征温度Tj由功率半导体装置PS的结温Tj给出。
14.根据权利要求13所述的系统,其中:
-电力电子系统包括功率转换器PC;并且
-功率半导体装置PS被包括在功率转换器PC中。
CN201980062221.2A 2018-09-21 2019-09-19 确定电气或电子系统的特征温度 Active CN112752960B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18196070.9A EP3627121B1 (en) 2018-09-21 2018-09-21 Determining a characteristic temperature of an electric or electronic system
EP18196070.9 2018-09-21
PCT/EP2019/075227 WO2020058435A1 (en) 2018-09-21 2019-09-19 Determining a characteristic temperature of an electric or electronic system

Publications (2)

Publication Number Publication Date
CN112752960A CN112752960A (zh) 2021-05-04
CN112752960B true CN112752960B (zh) 2024-05-17

Family

ID=63678540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980062221.2A Active CN112752960B (zh) 2018-09-21 2019-09-19 确定电气或电子系统的特征温度

Country Status (6)

Country Link
US (1) US11320321B2 (zh)
EP (1) EP3627121B1 (zh)
JP (1) JP7414812B2 (zh)
KR (1) KR20210063376A (zh)
CN (1) CN112752960B (zh)
WO (1) WO2020058435A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11740607B2 (en) * 2018-08-30 2023-08-29 Abb Schweiz Ag Method and system for monitoring condition of electric drives
DE102020117588B4 (de) * 2020-07-03 2022-05-05 Leoni Kabel Gmbh Verfahren zur Bestimmung einer dynamischen Temperaturverteilung über den Querschnitt und die Länge eines Hochstromkabels
DE102020125533B3 (de) 2020-09-30 2021-12-30 Maschinenfabrik Reinhausen Gmbh Vorrichtung und System zur indirekten Temperaturermittlung eines Leistungstransformators
EP4099031A1 (en) * 2021-06-01 2022-12-07 Maschinenfabrik Reinhausen GmbH Method for monitoring an electrical or electronic system and a further system configured to perform the method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681179A (zh) * 2007-03-22 2010-03-24 包米勒公司 电力开关的温度监视
CN103782143A (zh) * 2011-09-07 2014-05-07 科电公司 用于估计半导体芯片温度的方法和设备
CN105825019A (zh) * 2016-03-22 2016-08-03 三峡大学 一种绝缘栅双极晶体管igbt模块温度求解算法
CN106443400A (zh) * 2016-09-14 2017-02-22 河北工业大学 一种igbt模块的电‑热‑老化结温计算模型建立方法
CN106844972A (zh) * 2017-01-22 2017-06-13 上海电力学院 基于pso‑svr的变压器绕组温度软测量方法
CN107219016A (zh) * 2017-05-24 2017-09-29 湖南大学 计算igbt模块瞬态结温的方法和系统
CN108038795A (zh) * 2017-12-05 2018-05-15 武汉大学 基于流线和支持向量机的变压器热点温度反演方法及系统
CN108072821A (zh) * 2017-12-06 2018-05-25 南京埃斯顿自动控制技术有限公司 半导体功率器件动态结温的实时在线预测方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525763A (en) * 1983-11-30 1985-06-25 General Electric Company Apparatus and method to protect motors and to protect motor life
JPH0654572A (ja) * 1992-07-31 1994-02-25 Omron Corp 電動機の熱保護装置
US6006168A (en) * 1997-12-12 1999-12-21 Digital Equipment Corporation Thermal model for central processing unit
JP2001208798A (ja) * 2000-01-26 2001-08-03 Mitsubishi Electric Corp 半導体回路のテスト方法および装置
JP2003018861A (ja) 2001-06-27 2003-01-17 Nissan Motor Co Ltd インバータの冷却制御装置
DE10132452B4 (de) * 2001-07-04 2005-07-28 Robert Bosch Gmbh Vorrichtung und Verfahren zum Messen von Betriebstemperaturen eines elektrischen Bauteils
JP2003315305A (ja) * 2002-04-22 2003-11-06 Honda Motor Co Ltd 排ガスセンサの温度制御装置
US7570074B2 (en) * 2005-05-09 2009-08-04 Square D Company Electronic overload relay for mains-fed induction motors
JP2006329869A (ja) 2005-05-27 2006-12-07 Yamatake Corp 温度推定装置、温度制御装置、温度推定方法、温度制御方法、温度推定プログラム、および温度制御プログラム
DE102007007988A1 (de) * 2007-02-17 2008-08-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Reibkompensation
DE102008040968B4 (de) * 2008-08-04 2019-04-25 Robert Bosch Gmbh Verfahren zum Bestimmen der Temperatur eines elektrischen Bauelements mit Hilfe eines Temperaturmodells
JP5317881B2 (ja) 2009-08-05 2013-10-16 三菱電機株式会社 電力変換装置および電力変換装置の保護方法
EP2354864A1 (en) * 2010-01-29 2011-08-10 Eurocopter Deutschland GmbH Method and system for an optimized utilization of energy resources of an electrical system
US8483982B2 (en) * 2010-11-02 2013-07-09 Schneider Electric USA, Inc. Automated emergency power supply test using variable load bank stages
WO2015044205A1 (en) * 2013-09-24 2015-04-02 Abb Technology Ag Method and apparatus for determining an actual junction temperature of an igbt device
DE112014006233A5 (de) * 2014-01-22 2016-10-13 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung einer Motortemperatur eines Elektromotors
FR3018557A1 (fr) * 2014-03-17 2015-09-18 Peugeot Citroen Automobiles Sa Methode et systeme d'estimation du temps restant d'activation d'un demarreur avant sa surchauffe
EP3054306A1 (de) * 2015-02-03 2016-08-10 Siemens Aktiengesellschaft Verfahren zur Bestimmung einer Alterung von Leistungshalbleitermodulen sowie Vorrichtung und Schaltungsanordnung
US10001800B1 (en) * 2015-09-10 2018-06-19 Apple Inc. Systems and methods for determining temperatures of integrated circuits
US10337932B2 (en) * 2015-09-25 2019-07-02 Oracle International Corporation Adaptive method for calibrating multiple temperature sensors on a single semiconductor die
KR102469942B1 (ko) 2016-04-19 2022-11-22 엘에스일렉트릭(주) 인버터 스위칭 소자의 온도추정을 위한 파라미터 결정장치
US10985694B2 (en) * 2016-07-15 2021-04-20 Enphase Energy, Inc. Method and apparatus for determining key performance photovoltaic characteristics using sensors from module-level power electronics
US9971376B2 (en) * 2016-10-07 2018-05-15 Kilopass Technology, Inc. Voltage reference circuits with programmable temperature slope and independent offset control
KR20180069954A (ko) * 2016-12-15 2018-06-26 현대자동차주식회사 파워모듈의 정션온도 측정 방법
CN206760250U (zh) * 2017-02-10 2017-12-19 宁波海角信息科技有限公司 灌溉系统
US10457263B2 (en) * 2017-07-24 2019-10-29 Bendix Commercial Vehicle Systems, Llc Brake adjustment detection using WSS based thermal measurement
US10386899B2 (en) * 2017-08-08 2019-08-20 GM Global Technology Operations LLC Methods and systems for configurable temperature control of controller processors
JP6973311B2 (ja) * 2018-07-03 2021-11-24 オムロン株式会社 処理装置
US10615737B1 (en) * 2018-09-24 2020-04-07 Nxp Usa, Inc. System and method of estimating temperature of a power switch of a power converter without a dedicated sensor
JP7061060B2 (ja) * 2018-12-20 2022-04-27 ルネサスエレクトロニクス株式会社 制御回路、駆動システムおよびインバータの制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681179A (zh) * 2007-03-22 2010-03-24 包米勒公司 电力开关的温度监视
CN103782143A (zh) * 2011-09-07 2014-05-07 科电公司 用于估计半导体芯片温度的方法和设备
CN105825019A (zh) * 2016-03-22 2016-08-03 三峡大学 一种绝缘栅双极晶体管igbt模块温度求解算法
CN106443400A (zh) * 2016-09-14 2017-02-22 河北工业大学 一种igbt模块的电‑热‑老化结温计算模型建立方法
CN106844972A (zh) * 2017-01-22 2017-06-13 上海电力学院 基于pso‑svr的变压器绕组温度软测量方法
CN107219016A (zh) * 2017-05-24 2017-09-29 湖南大学 计算igbt模块瞬态结温的方法和系统
CN108038795A (zh) * 2017-12-05 2018-05-15 武汉大学 基于流线和支持向量机的变压器热点温度反演方法及系统
CN108072821A (zh) * 2017-12-06 2018-05-25 南京埃斯顿自动控制技术有限公司 半导体功率器件动态结温的实时在线预测方法

Also Published As

Publication number Publication date
JP7414812B2 (ja) 2024-01-16
EP3627121A1 (en) 2020-03-25
EP3627121B1 (en) 2022-07-06
US20210318179A1 (en) 2021-10-14
US11320321B2 (en) 2022-05-03
CN112752960A (zh) 2021-05-04
JP2022501989A (ja) 2022-01-06
KR20210063376A (ko) 2021-06-01
WO2020058435A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
CN112752960B (zh) 确定电气或电子系统的特征温度
Ni et al. Overview of real-time lifetime prediction and extension for SiC power converters
EP3049779B1 (en) Method and apparatus for determining an actual junction temperature of an igbt device
Heydarzadeh et al. Bayesian remaining useful lifetime prediction of thermally aged power MOSFETs
Yang et al. A method of junction temperature estimation for SiC power MOSFETs via turn-on saturation current measurement
Bahun et al. Estimation of insulated-gate bipolar transistor operating temperature: simulation and experiment
Zheng et al. Monitoring of SiC MOSFET junction temperature with on-state voltage at high currents
Rizzo et al. Intrusiveness of power device condition monitoring methods: Introducing figures of merit for condition monitoring
Hoeer et al. Online temperature estimation of a high-power 4.5 kV IGBT module based on the gate-emitter threshold voltage
US11262248B2 (en) Analyzing an operation of a power semiconductor device
KR101531018B1 (ko) 전력반도체소자의 불량 예측 방법
CN106533322B (zh) 马达控制中的mosfet开关温度的计算
US20230096094A1 (en) Analyzing an operation of a power semiconductor device
JPWO2020058435A5 (zh)
CN111344583A (zh) 电池单体监控系统
Degrenne et al. A prognostics framework for power semiconductor IGBT modules through monitoring of the on-state voltage
Felgemacher et al. IGBT online-temperature monitoring using turn-off delay as a temperature sensitive electrical parameter
Yang Methods for resolving the challenges of degradation diagnosis for SiC power MOSFET
EP4249874A1 (en) Junction temperature inhomogeneity estimation method for power semiconductors
CN113711063A (zh) 功率器件监测系统和监测方法
KR20050107852A (ko) 반도체 전력소자의 온도 추정장치 및 방법
KR20240038395A (ko) 전력반도체소자의 불량 예측을 위한 방법 및 장치
CN118244075A (zh) 一种变流器功率模块结温在线准确获取方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40048045

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant